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A VARIATIONAL PRINCIPLE FOR THE PLASMA CENTRIFUGE 

G.O. Ludv/ig 

S'jraiiary: A variational principle is derived which describes the stationary state 
of"the plasma column in a plasma centrifuge. Starting with the fluid equations 
in a rotating frame the theory is developed using the method of irreversible 
thermodynamics. This formulation easily leads to an expression for the density 
distribution of the £-species.at sedimentation equilibrium, taking into account 
the effect of the electric and magnetic forces. Assuming stationary boundary 
conditions and rigid rotation nonequilibrium states the condition for 
thermodynamic stability integrated over the volume of the system reduces,under 
certain restrictions, to the principle of minimum entropy production in the 
stationary state. This principle yields a variational problem which is 
equivalent to the original problem posed by the stationary fluid equations.The 
variational method is useful in achieving approximate solutions that give the 
electric prtential and current distributions in the rotating plasma column 
consistent with an assumed plasma density p'rofile. 

Rotation in a fully ionized plasma column is induced by crossed electric 

and magnetic fields. This concept led to the development of vacuum-arc 

centrifuges [3,4,6,9] in which it was shown that isotopic enrichment well in 

excess of those measured earlier in gas discharge centrifuges [2,8,10] can be 

attained. The advantage of a fully ionized plasma centrifuge over their 

partially ionized counterpart is that the former is not limited to values of 

the rotational velocity'below the Alfven critical velocity [1], In the device 

under consideration a highly ionized plasma consisting of the cathode material 

is created by an arc discharge and propagates into a vacuum, streaming along 

the magnetic field lines. As a result of ambipolar diffusion across the magnetic 

field lines a self-consistent electric field is establishedin the cylindrical 

plasma column. This inward directed radial electric field, crossed with the 

axial magnetic field, determines the rotation frequency of the plasma, to 

lowest order. The negative radial pressure gradient and the centrifugal radial 

force, crossed with the axial magnetic field, produce in azimuthal driftof the 

positive ions in the direction opposite to the electromagnetic drift. 

Accordingly, the azimuthal velocity of the ions is somewhat slower than the 

E >' 13/fi value. On the other hand, the diamagnetic drift of the electrons adds 
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to the electromagnetic drift. Thus a net aziinuthal current flows in the 

direction opposite to the plasma rotation. The resulting inward directed 

Lorentz force balances the outward forces and confines the plasma column. An 

interesting situation takes place for sufficiently large values of the rotation 

velocity; the radial electric field in the rotating frame points outward and 

the negatively charged plasma column can be electrostatically confined. Due to 

collisions between ions an azimuthal frictional force arises v/hich, crossed 

.with the axial magnetic field, produces an inward.directed radial drift of the 

ions with smaller m/Z value and ar 0'itward drift of the ions with larger m/Z. 

Finally, a situation is reached in wlvkh the column rotates as a rigid rotor 

and each ion species attains a condition of dynamical equilibrium between 

sedimentation, diffusion and electromagnetic forces. Slow radial diffusion of 

the plasma column, constrained by charge neutrality, proceeds as a result of 

electron-ion collisions. 

The above physical account basically describes the centrifuge process in 

a fully ionized plasma column. Due to the complexities of the processes at the 

cathode region, the analysis of the plasma centrifuge is usually restricted to 

the qua si-equilibrium steady-state in which the plasma column is uncoupled from 

the cathode. Two problems must be addressed in this analysis: the density 

distribution of the various ion species in sedimentation equilibrium, that is, 

the elementary separation factor that can be achieved in the plasma column; and 

the profiles of the various plasma parameters, particularly of the self-

consistent radial electric field. In this work an analytical, model for the 

quasi-equilibrium steady-state of the plasma centrifuge is presented using the 

method of irreversible thermodynamics. 

