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STATE ESTTMATION AND PARAMETER IDENTIFICATION FOR SFMILINEAR DISTRIBUTED

PARAMETER SYSTEMS

J.A&.M. Felippe De Souza

Instituto de Pesquisas Espaciais - INPE

Caixa Postal 515

12201 - Sao José dos Campos - SP - Brazil

Abstract

Here we study the problem of state estimation and parameter identification
of semilinear systems of the type Z = Az + Nz (A4 = A(Q) linear, N(a)

vonlinear, o 8 4 being the p parameters to be identified} with anobservation
¥ » €z (C linear). It is assumed that the dynamics of the linear part (i.e.,
£ = Az) can be described in terms of a strongly continucus semigroup on an
appropriate Banach space Z, so that this formulatiom includes distributed
parameter systems and delay systems as well as lumped parameter systems, First
of all we develop some theoretical results by using fixed point theorems with
some mappings F:X - X, where X is a space of functions from the interval [0,T]
to Z (the possible trajectories of the system). However, these results are
obtained by imposing some conditions on the space of output fumctions, which
restrict the class of systems studied. Therefore we also consider an approach
involving the pair (z;,z(+)) consisting of the initial state and the
trajectory in a space M which is the cross product Z X X betwsen the state
space Z and the space of trajectories ¥. We show that the solution of the
problems of state estimation and parameter identification can be obtained via
the fixed point of a variety of maps F:M + M.

Keywords: Distributed parameter systems; nonlinear systems; observability,
parameter identification; semigroup; state estimation.

1. INTRODUCTION
In this paper linear systems of the type

2w Az + Ao, z{0) = z, (1)

(A and A; linear on Z) and semilinear systems
of the type

2= Az + Aa + RB(z,a), z(0) = 2, (2)

(N nonlinear) are considered, It is assumed
that A generates a strongly continuous
semigroup S(t) on Z (the state space).

The observation process is described by
¥ R Gz (3)

{C:Z + Y linear).

The joint problem of state estimation and
parameter identification is to construct the
state z(t), t & [0,T) and identify the

RP when the
output observation y{(-) € ¥ is given.

1f we define Z = Z xB® and &, z, N and ©
by

parameter o = {0, Tz, +esy ap)

o) = [2]

. N(z,qa) -
Nz = o and € = [C 0],
then (1) may be written in the form

~FE, 3(0) = 3o, )

10

(2) may be written as

= Az + Nz, z(0) =z, 5)

Ml

and the observation (3} as
y = Cz. (6}

So, the joint problem of state estimation
and parameter identification for the linear
problem (1}, with state space Z and
observation (3), is equivalent to just state
estimation of system (4}, with the enlarged
state space Z and observation (6). Similarly,
the joint problem of state estimation and
parameter identification for the nonlinear
problem (2), with state space Z and
observation (3), is equivalent to just state
estimation of system (5}, with the enlarged
state space Z and observation (6).



For the single problem of state
estimation consider the system

2 =4z, 2(0) =2,
7
¥y =Cz
for the linear case, and the system
2ahz + Nz, 2z(0) =3z,
8)
y = Cz

for the nonlinear case.
2. EXAMPLES

As an example of a the joint problem of
state and parameter estimation, consider the
wave equation

itw

Fix,e) = L0« wix,n )

with boundary conditions
w(0,e) = 0, w{l,t) =1,
and initial conditions

w(x,0) = wyo(x), wt(x,O) = wy{x).

The observation is given by

1
y{t) = I e(x)w(x,t)dx.
G

Assume the initial guess

o= 0
for the parameter ¢ and

Wolx) =x, Wi{x) =0

for the initial state wo{x), wy;(x). Then,
solving the above equations yield

wix,t) = x,

Setting w e W + w' and x = & + a° give

[
wtt

«w' o+ xa'+aw',
XX

w'(0,r) =0,
t

w'(1,t) =0,

1
clx)w' (x)dx.

y(t) = J xe(x)dx + I
1] 0

The above system can be expressed in the form
{6} by setting

z1 W' 0 I 0
E-Zz-wé,3=-A0x,
Z3 a' 00 0

and

where Aw = -w__ with
*X

D) = B*(0,1) N H(0;1).

Now let
1
y(e) = y(t) - I xe (x)dx
0

and €z = <c,%,>. Then the observation y canbe

written in the form (6) (i.e., ¥ = Cz).

As an example of the problem of state
estimation, consider the nonlinear wave
equation

S, - ;"T:’(x»t) + K (w,w) (10)

with the same boundary and initial conditions
of the previocus example, the cbservation given
by

1
y(e) -I c(x)wv, (x,t)dx
0

and N' being a nonlinear gperator wuch as
1
N (w,wt) .-uw o, WV, VW etc.

