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The single-particle and collective descriptions of the anomalous Doppler
resonance and the role of ion dynamics

R. O. Dendy, C. N. Lashmore-Davies, and A. Montes®
Culham Laboratory (Euratom/UKAEA Fusion Association), Abingdon, Oxfordshire 0X14 3DB,

United Kingdom

(Received 29 January 1986; accepted 5 August 1986)

The connections between three aspects—single-particle, beam, and continuous velocity
distribution—of the anomalous Doppler effect are investigated. The key quantity is the power
Re(j - E*) dissipated by electrostatic waves interacting with a non-Maxwellian electron
velocity distribution. Its spatial components describe energy flows that are the counterparts in
classical electrodynamics to the quantum properties of the single-particle anomalous Doppler
effect. A complete plasma physics treatment requires the inclusion of ion dynamics.
Examination of the large-k region of wavenumber space—in contrast to the well-known small-
k region—shows that ion Landau damping is important in stabilizing plasmas for which the
electron velocity distribution considered alone is destabilizing. Finally, by choosing simple
models for the superthermal electron velocity distribution, general features of the instability,
and those specific to particular tail models, are identified analytically and numerically.

1. INTRODUCTION

The anomalous Doppler effect* is a fundamental relax-
ation mechanism believed to underlie certain observed insta-
bilities of superthermal tails in the distribution of electron
velocities parallel to the magnetic field in tokamak plasmas.
It is a mechanism by which the kinetic energy of electron
motion paralle] to the magnetic field can be trahsformed si-
multaneously into the kinetic energy of electron gyration
perpendicular to the magnetic field and into wave energy.
The parallel phase velocity of the excited wave is less than
the parallel velocity of the electrons that drive the instability.
These characteristics make the anomalous Doppler effect a
probable explanation®* of the relaxation oscillations seen in
the soft x-ray signal from Ohmic plasmas® and in association
with lower hybrid current drive.®’ In this application, the
divergence of fast-electron motion from the parallel direc-
tion, as the anomalous Doppler instability proceeds, is re-
sponsible for the shift in the predominant direction of elec-
tron bremsstrahlung, which follows the fast-electron
motion.

The general characteristics of the anomalous Doppler
effect, which we have just outlined, are widely known. How-
ever, despite many interesting studies of the instability, and
particularly its quasilinear development, the theoretical de-
scription has remained incomplete. First, although concepts
arising from a single-particle description of the phenomenon
have been employed in contexts where a collective descrip-
tion is appropriate, the justification for this has not been
clear. Here, we generalize Nezlin’s work? on the single-parti-
cle and beam aspects of the anomalous Doppler effect to the
case where the fast electrons have a continuous distribution
of velocities. This case is of most relevance to tokamak plas-
mas. Consideration of the different spatial components of
the field energy dissipation Re(j » E*) is fundamental to this
generalization. It enables us to identify the flow of particle

tl,2

*) Permanent address: Instituto de Pesquisas Espaciais, C.P. 515, 12200 S.
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kinetic energy in the directions parallel and perpendicular to
the magnetic field, and the energy flow to the excited wave.
These energy flows can be related to the positive- and nega-
tive-energy wave aspects of the beam description, and to the
single-particle description.

Second, the conditions that must be satisfied by the tail
and plasma parameters if the anomalous Doppler instability
is to occur, or be suppressed, require clarification. It has not
always been clear what properties are intrinsic to the insta-
bility, and what properties are specific to the model chosen
for the superthermal distribution from the wide range con-
sidered. In this area, some of the most general results have
been given by Muschietti, Vaclavik, and Appert.® Here, we
first extend these general formulas by including the pre-
viously neglected but significant role of ion dynamics. We
then concentrate on two simple and general tail models that
require very few parameters: first, a flat tail, which requires
three parameters (fraction u of electrons in the tail, maxi-
mum velocity v,,, and characteristic perpendicular velocity
v ); and second, a simple monotonically decreasing tail,
which requires four parameters (fraction u of electrons in
the tail, characteristic drift velocity v,, parallel velocity
spread vy, and characteristic perpendicular velocity vy, ).
Our analysis shows that in the first case, the linear instability
isindependent of vy, . It follows that tails which can be repre-
sented in this manner cannot be linearly stabilized against
the anomalous Doppler effect by increasing their perpendic-
ular temperature, for example, by electron cyclotron reso-
nance heating. Conversely, where such stabilization has
been observed experimentally,® our result indicates that the
tail is not a simple flat one with a Maxwellian distribution of
perpendicular velocities that is characterized by a single pa-
rameter v, , independent of parallel velocity. For the second
class of tail, despite the simplicity of its analytical represen-
tation, it is not possible to arrive at an exact criterion for
instability. Nevertheless, we show that, in this case, the per-
pendicular tail temperature can act as a stabilizing influence.
There are analytical arguments for concluding that this wide
class of tail is in general stable against the anomalous
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Doppler effect, and this conclusion is supported numerical-
ly.

