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Equation (17) can be reduced to:

U{B,w,T) =% col(—éTul,SoL:J rBrw) -
- 7 col(-Bolw-0) Tw-)-2" Bz ), (18)

2[wiTs Qw18 - { (e T wa) 18 + 280 (0 ©))

4. REDUCED STATE EQUATIONS USING RELATIVE
QUATERNTONS

The transformations above are not
invertible, since X has eight dimensional
values and U is four-dimensional, whereas
8T,u™T is seven dimensional, while t is
three-dimensional, Then a control law
design in {x;, %;, u) space cannot be
globally transformed back into the (8,u,T)
-space. Invertibilicy is obtained however,
by requiring that the attitude trajectory
in terms of the Euler relative guaternion
should be restricted to the upper half umit
sphere in R'. So the projection map:

(Bn,Sz,Bz,Ba)T =: B » Y:-§:=(51,Bz,83)T 9

takes B with By > 0 onto the unit ball

Ty < 1 in R}, Conversely, each v corresponds
to a unique quaternion in the upper unit
sphere {818 =1, 8,>0; in R* by the lifring

T T
Gris vzs ¥3)© =:vr(yg,¥1,v2,Ys) (20)

—_—
where vgia ¥ 1-vly

Since a unit relative quaternion B and
its negative -B correspond to the same
attictude orientacion the rescriction on
allowable trajectories is only that the
orientation corresponding to 8¢ =0
{i.e. |¢]|=7) must be aveided, so that

-1 < ¢ < 7, .

The transformacions (19) and (20) change
(3} into the reduced kinematic equation

Y = é‘[Yo{w—R) + v (W] {21

Then the reduced state transformations
(15) and (16) become

x = X10) =y (22}

x2 = X2 (y,uw) =‘;-[Yo(w—§2)+~(:c (wel)] (23)

and the input transformatiou becomes

u=U{y,w,1) = %(Yotﬁ +Bxw) + 2[w9T+QwT]Y

- Loe) Tlwe) ] ¥ + 2ve (o 20) (24)

Similarly to the case treated by
Dwyer (1984}, the equivalent linear system
given by (6) and (7) can be implemented

by using a set of three double integrators
in parallel.
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5. INVERSE TRANSFORMATIONS
By letting

e ¢ o= -;- (Vow + 72 w) (25)

(21) and (24) can be rewritten:
¥ o= My - % [voi - vx2) {(26)
and
u+ (w+§Z)T(w+Q) 1y = 2v o (wxft) —E[UJQT'I-QQ_-T]"(:
=T (y)w (27)
Under the conditions previously stated

{see Dwyer {1984)) there is an inverse
operator

ST u= @t v @8)

for any weR’. Then one can state that.
=1 . 1
a=T "{y} Ev+ Eh&ﬁ-TxRH (29)
which can be simplified ro:

b= THT + v IO -2 (30)

Therefore the inverse stare
transformation are given by

Y o= X) (31)

and

2 T
ws= (;) (xixg +KIRIHz - XXl Xa} +
¢

* 2(x§ﬂ+x1x}‘$2 - XpXpxri) - {32}

with xgi= V1 -x'fxl

The inverse input transformation is
similarly obtained from (4}, (27) and (28)
and has the form:

~ =X Iow+(%u) Io(ygu-p‘(\'Tu—n‘r;c u) (33
with
T
iz u+ {(wel) {0+ )y - 2yl 2R) -
- 200 + 2Ty (34)

The expressions (32) and (34) coincide
with the expressions obtained by Dwyer (1984)
when & is made equal to zero.

6. LINEAR FEEBACK LAWS IN (x,u) SPACE

Since theevolution equations of the new
state vector that are given by equations (6)
and (7} are linear, it is a natural step to
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The optimal transformed states and
inputs are:

w ) =20-530d + Lyyco) (43)
B 2t
* [} t L
x3{t) =- T (1= t—} — ¥ (0) (44)
£ f i
o= 2L Ly o (45)
t2 tf 2
f
The optimal torque are, therefore,
given by:
4
™) =0z 1% 1-2—2 (tL - %}on(o) (46}
te £

The optimal attitude and rate
variables v*(t) and w*(t) are genersted
via (22} and (32).