2 Analytical model 

In a reference frame rotating with the constant angular velocity i] the 

one-fluid equations that describe a plasma with several components are 

S(Pincü)/DUV.(PrnCc(u')=-V.fa, 



pm(Du'A>t H I ' • Vu ' ) = -Vp-V-v-ZpJlxu'+p^i | n * r \*/2KP?' + j 'x(S0 + "Ô) , 

[)ü/3t+u'*VÜ+(IJ+p)V-u* = -V -q -TT iVu '+ j j - 'C i ' +u ' xCaa+ i ) ] . 

The species a i s conven ien t l y descr ibed by the concen t ra t i on c =n ni / p and 

the d i f f u s i o n momentum V - r. in ( u ' - u ' ) , which s a t i s f y 

>:c = 1 , }:r = o . 
it ;i a a 

The mass conservation equations for each species add up to 

:)n /Dt+V-(p u')= 0, • in ' m 

where ,j is the total mass density. The primed quantities are measured in the 

rotating frame, so that u--• u +i2;<r is the velocity of the center of mass in 

the inertia] frame. The electric field transforms from one frame to the other 

according to 

Í.ÍMfixrHVS). 

where éa denotes the external magnetic field and B the internal field. The 

current density j' is given by the sum of the convection current density pu' 

and the conduction current density j = X(e /m )r . 
' c a a a a 

The local entropy density S satisfies the entropy balance equation 

aS/3t+V-(Su')= -V»J +o, 

where J is the entropy flux, given i.n terms of the heat flux q and the 

thermodynamic potentials per unit mass of each species u by 

and a is the rate of production of entropy, given in terms of the independent 

thermodynamic fluxes and forces for a compound system of I components by 

e ^ q - V f t Y. f .(X -fij-T'Wu'iO. 
«=1 a u *' 

lhe thermodynamic force X , associated with diffusion phenomena, is defined by 

^=-{V(pa/T)-(ea/maT)[í'+u'x([J04)]}. 

The ions and electrons in a plasma comprise ideal mixtures, for which the 

following thermodynamic relation is valid 

TV(JJ /T)= (kT/m )Cn^1Vnf(+p"
1Vp+(5T/2)VT'1]. 
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The pressure p and the temperature T satisfy the ideal gas law p=nkT, where 

n = Xn is the particle density, and U = 3p/2 is the internal energy density. 

A basic inequality in the present formulation is the condition for 

intrinsic thermodynamic stability of a fluid mixture which may be written as 

[II] 

iVt j j ja i " f [ r } t j 
{V. 

at 
-f«U-(p c )i0. 
T J t ill a ' 

Assume that the plasma column has reached a state of mechanical 

equil ibrium with small veloci ty gradients. In th is state the column rotates as 

a r ig id body and not. only the acceleration vanishes but also the viscous 

stress tensor ,; may be neglected. With the r i g i d ro tor assumption (u ' -=0 , 

Vu' -- 0) the f l u i d equations in the rotat ing frame become 

p.')c /3ts -v-r 
m a a 

(dpm/dt3 0 ) , 

o * -vp+Pjnv( rd-/r|?/z)+p^+jc*(3a+3), 

3U/3ts-V-qVJ c .? ' , 

and the rate of production of entropy is given by 

a=1 a a Í. 

where Í ~ -[V(u /T)-e t'/m T ] , 

Using standard procedures [ 5 ] , i t can be shown that at mechanical 

equil ibrium 

^ 1 . 
To= -J «vT-t-i j ; r 

«=1 a , o a , o ' 

with the independent thermodynamic forces given by (for a- I, 2, ..., Í.-1) 

The diffusion momentum f =n m (u'-u') is defined with respect to an arbitrary 
ft,o a a a o 

reference veloci ty given by u^ = za u ' , where a , , a 2 , . . . a are the normalized 

weights (J.a = 1 ) . On a long enough time scale one can consider the s i tua t ion of 

a f u l l y ionized plasma mixture in which the ion components are in sedimentation 

equil ibrium but not the electrons (the subscripts c< = 1 , 2 , . . . ?.-] indicate ion 
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components and the subscript a.-i indicates the electron gas). For an ion 

mixture in isothermal and sedimentation equilibrium the vanishing or the 

thermodynamic foces that act on the ions gives an explicit expression for 

(V;i ) r which can be substituted into the relation (Vu ) T = (kT/m )n
_1Vn . 