ll. GENERAL PROPERTIES OF THE ANOMALOUS
DOPPLER RESONANCE

Let us turn first to the single-particle description of the
anomalous Doppler effect. Consider a system with total rela-
tivistic energy E and internal energy U, traveling with veloc-
ity Bc in a medium with refractive index n. When it emits a
photon at an angle 8 to its direction of motion, the energy

= (h /2m)o > 0 supplied to the photon is related to the
internal energy change AU of the system by’

AE=(1-B8%)Y2AU/(1 —nfBcos b). )

For motion with n8 < 1, Eq. (1) gives the Doppler frequency
shift with AU = (h /2m)@,, where w, is the frequency in the
rest frame of the system. For superluminal motion with
nB> 1, a positive value for AE remains possible within the
cone |6 | < 6,=cos™'(1/nB) provided that AU is negative.
In the case of a superluminal electron in a magnetized medi-
um, the negative AU corresponds to an increase in the energy
of perpendicular gyration. This is the single-particle anoma-
lous Doppler effect, in which the parallel kinetic energy lost
by the electron exceeds that given to the photon (wave), and
the balance is transferred to the electron gyromotion.

Consider next a cold beam of electrons in a magnetized
plasma. The beam will support waves additional to the bulk
plasma waves. These can be negative-energy waves, whose
excitation involves a loss in parallel kinetic energy and a
smaller gain in perpendicular kinetic energy. When such a
wave resonates with a bulk plasma wave, both will grow.
Nezlin? has pointed out the correspondence between this
effect and the single-particle anomalous Doppler effect.
There is a net flow from the parallel beam kinetic energy into
the perpendicular component of collective motion associat-
ed with the beam wave, and into the bulk wave. The diagnos-
tic potential of this process has also been noted.®

A collective description of the anomalous Doppler ef-
fect arising from the interaction of resonant electrons with
electrostatic waves in a magnetized plasma follows from the
dielectric response function.'® We shall show below that ion
dynamics play a significant role in wave damping under con-
ditions where the wavenumber is sufficiently large that the
ions can be regarded as unmagnetized. For this reason, we
include the corresponding ion contribution in the expression
for the full dielectric response function:

J‘ J‘ 27mv, dv, dv"
k2 n-w == Ju=0 n+ Ky —o

nQ af af) 2 (k vl)
X|—= +k% J2

(vl v, + dy Q
w (> dv, df;

i

kJ_o kv, —wdy,
Here v, and v characterize the electron velocity perpendic-
ular and parallel to the magnetic field direction, f(v,,v ) is
the electron velocity distribution function, J, denotes the
Bessel function of order n, and w, and () are, respectively,
the electron plasma and cyclotron frequencies; k, and k| are

(2)
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the components of the wave vector k perpendicular and par-
allel to the magnetic field direction, f; (v;) is the ion velocity
distribution function, and w,; is the ion plasma frequency.