8. CONCLUSIONS

By using the relative Euler quaternion
for representing attitude of a rotating
body, state and input transformations
were comstructed in order to cbtain linear
system equations that are equivalent to
the kinematic and dynamic equations of
motion, Since the linear system is
completely controllable, it is possible to
apply multivariable linear system theory
to controller design. Two of such designs
were described: one in which the behaviour
of the relative quaternion is specified
and the other where a minimization of a
quadratic performance index is accomplished.
In both cases, contrel laws not requiring
too much computation were obtained. Since
these laws are alse only function of the
relative quaternion and the body inertial
velocity, measured in body axes, they are
easily implemented in processors to be
used on board of satellites. By using the
measurements of inertial sensors (earth
Sensors, sun sensors, etc) the processor
calculates an estimator of the relative
quaternion. An estimate of the inertial
angular velocity can be implement with
gyroscopes measurements. Using both
estimates one obtains the required torque
value to be supplied by the satellite
propulsion system.
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Abstract

The problem of maneuvering & satellite relative to a desired noninertial
reference is dealt by the use of linearizing transformations and the concept
of relative quaternion. The rigid body attitude equations are cransformed
into an equivalent linear form which considers the fact that rthe control
purpose 1g to align the satellite with a moving reference frame (e.g., and
Earth resource satellite}. The equations so obtained are used to design
control strategies for stabilizing the satellite attitude by linear
techniques. This approach is more useful for algorithm design for
on-board processors than the technique using inertial quaternion since the
laws obtained are function of the noninertial semnsor outputs {sun sensors,
earth sensors, stc) and of the inertial sensor (gyroscopes) outputs.

Keywords: Linearizing transformation; Attitude control; Relative

quaternions; On-board processors.

1. INTRODUCTION

Linearizing transformacion were used by
Dwyer (1984} to transform the rigid body
atcitude control problem with external
torques into an equivalent linear form
implementcable by three double integrarors.
Using this approach is possible to perform
regulator design and to generate cptimal
commands for fast slewing maneuvers. This
formulacion has, however, the incovenience
that the contrel laws obtained are
function of a symmetric Buler (unit)
quaternion and its derivative. These
parameters describe the arritude of the
rigid body with respect to an inertial
reference frame. For most of the satellites,
one is interested thar their atritude
should follow a reference frame that is
rotating with respect to an inertial
reference frame. In the particular case of
remote sensing and geostationary satellites
this frame is the so called orbital
reference frame and has an inercial angular
velocity equal to the orbital welocity. For
this reason the sensors being used for
attitude control provide measurements that
are processed for obtaining an estimate of
the satellite attitude with respect to the
moving frame. Such estimate should be used
for constructing the control laws that will
keep the satellite attitude as near as
possible nominal value.

Taking into consideration the above
reasoning,this paper rederives the state
equations for multiaxis attitude control
using the notion of relative quaternion., It
was defined by Mayo (1979) and is a

symmettic Euler {unit) quaternion that can
represent the attitude of a rigid body with
respect te a rotating reference frame

whose inertial rate is known.With this new
set of equations is then possible to design
control laws that will comply with the
requirements of actual satellites.

Conditions for caleculating the desgired
torque for a linear quaternion behaviour
are computed.