. p,T «p,T a a a 
One then obtains an expression that relates the densities of two ion species 

at e<ich position 

n 
/ £n-

n. 
a' 

(m -mj L a (i 

_> l ^ S o + I ) ^ 
9.2 rx+- •"cV 

From th is expression the separation factor can be calculated i f the other 

relevant plasma parameters are known. I t must be pointed out that for a plasma 

(ions and electrons) in thermodynamic equi l ibr ium the conduction current 

s t r i c t l y vanishes. However, due to the smallness of the mass ra t io m / m . , one 

may assume that only the ion species are in sedimentation equi l ibr ium on the 

time scale under consideration. 

Using the conservation laws for d i f fus ing components in a ro ta t ing frame 

the condition for i n t r i ns i c s tab i l i t y may be rearranged in the form 

« « u' » M^fylU lz? .£(* - 1 ) 4 ^ 0 . ma a a 3tl T ^ 3tl Tl . a 3t a Jt T Dt 

Assuming quasi-stationary conditions for the electromagnetic f i e l d the las t 

term in the above equation may be neglected. The electromagnetic f i e l d 

variables are sel f -consistent ly determined by Maxwell's equations neglecting 

the displacement current and introducing the e lec t ros ta t i c potent ial if>' so 

that E' - -V<i>'. Integrating the s tab i l i t y condit ion over the volume of the 

system and assuming stationary boundary conditions at the surface, one finds 

that 

"•W 

/.[H ^ + J: f .±(t -1) 
, a <3t a I a=l 

d 3 r i0 , 

which has the general form 

/v(ç3i-3!fi/3t)dírí0, 

whereas the entropy production rate is given by 
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o = L J . ' X . . 0 . . '•';.-" "•: 
i 1 1 ': 

The to ta l entropy production P in the system is the volume integral of a. 

Taking the d i f f e ren t i a l with respect to time 

^ ax. aX 
~ % f c J . - ^ r d ' r + f i T ~ - i . d , r . .it Jv i l t i t

 Jv i at i 

Hence, as long as the change of the entropy production is due to the rate of 

change of the thermodynamic forces, i t w i l l be negative. I f the following 

condiL k>/is *re sa t i s f i ed : (1) l inear phenorr.enological re la t ions ; (2) constant 

phenomenoloqical transport coe f f i c ien ts ; (3) Onsager reciprocal relat ions 

(val id for a weakly magnetized plasma), then i t can be easily shown that [5 ] 

DP/3t = 2 f ( v 3 . . 3 l / a t ) d â r $ 0 . 
' V i I 1 

The inequalities P>.0 and DP/DtiO imply the diminishing of the total entropy 

production until the stationary state is reached (Prigogine's principle of 

minimum entropy production). Therefore, the rigid-rotor equilibria for a 

weakly magnetized plasma with constant transport coefficients canbe determined 

by the solution of the variational problem óP = O with fixed boundary conditions. 

Conversely, it can be shown that the variational principle 6P~0 leads to the 

solution of the fluid equations in the stationary state [5], 

Much simplification can be introduced in the description of the plasma 

equilibrium of this fully ionised plasma composed of several components if one 

considers the essentialy inertialess character of the electrons. In the limit 

m —0» the entropy production rate becomes 

To-, T(qv
+5kTjc/2e).vT"

1
+Jc.[í

, + (nie/e)(ViiG)T]^0, 

where j ;.- -e"r /m . Using Spitzer's notation the constitutive relations for a 

weakly magnetized plasma are written 

Jc = n
_ 1 [ ^ + i"ie/e)(Vue)TJ+av-T, 

q = -0[E'+(me/e)(Vue)T]-KVT, 

where n is the resistivity, K the thermal conductivity, « the Seebeck 

coefficient and p, according to Onsager's relations, is given by p=aT+bkT/7en. 
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In the relation (Vu ) T = (Vu ) T+Vp/m n, the gradient of the pressure p can be 

expressed in terms of the mechanical and electromagnetic forces by the condition 

of mechanical equilibrium, which, for a quasi-neutral plasma (ps 0),becomes 

Vp - pmV( |í2xr|
2/2)+ic-<(B0+á). 