For ions of charge Z in a neutral plasma, o
=Z(m,/m,;)w}, where m, and m; are the electron and ion
masses. The real part €., of € is in general dominated by
cold electron plasma terms independent of the exact form of
Sw,,v)). For (w,/Q)? 5 0.2, the electrostatic waves that are
roots of €., = 0 are well described by @ = w,k /k in the
frequency range of interest. The imaginary part €, of € de-
scribes wave-particle resonance, which leads to electrostatic
wave growth or damping at a rate given by

— (@, /K) (€ /2). 3

By Eq. (2), a negative contribution from the electrons to €,
can arise from the n = — 1 term at the parallel resonant
velocity vap, = (@ + Q)/k . This is the anomalous Doppler
resonance.

For a wave of given (@,k; .,k ), Eq. (3) leads to wave
growth if the Landau damping terms associated with df /dv,
atvy, = w/k; and df;/dv; atv, = /k in Eq. (2) are so weak
that they can be overcome by the anomalous Doppler reso-
nant term involving df/dv, at v, = vsp. The latter is pro-
portional to the magnitude, rather than the parallel gradient,
of the parallel component of the electron distribution func-
tion at the superthermal parallel velocity vy = v,p. Let v
denote the thermal velocity associated with the isotropic
bulk Maxwellian distribution. Electron Landau damping is
weak first for v R 2.5 vg, beyond the main body of the bulk,
and also for v €vy, deep in the bulk distribution. The first
possibility for wave growth has been examined in the litera-
ture®*&11-16, the second does not appear to have been stud-
ied previously.

Let us consider an isotropic bulk Maxwellian electron
distribution, together with a small tail whose distribution in
vy is not yet specified, but which has a fixed perpendicular
thermal velocity v, :

f(vu”") (—p) e—vi/v% —vﬁ/va_*_ £

vy ).
/ Il
'} ﬂvn

4)
In general, 1 <€ 1. We also specify a thermal ion distribution

£ = (1/7"p,)e ™ (5)

where v, is the ion thermal velocity. We shall assume the
bulk electron and ion temperatures to be equal, so that
vy = (m,/m;) vy,

Substituting Egs. (4) and (5) in Egs. (2) and (3), we
obtain

Y _ Yab <7LB + YLt + _7:11) (6)
@, @, @, @y @y
, 2
Yap =,U77'l/2( ) I(BT)[ ( ) i UBF(U”)
@, kvg kvg \vp,
k, w3 dF
L2 , )
k2 dyly-ue
Pl )”1/2( ) Ao( By) —Le™ /o,
o, kvg
(8)
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ir _ 1/2( Dp )21\ L
w, ad kvg ol Br k
722
x( - —dﬁ) , ®
2 dU" u"=a)‘,/k
Z/ﬂ=,n.1/2( Dp )SZ(mi)m
o, kvg m,
X (ky k)% @~ Lk mdmo /%), (10)

Here ¥, p is the anomalous Doppler driving term, ;5 and
yoL1 describe electron Landau damping in the bulk and tail
distributions, respectively, y,; describes damping on the
ions, Bp =k3v3/20% Br= (V4 /v3)Bs, and A,(B)

=e~?I (B), where I, (B) is the modified Bessel function of
order n, The representation in Egs. (7)—(10) indicates those
features of the instability that are universal, rather than spe-
cific to particular choices of parallel electron tail distribution
F(vy).

“The dielectric response function € in Eq. (2) is given in
terms of the dielectric tensor €; by € = k;k;€,/k>. In the
region of instability it will be shown that the ion contribution
to €; can be neglected. For the electrostatic waves excited by
the anomalous Doppler instability, we have E; = |E|k;/k.
Let us take k = (k,,0,k ). In this case, the rates of energy
dissipation by the electrostatic field on the electron motion
perpendicular and parallel to the magnetic field are given by
—Re(jE®) = 11El_2(k_m _"_ﬂ'm)

P, =Re(j,E¥) =0 ar %2 €+ o2 ex), (11)

- |E (kiku o, Ki -m)
P,=Re(j,E*) = —en+ —er]. (12
From the definition of €; (see Ref. 17), Egs. (11) and (12)
give

P, = (|E|*/47)2y pp Vo, (13)