2. RELATIVE QUATERNION EQUATIONS

For obtaining the linearized equations,
one needs to know the relative quatermion
strapdown equation. Using the same notaction
as in Mayo {1979) one defines three
reference frames, as follows:

a - an luertial reference frame

b - an R reference frame that is rotating
with a constant angular rate with respect
to the inertial frame

¢ -~ a B reference frame fixed to the
satellicte body

Then the strapdown equation is given by:

Moo -l -2 -,=R)
- Q) -(w +R

Bt 0 ) SO
2

(w}f_ ﬂy) - (uuz-l- :'.-.z) 0 (Luxi'gx)

(wz- Rz) (wy+gy) —(ua;ﬂx) 0
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Abstract

The problem of maneuvering a satellite relative to a desired noninertial
reference is dealt by the use of linearizing transformations and the concept
of relative quaternion. The rigid body attitude equations are trangformed
into an equivalent linear form which considers the fact that the control
purpose is to align the satellite with a moving reference frame (e.g., and
Earth resource satellite). The equations so obtained are used to design
contrel strategies for stabilizing the satellite attitude by linear
techniques. Tkis approach is more useful for algorithm design fox
on-board processors than the technique using inertial quaternion since the
laws obtained are function of the noninertial sensor outputs {sun sensors,
earth sensors, etc) and of the inertial sensor (gyroscopes) outputs.
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1. INTRODUCTION

Linearjzing transformation were used by
Buyer (1984} to transform the rigid body
attitude control problem with external
torques into an equivalent linear form
implementable by three double integrators.
Using this appreach is possible to perform
regulator design and to generate optimal
commands for fast slewing maneuvers. This
formulation has, however, the incovenience
that the control laws obtained are
function of a symmetric Euler (unit}
guaternion and its derivative. These
parameters describe the attitude of the
rigid body with respect to an inertial
reference frame. For most of the satellites,
one is interested that their attitude
should foilow a reference Frame rhat is
rotating with respect to an inmertial
reference frame. In the particular case of
remote sensing and geostationary satellites
this frame is the so called orbital
refevence frame and has an inertial angular
velocity equal to the orbital velocity. For
this reason the sensors being used for
attitude contreol provide measurements that
are processed for obtaining an estimate of
the satellite attitude with respect to the
mwoving frame. Such estimate should be used
for constructing the control laws that will
keep the satellite attitude as near as
possible nominal value.

Taking into consideraticn the above
reasoning,this paper rederives the state
equations for multiaxis attitude control
using the notion of relative quaternion. It
was defined by Mayo (1979) and is a

symmetric Euler (unit} quaternion that can
represent the attitude of a rigid body with
respect to a rotating reference frame

whose inertial rate is known. With this new
set of equations is then possible to design
control laws that will comply with the
requirements of actual satellites.

Conditions for calculating the desired
torque for a linear quatevnion behaviour
are computed.

2. RELATIVE QUATERNION EQUATIONS

For obtaining the linearized equations,
one needs to know the relative quaternion
strapdown equation. Using the same notation
as in Mayo {(1979) one defines three
reference frames, as foellows:

a - an inertial reference frame

b - an R reference frame that is rotating
with a constant angular rate with respect
to the inertial frame

¢ - a B reference frame fixed to the
satellite body

Then the strapdown equation is given by:

0 -(mx—ﬂx) —(my—ﬂy) -(w, Q)

é=1fwx-9x) 0 (mz+ﬂz) _(wy+9y) 8 (1)
2 (Lﬂy— Qy) ~{w_+ Qz) 0 (wx+§2x)
Gﬂz- Qz) (my+9y) -(u%;ﬂx) 0

L



Equation {17) can be reduced to:

il

U(R,m,t}n 2

cul (—ETJII,“QI:I + E:r: m} -
1 T T, =
-7 col(-Bolw-1) (w-n}-20 (B2 R), (18)

Z[mnT+ RwT]E -f(m+Q)T(w+Q)]E-PZBo(thﬂ))

4. REDUCED S1ATE EQUATEONS USIKG RELATLIVE
QUATERNIONS

The transformations above are not
invertible, sinece X has eight dimensional
values and ¥ is four-dimensional, whereas
8T,uT)T is seven dimengional, while 1 ig
three-dimensional. Then a control law
design in (x1, X2, u) space cannot be
globally transformed back into the (8,w,7)
-space. Invertibility is obtained however,
by requiring that the attitude trajectory
in terms of the Euler relative quaternion
should be restricted to the upper half unit
sphere in R'. So the projection map:

T - T
(Bo,B1,B2,B3) =: B -+ yi=B:=(f1,B2,B3) {(19)
takes B with By > 0 onto the urit ball
+Ty < 1 in R*. Conversely, each vy corresponds
tc a unique quaternion in the upper unit
sphere {8TB=1, B¢ >0} in R" by the lifting

T T
(Y1, Y2, Y3) =:v*{vg,¥1,Y2,73) (200
where yoi= ¥ 1-yly

Since a unit relative quaternion B and
its negative -8 correspond to the same
attitude orientation the restriction omn
allowable trajecteries is only that the
orjentation corresponding to Bg=0
{i.e. |#|=m) must be avoided, sc that
=% o< 4 < on,

The transformations (19} and (20) change
{3} into the reduced kinematic equation

$ = _; [¥olu-2) + v a (w+2)) (21}

Then the reduced state transformations
(15) and {16) become

xy = X1ly) =¥ (22)
%2 = Xolr) = Hyol-) eya )] 23)
and the input transformation becomes
w= Uly,m,t) = %(Yodu-éa:u]) + ﬁ[mQTa-QwT]y

) T ] v+ 2volw 29) (24)

Similarly to the case treated by
Duyer (1984), the equivalent linear system
given by (6) and (7) can be implemented

by usin§ a_set of three double integrators
in parallel.

5, INVERSE TRANSFORMATLONS
By letting

rivdu : = % (yow + yx w} (25)
(21) and (24) can be rewritten:

SR ORI S S (26)
and
w+ [t T (o) 1y = 2v0Curest) 2[00 Lot T )ya
=T{y)a (27)
Under the conditions previously stated

{see Dwyer {19B4}) there is an inverse
operator

e we @6l wenuovora) @8

for any pe RY. Then one can state thac.
=1 N 1
w=T "(y) [y+ E(‘rnﬂ ~ vz Q)] 29
which can be gimplified to:

w = r‘l(nw} + Yo r'l{n) - R (30)

Therefore the inverse state
transformation are given by

¥ = X1 (31)

and

W= (%i_o) (xzox; + xlx;:xz - KoKyt X2} +

+ 2(x§9+x1xf§l - xgxx W) - 0 {32)

with Xgt= /1—xfxl
The inverse input transformation is

similarly obtained from (4), (27) and (24)
and has the form:

TS AT (%o) IO(Y:u-i-TYTI.l—ToY:Cu) (33

with
ui= u+ {(w+Q)T(m+R}]Y - 2yglwxq) -
- 2(wel ¢ aelyy (34)
The exprassions (32} and (34) coincide
with the expressions obtained by Dwyer (1984)

when 2 is made equal to zero.

6. LINEAR FEEBACK LAMS IN {x,u) SPACE

Since theevolution. equations of the new
state vector that are given by equations (6)
and {7) are ilinear, it is a natural siep te



where:

- Bi=cal(fo,Ry,Pr,R3)is the symmetric Fuler
(unit) relative guaternion with Bo=cos{ ¢2)
and By = ej sin(4/2) for j = 1,2,3,

e = cdl{ei,e2,e3) being an arbitrary unit
axis and ¢ is an arbitrary rotation abaut ey

- w:=col(wx,wy,wz)- inertial rate of B Erame
in B frame coordinates:

- Ri=col(Qy,Q,,4z)= inertial rate of R space
in R space coordinates.

Equation (1) is Jeduced in Maye (1979)
and can be written in an more compact form
as:

= é—colt—(w~Q)TE, Bo(w—n)+ B x)) (2)

where z is the vector product and Bi=

= col (B, Ba,B4).