Setting A as in the previous exawmple, this
system can be expressed im the form (8) with

o1 [ Y I A g
Lol [0

1
Cz = JO c(x)wt(x.t)dx 2 QC,Z,>,

and

If DAY = D(A) x U(AIIZ), then A generates a
strongly continuous semigroup S(t} on

P(A*/%) x 12(0,1) (Curtain and Pritchard, 1978)
given by

o
z [%os art <z;,0 > +
n
n=1

Z2

2] + % sin nmt <z2,¢n:]¢n
s(c) =

=
L [-nm sin nmt <zl,¢“> +
n=1

+ cos amt <z2,¢n>]¢n

vhere ¢ (x) o v2 sin omx, and the inmer
is in L2{0,1).



3. LINEAR OBSERVABILITY

Equation {7), for the problem of linear
state estimation, is to be interpreted in the
mild sense

z(t} = 5(thz,, z(0) = z,,

(11)
y(t) = CS(t)z,,

for t ¢ [0,T].

If it is assumed that the output function
y{*) belongs to a reflexive Bamach space ¥,
and if the operator H:Z + ¥V is defined by

uzn - CS(')Z »
then y in {11) may be written
¥e= HZG. (12)

In the sequel it will be assumed that Range
(A) is closed in ¥. If this is not the case
for a particular pair (Z,Y), then it is
necessary to enlarge the state space Z or to
restrict the space of output functions Y.
Pritchard (1981} and Carmichael, Pritchard
and Quinn (1982) showed that it is always
possible to put a Banach space topology on
Range (H) so that if ¥ = Range (H) clearly
the above assumption is satisfied. Later
Felippe De Souza (1983a; Chapter 5 of 1983c¢c)
showed that Z and/or Y can always be adjusted
with Hilbert space topologies such that Range
(H) is closed in Y. Furthermore, Felippe Dea
Souza (1983b) presents an iterative
procedures for this adjustment to be done,

If Z and ¥ are Hilbert spaces, since
Range (H) is closed, the generalized inverse

H+ defined by

H‘f‘zo = (H/ 'L)ZQ, zy & Range (H)

(kernel (H)]
=0, 24 ¢ [Range H)]*

is bounded (or continuous). For a given
output observation y € ¥, the state

Zy = ny
ie the state of minimum norm, that is

1'50"
Z

is winimum. Moreover, this state z, also
minimizes the functiomal

Iy - Bzl
y

over all z, € Z vhich satisfy (12).

4. FIXED POINT THEQREMS

Fixed point theorems have been used since
the beginning of the century to show local
existence theorems for differential equations,
Recently, several papers (Carmichael,
Pritchard and Quinn, i98f, 1982; Carmichael

and Quinn, 1982; Pricchard, 1981, 1982 Felippe
De Souza, 1983c, 1984a, 1984b, 1984c) have
been published using fixed point theorems to
provide existence of solutions of the problem
of nonlinear observability. These papers
usually provide mappings ¢ or F defined on
some space X of functions from [0,T] to 2

(e.g., %=0C{0,T;2) or X=1P{0,T;2) for some
pz 1, ete,), and the solutions of the problems
of nonlinear controllabilicy and state
estimation are obtained wvia the fixed points
of such mappings.

So, the existence of a solution for the
problem of nonlinear controllability or state
estimation is transformed into the existence
of fixed points of these mappings.

Types of Fixed Point Theorenms

The papers referred to above used fixed
point theorems of comtractive type, topological
type or contractive type with perturbations.

4 classical example of a contractive type
fized point theorem is the Banach contraction
principle (Banach, 1922). Other fixed point
theorems of this type may be found in Belluce
and Kirk (1969) or Nashed and Wong (1969). For
topological fixed point theorems, we refer to
Brouwer's fixed point theorems {(Dunford and
Schwartz, 1963} and Schauder fixed point
theorem (Leray and Schauder, 1934). Finallywe
have fixed point theorems for mappings F of
the type

FaF +Fy,

where Fy is a contractive type (such as a
contraction) and F; is either compact or
completely continuous. Among the numerous more
recent papers which develop fixed point
theorems of this type we mention Nussbaum
(1969), Belluce and Kirk (1969) and Petryshyn
(1973).