P, = (|E[*/4m) [ 271 + 27ir — (1 + V)2 ap ],
(14)

where we have used Eqs. (7)—-(10). Here |E|*/4 is the elec-
trostatic field energy density of the wave, and the factors of 2
arise from the quadratic dependence of power on field ampli-
tude. Equation (13) describes the field energy dissipated by
the wave in increasing the perpendicular kinetic energy of
the electrons undergoing the anomalous Doppler resonance.
The first two terms of Eq. (14) describe the field energy
dissipated by Landau damping on the electrons, which in-
creases their parallel kinetic energy. The final term in Eq.
(14) describes the parallel kinetic energy given up by the
anomalous Dopper resonant electrons. The net flow of par-
allel kinetic energy from these electrons to the field and to
perpendicular kinetic energy occurs in the ratio 1:Q2/w. This
reflects the original concept of Kadomtsev and Pogutse,'®
who treated (4 /27) () as the energy quantum of perpendicu-
lar gyromotion, and (4 /27)w as the quantum of wave ener-
gy, both of which are drawn from the electron parallel kinet-
ic energy. If the energy transfer to the field is sufficient to
overcome the Landau damping losses, ¥ is positive and wave
growth occurs: thus, — (P, + P,) = 2y|E|*/4r as expect-
ed. A larger energy transfer occurs from the paralle] to the
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perpendicular component of electron motion. In both these
respects, Eqgs. (13) and (14) demonstrate explicitly how
closely the collective anomalous Doppler effect follows the
single-particle effect described at the beginning of Sec. II.
The essential difference lies in the existence of a threshold,
since Landau damping of the wave by the bulk distribution
and by the ions, where appropriate, must be overcome in the
collective case. This also differentiates the instability of an
extended tail from that of a beam in a cold plasma. We note
also that the contribution to P, from the anomalous Doppler
term in Eq. (14) can be negative, even when the relative
magnitudes of ¥ g, ¥11, and ¥4p are such as to give overall
wave damping. It follows that anomalous Doppler resonant
electrons may reduce the absorption of driven waves that are
undergoing damping, while they increase their perpendicu-
lar energy at the expense of their parallel energy.

Ill. THE EFFECT OF THE TAIL STRUCTURE ON
INSTABILITY

Let us return to Egs. (6)—(10). These describe the gen-
eral properties of the various contributions to the growth
rate for the anomalous Doppler instability, and appear also
in the spatial components of Re(j * E*) in Eqgs. (13) and
(14). No specific choice of the parallel electron velocity dis-
tribution F( ) has yet been made. Our aim in this section is
to use very simple and general choices of F(v) ), which are
specified by a minimal number of parameters, to identify
general properties of the instability. We note first that, sub-
ject to other constraints, Eqs. (6)—(10) indicate that insta-
bility is favored by small values of k| /k. Second, for 5«1,
Ay(B) =1 and A,(B)=B/2; however, for BR2,
Ao(B) = A (B) =0.2. There are thus two candidate regimes
for instability.

(1) The first is k, small such that S5, 81 <€1. In this
case, w,/kvy can be sufficiently large that the exponential
term in Eq. (10) renders ion Landau damping negligible.
The stability of the wave is determined by the electron veloc-
ity distribution alone. Electron Landau damping can be
weak because the parallel velocity lies beyond the bulk ther-
mal electron distribution. Owing to the factor A, (87 ) =B,
the ratio of ¥,p to y.p is independent of the perpendicular
temperature of the tail, and decreases as {}/w,, increases at a
given density.

(2) The second candidate regime is k, large such that
Bz, Br % 1. In this case, the parallel phase velocity w, /k can
be much less than v,, and lie in a region where electron
Landau damping is again weak. Since A;(B7)=A(Bz),
the ratio of ¥, to ¥ increases with {}/w,, and decreases
as the perpendicular temperature of the tail is increased. In
this low phase velocity regime, Landau damping on resonant
ions becomes a significant phenomenon.

Consider by way of illustration a flat tail that extends as
far as a maximum velocity v, :

V', 0<vy <Up,

0, otherwise.