3. STATE EQUATIONS FOR MULTIAXIS ATTITUDE
CONTROL USING RELATIVE QUATERNIONS

Using (2) the state equations that
describe an rigid body satellitearegiven
by:

8= %col(-(w«ﬂ)Té, Bolw-2) + Bz weR)  (3)
and
0 ceTcwzx I w (4)

where I? is the matrix of principal moments
of inertia, T is an applied external torgue
and the B reference frame should coincide
with the one consisting of the principal
axes of inertia.

The general method of linearizing
transformations described in Nunt and
others (1983) consists in the construction
of memoryless state transformations x=X{B,w)
and input transformations u=U{(B,w,T), such
that the eveolution equation of the new state
vector is of the form

X = Ax + Bu . (5)

with & and B such that the system is
realized by parallel channels of integraters
(the number of integrators per channel being
the controlability indexes, with as many
channels as the dimensioco of u}. The more
restricted approach in Meyer (1981) can be
interpreted as requiring that x should be
factored as x = col (x1,x2) with

;(1 = K2 (6)

Xz = u (7}

Defining K =teol (X;,X2) where
xj = Xj(B,m), one obtains

K= (3/38)%: (B, w)B+ (o 3)Xy (e (8)
Kz= (3/38)Xz (B,w)B + (3/5W)Xz (B,w)e (9
By using (3) and (4) one finds

Xy =( (3 /38)Xy ) %col(-(w-ﬂ)Té,ﬁo (w-52) +c e+

# [0} X1 141%™ (T T%) . o

X2 = [(3/38) Xp) %m (- (-0TE, Bo (w-2)+

+B 2 ) + [ ()X, (%) (%) (1)
The expressions (10) and (11) are them
compared to (&) and (7) to imply the

condiciona:

@/ow) X1 (B,w)} = 0
for ﬁl to be independent of T and

(¥w) Xz(B,w) =9

for U to depend on T.

The required state ard imput
transformations shall have the following
form:

x1 = X1 (B) (12)
x2 = X2(B,0) = [(/8)X1)8 (13)

u = U(B,w,7) = [(¥0B) X2 1B+ { (3/aw)X21é (14)
the simplest cheice for X, is

ANE) =8 (i5)

which with (3), (12} and {13} yields:

X, (8 ,w) -% col (={w-52) T8, Bo (w-0) +8:c (we2))

(16)
Equation (16) with (3), (13) and (14)
gives in turn

U{B,m,T)= %—col (-BF w, Be W+ Ba )
- % col (~Be (0=} T (w~) - (-0 L[R2 (wesd) ],

w{=52) (w=2) TB = 8o (w+)x (w=0) - (w+e ku(Br ()] .
' (17)



see how 1 for linear state feedback will
look like.

(6} and {7) describe a system that is
completely controllable, By rearranging the
state vector is possible to find its
controller canonical form:

x21 0010 010 0| [x]
X11 010 010 9 x11
%12 0 0l0 010 0 X122
sz S lo ol 010 0 x12 | ¥
X23 0 0 0 0 ¢ 0 %23
| *x13 | 10 0} 0 O 1 0 _x13 |
-1 0 0’
v} o] ]
A (35)
] 0 o]
0 Q 1
o o o

where xy:=col(xyy, X12, X33) and
xziwcol{xsy, N22, X21).

For allocating all system poles it can
be proved that ene only has to define a
gain matrix K'of the form below to be
used in the state fesdback

_k]_;[ klzl a 0 : 0 8]
i
K= | 0 0 lkaakow [ O 0 (36
_ 0o 0 1 0 0 lkas kae

In the origal system of equations (6}
and (7)¥ ' corresponds to a gain matrix
K of the form

ki 0 0}
kie | O ke O |
0 ¢ kss‘

1=[Ka Kz]

Qa7

K; and ¥; being diagomnal matrices.