The explicit contribution of the Hall electric field j *(B0+B)/en in the 

expression of o vanishes, that is, this term corresponds to a nondissipative 

transport effect. However, at mechanical equilibrium the influence of the Hall 

field in the entropy production rate is implicitly present in the Vp terra. 

Thus to determine j one has to solve the equation 

Jc-Jc*( Vé)/e n n = ÊVn-KiVT, 

where ?* is a generalized electric field defined by 

t* = t'+(pm/en)V(|a*r|*/2)+(kT/e)n~lVne. 

In the lov/-beta approximation one can neglect the magnetic induction generated 

t>, the plasma (|S|«|B"0|). Introducing the unit vector b0 = B0/|§o| one obtains 

'Íc = (í*/n+c(7T).b0b()+[l+(B0/enn)
2]"1(IÍJ/enn)(í*/n+aVT)xbo-

-[1+(B0/enn)
a]_,[(ÊVn.««VT)x60:|x60. 

Assuming that only electric conduction takes place but no temperature 

gradient exists the expression for a becomes (with tf, = t*-b0) 

Ta = íc.?*= |t:|
í/n+[1+(B0/enn)

2]-,|í:|2/n>.0. 

In Lin's case the variational principle assumes the form of Steenbeck's 

minimum principle '[7], 

ô/v{|?:|^[1+(B0/enn)
2]-1|í:i2}d3'" = 0. 

The assumption of constant transport coefficient is justifiable in this case, 

because the resistivity is basically a function of the temperature T. The 

variational principle can be used to compute the electrostatic potential 

distribution in the plasma column consistent with an assumed particle density 

distribution. Application of this scheme to a cylindrical discharge is the 

purpose of the next section. To conclude this section consider the virial 

theorem in the inertial frame. Within the rigid-rotor approximation (u~i>r) 
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and assuming negligible viscosity effects Cns 0) in a low-beta plasma (U~Q) 

this theorem can be v/ritten in the form 

/ v
d 3 r <P mr^|

a +3p + c
a
EV2+?-(Kè 0)>^ sd

l?-<r(p+c (,EV2)-r-c 0tÉ>, 

where the brackets indicate average values (steady-state values) over a large 

time interval. The virial theorem relates the values of the angular rotation 

frequency and the voltage drop in the plasma column. The voltage drop, or the 

electrostatic potential distribution for that matter, is computed using the 

variational principle, consistently with a prescribed density profile. Final ly, 

the value of Q and the calculated electrostatic potential profile can be used 

to compute the separation factors for each ion species. 

3 Application to the plasma centrifuge 

In this section the variational principle derived in the previous 

section is utilized to compute the profiles of the self-consistent radial 

electric field and azimuthal current density in the quasi-equilibrium steady-

state of the plasma centrifuge. Only a brief outline of the method is presented 

with application to a simple case. Consider a cylindrical rotating plasma in 

a uniform magnetic field in the axial direction. All equilibrium quantities 

depend on r only. For this type of equilibrium, Steenbeck's minimum principle 

becomes 

. ( H i f 8o) 2~Pf d*' P " W kT d n e ] 2 , „ 6 1+ — 2 " . - ~r~ + —rf2zr + — — --J—- rdr = 0. 