5. STATE ESTIMATION

First assume that the linearized system
(?7) is continuous initially observable. Then,
the mapping [CS(+)]:Z -+ ¥ has a continuous
inverse {C5(+)]™! (Curtain and Pritchard,
1978). Now let X be the space of the
trajectories (e.g., X=GC(0,T;2) or X = LP
{0,T;2) for some p:1), The mild form of
system (8) can be expressed by

2(-)=S5( )z + L{IN2(+), z(0) =24, (13)
where L{t), defined on X 2 X for each te[0,T],
is the linear operator defined as before, So,
the observation y in (8) may be written as

y = C8(-)z, + CL(+INz(-},
thus,
¢5(+}zo = (y - CL{*)N2(*))},

hence,



2o = [CS())" y - CL(-INz(-})
= B (y - CL(+INz(-)),

and, therefore, if z#(+) is the actual state
of the system observed, we can write, by (13),

z#(+ JaS (- JH L (y=CL(+ INz# () ) 4CL{ - Ytiz#(-).

Clearly, z*(+) is a fixed point of the mapping
¢$:X + X defined by

6z () () = S(EIH  (y-CL{- )Nz (+)) +

+L{t)Rz(+). (14)
That is, 2%(+) = ¢{z#(+)). The problem of state
estimation of system (1} with the observation
giver by (2) is transformed into finding a
fixed point for ¢.

This approach was used in Carmichael,
Pritchard and Quinn, 1981, 1982) and Pritchard
(1981). In fact, Pritchard (1981) and
Carmichael, Pritchard and Quinn (1982), using
contractive type fixed point theorems, showed
that the state of the hyperbolic system (10)
with the nonlinearity Nw » w? canbe estimated
as long as the observation y lies in the ball
of radius r in  (r being dependent on the
norme on X of 5(-)}z;, z, €2 and Nz(-), z{-}e X).

Carmichael and Quinn {1982} used ¢ in (14)
in an attempt to construct an algorithm for
solving the problem of state estimation. The
assumption of continuously initial
observability for (7} is a bit strong since
it eliminates cases such as, for example,
systems described by partial differential
equations of parabolic type.

Pritchard (1982) and Felippe De Souza and
Pricchard (1985) used mappings ¢ with

H* instead of [CS(:)]71L.

Unfortunately, however, the new ¢ with Hf
does not have neither necessary nor sufficient
condition for obtaining state estimatiom via
its fixed points. An estimation of the state
is not necessarily a fixed point of ¢. A
fixed point of ¢ will be the estimated state
only if a check of consistency presented in
Pritehard {1982) is satisfied.

A more sophisticated approach to solve
the problem of state estimation of (8) was
introduced in Felippe De Souza {1982), This
new approach involved a pair z= (2,,2(+))
consisting of the imitial state z, € Z and
the trajectory z{(-) & X. Instead of $:X + X,
the mapping used was F:M + M, M here being
the cross product between 2 and X.

Let M be the nommed space
H=2ZxX

with noram given by

o2l = fedl « ¢l ,
M z X

and define the operators S:Z2 + M and L:X + M
by

Sz = (zy,50(-)z,),
Lx(+) = (0,L(-}x(+)).

Now, system {13) c¢an be written in the compact
form

z = Sz, + WNz(), z(0) =2z, {15)
and the output equation in (8} can be written
as

y(*) = cz(+), (16)
The mapping F:M + M used in Felippe De Souza
(1982) was

F(2)my+ (I-P} LNz (V4Pz-S(CS(Vez(d,  (17)
where Y= S[CS(°)]+y €M is a fixed element, I
is the identity on M and P is any continuous
projection onte Range (S).

Felippe De Souza (1982, 1983c) showed that
if z*= (z%,2%(.)) is a fixed point of F, then
z¥(t), t € {0,T] is the trajectory of the
system and in particular z#(0) =2%. In other
words, F was the first mapping with sufficient
condition to obtain state estimation via its
fixed points. This was possible because of the
approach of the pair (24,2(-)}) consisting of
the initial state and the trajectory.

Note that no condition on Ramge (CS(.))
was imposed. Also, F in (17) is in fact a
family of mappings, since P is any continucus
prejection onto Range (35). Several examples of
continuous projections onto Range (S) have
been shown in Chapter 4 of Felippe De Souza
{1983c). For example, let P:M + M be

P(zo,2(*)) = (z,,5(+)z,).

Clearly P is a continuous projection onto
Range (8), It is also shown that for a
particular projection P=1I, where =1, + [i;
was defined in Felippe De Souza (1982), F in
{(t15) becomes

Flz) = ({(¢2(-3€0), ¢z (*)) + M (z - LN2(*)),

vhere ¢ is as before. So the approach of ¢ was
incorporated in the mappings F. Also
NM,(z-LNz(-)) is the missing term in ¢ which
gives sufficiency to F.