Ia the particular case when the designer
wants all relative gquaternions teo have the
same dynamical behaviour the matrices to be
chosen are of the form K;= a;1 and
Ky = azi. Applying (33) to
u = -2;X1 -a,xz, one finds:

t =wxI%-I°T YY) & + Io(%o)(wi-Q)T(wd'ﬂ)Y
+ 6110(%6) v + az1% (38)

T
where et= z[mQT-rﬁm I¥ + 2yplwx )

(38) permits to calculate the torque
value given that the behavior of ¥ is
described by two given modes.

7. COMMAND GENERATION

By uaing linecarizing tranalormnkions,
oa~line command generation can be performed
without too much computation effort. This
situation is ideal for designing control
laws to be used in on-board processors,
based on microprocessors.

The memoryless prelinearization permits
generation of an optimal command signal
through the minimization of a2 quadratic
performance index, based on the linear
system piven by (4) and (5) as it was
previously noted by Dwyer (1984). Ia the
case of a finite time maneuver with the
purpose of orient a rigid body along a
determined moving reference frame, one
should have B(t_ )} =col (£ 1,0,0,0), vhere tf
stands for the terminal time. This condition
will imply y(tg) = 0 and yo =1, If the final
rate is to remain unchanged after tf
one should aiso have w(tg) =Q. From (22},
(23}, (33) and {34), it follows that

xl(tf) = xz(tf) =0 (39)

ax1%n + 2 Iou(tf) = ‘I:(I:E) (40)

Therefore, a gquadratic performance index
of the form

Tt ~to,x) (to),x2(ted) = (p1/2)xy (thTxl (eg)+

t
£
+ (szZ)xz(tf)sz(tf) + -‘2— J u(t:)TRu{t)dt

to [EX))

will vield a linear feedback law in (x,u}-
space, provided that the constraint xp is
alse verified.

Since the condition given by (39} and
the performance index (41) are the same
that appear in Dwyer {1%84) one can use
directly the results already obtained
there. Then the optimal transformed
command signal u* for zero terminmal error
is given by:

uk (£} & =8/ (£ -0 Ja ()4 {4/ (£ pm) Iy (e)
(42)

By using {42), it is also possible to
obtain control laws for a maneuver similar
to the rest-to-rest maneuver already
tackled by Dwyer. This maneuver consists in
aligning a rigid body with an initial
attitude given by y(0) and initial angular
velocity

w(0) = =y (0YT4(0))0 + 2y (0)y (0)2-2y (O)xfh.
The initial conditions to be used in (6)

and (7} are % (0) = v(0) and, by using (23},
x2{(0) =0.



The optimal translformed states and
inputs are:

* - Y 1, .t
xi(E) =201 tf) (2 + tf)‘r(OJ (43)
x5() = - £ (- &) L (o) (44)
¢ et
ey 12 o £ 1
u*(e) = t; { T, 2) v (0} (45)

The optimal terque are, therefore,
given by:

24 .t 1
(e} =01 1°ﬂ+~? (t— - T)IQY(G) (46)
tf 3

The optimal attitude and rate
variables v*{t} and w*(t) are generated
via (22) and (32).

8, CONCLUSIONS

By using the relative Euler quaternion
for representing attitude of a rotating
body, state and input transformations
were constructed in order to obtain linear
system equations that are equivalent to
the kinematiec and dynamic equations of
motion. Since the linear system is
completely controllable, it is possible te
apply multivariable linear system theory
to controller design. Two of such desigus
were described: one in which the behaviour
of the relative quaternion is specified
and the gther where 2 minimization of a

quadratic performance index is accomplished.

In both cases, control laws uot requiring
too much computation were obtained. Since
these laws are also only function of the
relative quaternion and the body inertial
velocity, measured in body axes, they are
easily implemented in processors to be
used on board of satellites. By using the
measurements of inertial sensors (earth
sensors, sun sensors, ete) the processor
calculates an estimator of the relative
quaternion. An estimate of the inertial
angular velocity can be implement with
gyroscopes measurements. Using both
estimates one obtains the required torque
value to be supplied by the satellite
propulsion system.
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