Jn L lenrU J I dr en en
e ° r i 

The boundary conditions on £' are $'(0) = 0, t>'(r0) = <j>'0 = $0~<;>30rl/2. Now assume 

a fully ionized plasma formed by electrons of density n and a dilute binary 

mixture of ions so that n2<<ni. Assuming, furthermore, that m?ymlt one has (in 

the limit m -*0) p s n ^ j . By the condition of quasi-neutrality, 

p= (T)x71+n222-n )e a 0, it follows that n s rijZ, and n = n!+n2+n s n p + Z i ) . 

Substitution in the minimum principle gives 
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where n is the electron density normalized to some reference value. Now e 

Z.EL/U+Zjen n>H r . , where ft =eB„/rn and T . i s the e lect ron- ion co l l i s i on l U i e e e i e ° e ei 

time. For typical parameters in the plasma centr i fuge [6 ] t h i s is a large 

number, that i s , the electrons are strongly magnetized. This i s inconsistent 

with the s impl i f ied form that was assumed fo r the cons t i tu t i ve re la t ions and 

the present calculat ion i s s t r i c t l y v a l i d only in the weakly magnetized plasma 

regime. However, since i t i s intented as an i l l u s t r a t i v e example of the method, 

the strongly magnetized plasma approximation w i l l be adopted in the fo l lowing. 

One expects the conclusions to be approximately va l id i f the proper value of 

the pernendicular r e s i s t i v i t y is used. With the assumption O T . » 1 , one 
e ei 

obtains (with x^r/r^) 

siVr-?-f- &+ T ^ I a'-**? n2x<ix=o. 
JO e ü R i T r 20+ZjkT * eJJ 

According to the Rayloigh-Ritz method, the electrostatic potential can 

be approximated by the polynomial expansion 

ei»7kT= (e^/kT)|x« + _E c ^ ^ U - l ) ] 

and the variational procedure leads to a set of linear equations for c. (i=l, 

2, ..., n). If the electron density has a Gaussian profile such that 

r]SM£) 
the equations are homogeneous, cxsc2 = = c =0 and the electrostatic 

potential profile is exactly parabolic <}>' = «j^rVrJ. In this case the conduction 

current density and the entropy production rate vanish and one has a situation 

of thermodynamic equilibrium with electrostatic confinement. In general, this 

is not the case and the electrostatic density profile ismodified by the 

current. Anyhow, the calculated profiles can be substituted in the virial 

theorem leading to m equation which relates the angular rotation frequency 

and the plasma parameters. For a rotating cylindrical discharge 

ne = exp _ IZd+ZjkT""!^" 

fr° 
[pm^r'+3P+e0E£/2+PnB0r*+(Jc)eB0r]rdr - r*(p- e.9Vrft)^r 

0 ' 
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For a very low-beta plasma one may neglect pressure e f fec ts . Hence 

^ [ p ( - p ) r » d r ] 1 [ ( r * t : o E*/ZB o ) r + | r ° ( e 0 E ^ / Z B 0 ) r d r + | r 0 ( J c ) 0 r ' d r ] . 

/Is an example, consider the i imple case of e lec t ros ta t ic confinement ( j •- 0) 

with E s-2({i0r/rl and p :; -4f0<J>0/rJ. I t follows that 

One ve r i f i es that e lec t ros ta t ic confinement is possible i f fis 5t|»0/2r|B() 

( E ' s - E /4) and a s 2ro(e<i>o/kT)~1 '2. For th is equi l ibr ium the angular ro ta t ion 

frequency decreases for large values of the external induct ion. This simple 

case i l l us t ra tes the usefulness of the var iat ional method in achieving 

solutions to the problem of quasi-equi l ibr ium in the plasma cent r i fuge. In 

general, one has to consider the ef fects of f i n i t e diamagnetic currents and 

plasma pressure. Furthermore, to describe correct ly the plasma centr i fuge 

problem the minimum pr inc ip le has to be extended to include flow terms in the 

axial d i rect ion and the strongly magnetized plasma const i tu t ive re la t ions must 

be used. One expects to deal wi th th i s las t aspect def ining a local potent ial 

[11] appropriate to the centr i fuge problem. Full appl icat ion of the method 

w i l l be presented elsewhere. 
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