For instability in region (1), combining Eq. (15) with Egs.
(5)-(9), we obtain

Dendy, Lashmore-Davies, and Montes 4042
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Lozl I
o, kvg oE vr/ \vp/ \o,

v A (Br)

k 2
—(1— L, — (e keg) ] , 16
A o) (1—p) X e (16)
provided that 0 <v,p <V, 50 that
ky>Q/ (vy, —w,/k). (17

In Fig. 1(a), the growth rate y/w, given by Eq. (16) is
plotted as a function of the dimensionless wavenumber coor-
dinate (k,v5/Q, k v5/Q1) for a distribution function as in
Eq. (15) with u = 0.001, vy, = 30vp, vy, = vp, and w, /)
= 0.4. The corresponding contour plot is shown in Fig.
1(b). The dependence of growth rate on tail and plasma
parameters has been examined numerically. For a tail frac-
tion u = 0.001 (0.1% of electrons in the extended tail) we
find the following.

(i) For w,/Q =04, instability occurs only when
Upr>15 vyp. The growth rate rises to ¥ = 2X 10~ %, when
vy = 30 vy, and thereafter is insensitive to v,,.

(ii) For vy =20 vp, y=1.6X10"> », when w,/
1 = 0.4, but y falls to zero when w, /02 <0.29.

(iii) The growth rate is independent of v, .

We note from Eq. (2) that the ratio of the anomalous
Doppler parallel resonant velocity v, to the parallel veloc-
ity v, at which electron Landau damping occurs is given by

Uap/tp =14+ /o, (18)

Thus, point (i) illustrates the fact that for instability to oc-
cur, the tail must extend sufficiently far for electrons to exist
at the value of v, given by Eq. (18) when v is a few times
vg, so that Landau damping is weak. Points (ii) and (iii)
quantify and confirm remarks made above. For the tail pa-
rameters considered, it is possible to suppress the instability

Lﬂ f(V")

| | ! ! l |

Vi/Vg

by a relatively small increase in magnetic field strength at
constant density. Result (iii) holds only for a Maxwellian
distribution of perpendicular velocities in the tail. If there
were a plateau in the v, distribution in the anomalous
Doppler resonant region, it is clear from Eq. (2) that it
would not be possible to obtain expressions in terms of
A, (Br), and Eq. (16) would no longer apply. #

For region (2) we find that no instability occurs. While
there can exist a region of wavenumber space—typically at
kv /Q=~0.3,k, vy /) =~3—where the anomalous Doppler
resonance can overcome the effects of electron Landau
damping, this effect is always overcome by ion Landau
damping. From Egs. (8) and (10), we have

e _g(m)
YiB m, k Ao(Bp)

- EIEE 1)

(19)
In the region of wavenumber space indicated, y;; exceeds
7Lg by afactor of order 20 for the case of hydrogen ions, and
this is sufficient to keep ¥ given by Eq. (6) negative, even
though ¥ap > 18-

Now let us examine further the extent to which the
properties of the instability depend on the choice of tail rep-
resentation. A wide range of monotonically decreasing su-
perthermal tails in the electron velocity distribution can be
represented by Eq. (4) when

Fv)) = (1/m" 2y e~ 1= 0/, (20)

The parameters (u,vp,vr; ) can be chosen so that the tail
structure has a slow, plateau-like decline [Fig. 2(a)], or a
much steeper falloff [Fig. 2(b) ]. In the parameter range of

()

7 8 9 10

FIG. 2. Use of a drifted Maxwellian component to represent (a) a plateau-like monotonically decreasing tail, with u = 0.001, v = 3vg, vy = 6vg,
vy, = Vy; (b) a more steeply monotonically decreasing tail, with 4 = 0.001, vp = 2vp, V7 = 3vp, Uy = Vp.
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interest, the value of vy, is kept below 4v; in order to avoid
describing tails that have a bump rather than monotonic
decrease. We have also taken steps in our code to preclude
spurious effects arising from a positive 7, 1 given by Eq. (9)
near v, =0, where y1p is small. Physically, these con-
straints ensure that the electron distribution function is
monotonically decreasing in v, throughout its range. Com-
bining Egs. (7) and (20), we obtain