Later Felippe De Souza (1984a, 1984b,
1984c, 1985, 1986) developed wappings F:M + M
which provide necessary and sufficient
conditions for their fixed points to the
estimated states.

The following theorems present two
mappings F:M + M with considerable advantages
over the mappings ¢:X » X in (14} and F:M +~ M
in (17).

Theorem 1:
aneorem ¥

Let X be any fixzed element of M which
satisfies

X € Range (S) and x = O,



q be the functional on X given by
a(z(+)) = [y () -cz ()|
14

and F:M + M be the mapping
F(z) = Sz, + L¥z (-} + qz(*))x

for z = (z,,2(+)} € M. The pair z%= (2%,2%(-))
€ M is a fixed point of F if and only if z*
satigfies both (15) and {16), that is, if and
only if z%{(0) az% (z} is an estimation of the
initial state) and z*(+) is an estimation of
the trajectory on {0,T}. a

Proof: Let Ew=Range ($). Note that E is a
closed subspace of M, and P:M + M given by

P(z,,2z{+)) =5z, (18)

is a continuous projection onto E (i,e.,
P2 a P and Range (P) =E), Alsoc note that

PLNz () = 0. (19)
I z* = (zF,2%(*)) = F(z*), then
(z# - L¥z%()) = S2¥ + q(z*(- )%

and hence, since Xe E, one has that
{(z*- LNz(-)) € E. Thus, using {12),

P(z#=LNz*(+}) = (2%=LH2(+}) = Sz¥ (20)

and therefore z# satisfies (15)}. Moreover, by
(20), since X=0, one has that q(z*(+)) =0
which implies that z%(+) satisfies (16). This
proves necessity,

Now if z*a (z},2%(+)) satisfies both (15)
and (16}, then one can easily verify that
z*w F(z%*), S0, sufficiency also holds. This
concludes the proof. a

Theorem 2:

Let q be again the functional om X given
by

q(z(*)) = [pr-cz ()|
¥

and F:M + M be the mapping

F(z) = q(z(+))Sz, + LNz(-),

z = (25,2(+)) ¢ M.
The pair z*s= {zf,z*(-)) & M is a fixed point
of F if and only if z¥ satisfies both (15)
and (16), that is, if and only if 2%(0) =z}
(z% is an estimation of the initial state)

and z%{.) is an estimation of the trajectory
on [0,T]. o

Proof: Necessity: if z*= (2%,2%(+)) =F(z%),
then

2% = [Nz¥(+) = q(2%(-})82%, (21)

Thus, since f(z*(-)) e R,

{z% - LNz*(-)) e Range (8)

and, therefore, since P defined in (18) is a
continuous projection onto Range (3),

P(z*~ LRz*(-)) = 2% = LN2*(.), (22)
Clearly, P(z*#) =S8z% and P(LN2*(-)) =0 and
hence, since P is linear,

P(z® - LNz*(-))} = Sz¥. 23)
By (22) and (23),

2% = LNz#(:) = 2% (28)

and therefore (15) holds. By (21) and (24)
qlz®(+)) = 1

and therefore (16) also holds. This proves
necessity.

Sufficiency: Immediate. If z%*= (2§,z2%(+})
satisfies both (15) and (16} one can easily
verify that z* = F(z#*), This contludes the
proof. 0

Remark

If z#%= (2f,2%(+)) is a fixed point of
either the mapping F given in Theorem 1 or
the mapping F given in Theorem 2, then

z%(0} = 2§,

This shows that if we can find a fixed point
z% = (z§,2%(-)) of F, then z*(-) is an
estimation of the state and z*(0) = z§ s an
estimation of the initial state.

Furthermore, any pair (zj,z*(:)€ZxX=M,
which satisfies the dynamic equation (15), and
the cutput equation (16} will be a fixed point
of both F given in Theorem 1 and F given|in
Theorem 2.

So, similarly to the papers mentioned in _
the beginning of this section, the task of
finding an estimation of the state z(t),

t & [0,T] is converted into finding a fixed
point of a mapping.

6. THE JOINT STATE AND PARAMETER ESTIMATION

The mild version of (5) is

3(t) =5(1)F « I; $(e-1)F7 (1),

where S(+) is the semigroup generated by A.
Felippe De Souza (1983¢, 1984b} has shown that
A generates the strongly continuous semigroup
$(+) on Z given by

- s(t) Li(t)a z,
S{t)z, = 0 I a |

So the joint problem of state estimation and
parameter identificatiom of (2} is transformed
into states estimation of {5), and the
techniques of the previous section will then



have an immediate extension for problems of
state and parameter estimation of systems of
the type (2).
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