2
¥Yap =,urr”2( @y ) Al( ﬁT)e— ("AD-—DD)’/vzril__l
@ kvp, kv

P
vr \°
X[Q—ku (—) (Wap —vD)] .
Ur

We note that in general, v,, — v, can be of either sign, so
that the effect of the perpendicular tail temperature can be
either stabilizing or destabilizing. Because of the large num-
ber of independent parameters, it is not possible to devise an
exact condition for instability from Eqgs. (6), (8), (20), and
(21). However, a number of conclusions can be drawn. As
we noted above, for the tail to be monotonically decreasing,
we require v, <4vz. Second, it is clear both in general and
from our discussion of the stability of the flat tail distribution
given by Eq. (15) that for instability, v, = w/k| = avg,
where a is a few times unity. Landau damping can be suffi-
ciently weak to permit instability only if this condition is
satisfied. These two constraints lead to the conclusion that

(22)

for the modes whose instability is potentially greatest. Com-
bining Eqgs. (21) and (22), we obtain

2
Yap =‘u,n,l/z( Dp ) AI(BT)e_m/k"UT")Z
® kvp,

f4
e (1-2)
kv VT

It follows that for monotonically decreasing tails, no insta-
bility can occur if v}, >v% . This demonstrates explicitly the
stabilizing effect of increasing the perpendicular tail tem-
perature. This effect has its origin in the term k; df /dv, in
Eq. (2), evaluated at U =Uap- This term is zero for the flat
tail of Eq. (15), where in contrast the growth rate was found
to be independent of vy, .

Now let us consider the magnitude of the exponential
term in Eq. (23). It is clear that significant growth requires
k, SQ/vy . We have already established that v, = w/k
=w,/k = avy, where a is a few times unity, is a necessary
though not sufficient condition for instability. Also, neces-
sarily k“ <k, so that

(o) > (o) =G G2

Here, although v, /v, €1, both }/w, and @ exceed unity. It
follows that the negative exponential term in Eq. (23) may
give rise to a number that is very small, even for the mode for
which y,, is greatest. These considerations suggest that for
most sets of parameters ( u, vp, Ur), Uz, ), monotonically
decreasing tails of the type described by Eqs. (4) and (20)

(21)

(23)

(24)
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are stable against the anomalous Doppler effect, and this
result is supported numerically.

IV. CONCLUSIONS

In this paper, we have established the connection
between the three aspects—single-particle, beam, and con-
tinuous velocity distribution—of the anomalous Doppler ef-
fect. The key step was the calculation of the spatial compo-
nents of the field energy Re(j+E*) dissipated under
anomalous Doppler resonance conditions. For a general
continuous distribution F(v; ) of electron velocities parallel
to the magnetic field, the flows of energy from parallel to
perpendicular particle kinetic energy and into the wave have
been identified. We have shown how these aspects of a classi-
cal electrodynamic approach to the anomalous Doppler ef-
fect for a continuous distribution of velocities can reproduce
the characteristics of the single-particle anomalous Doppler
effect, which is based on a quantum treatment. Next, in or-
der to give a complete treatment of the anomalous Doppler
effect in the context of plasma physics, we have included the
role of ion dynamics in addition to electron dynamics. We
have shown how ion Landau damping is responsible for sta-
bilizing electrostatic waves in a region of wavenumber space
(kyvp/Q =3,k /k, =0.1) that would otherwise be unsta-
ble against the anomalous Doppler effect. Finally, we have
turned to specific choices of F(v| ). Our aim was to identify
characteristics of the instability that arise independently of
the precise choice of tail model. We therefore chose very
simple models of tail distributions, which possess a minimal
number of parameters. As a first example, we considered a
flat tail with a Maxwellian distribution of perpendicular ve-
locities, characterized by a vy, independent of v . The linear
instability of this distribution against the anomalous
Doppler effect was found to be independent of v, . Our sec-
ond example was a broad class of monotonically decreasing
tails. Even in this simple case, it was not possible to devise an
exact criterion for instability. However, the stabilizing role
of perpendicular tail temperature was demonstrated. In ad-
dition, we gave analytical arguments that in general indicat-
ed stability against the anomalous Doppler effect for this
class of distribution, and this conclusion was borne out nu-
merically.
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