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Guidance, Sao Jose dos Campos, Brazil

Abstract: In order to assess the quality of approximate soclutions
obtained in the numerical integration of ordinary differential
equations related to initial value problems, there are available
procedures which lead to deterministic estimates of global
errors. The aim of this paper is to propose a stochastic appreoach
to estimate the global errors, especially 1in the situations of
integration which are often met in flight mechanics and control
problems. Treating the global errors in terms of their orders of
magnitude, the proposed procedure models the errors_through the
distributioh of zero mean random variables be%onging to
stochastic sequences, which take 1into account the influence of
both local truncation and round-off errors. The dispersions of
these random variables, in terms of.their variances, are assumed
to give an estimation of +the errors. The error e;timation
procedure is developed for Adams-Bashforth-Moulton type of
multistep methods. The computational effort in integrating the
variational equations to propagate the error covariance matrix
associaéed with error magnitudes and correlations is minimized by
employing a low order (lst or 2nd) Euler method. The diagonal
variances of the covariance matrix, derivea using the stochastic
approach developed in this paper, are found to furnish reasonably
precise measures of the orders of magnitude of accumulated global

errors in short-term as well as long-term orbit propagations.
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1. INTRODUCTION

In the numerical integration of ordinary differential
equations (ODE) related to initial value problems, espeéially in
the situations of very long intervals 'of integration, it is'of
fundamental importance +to assess the guality of'the!approximate

solutions obtained. Theoretical results, qualitativély relating

i
i

the orders of magnitude of global and local errors 'or
quantitatively giving upper bounds of global erroré in terms of
parameters dependent on local errors, steb! size, problem and
method used, have for a long time been available in the
literature (see for example, Dahlquist and Bjorék, 1974).
However, only recently were produced results which translate
theory into procedures of practical use (Zadunaisky, 1966, 1972,
1976, 1979; Stetter, 1979; Prothero, 1980). These procedures can
be grouped 1into two basic types (Stetter, 1977): {i) those
dealing with the generation of two primary numerical
approximations having an asymptotic behaviour (Shampine and Baca,
1985) and {ii) those dealing with a primary numerical solution
and a first order approximation of the associated error,
calculated either by using variational equations or by a defecé
correction approach (Stetter, 1978). A common aspect in these

procedures is that they all lead to deterministic estimates of

global errors.



In this paper, a stochastic approach to estimate the
global error is presented, seeking a method feasible for
situations which are often met in flight mechanics and control
problems, as for example state estimate predictions in
statigtical orbit determination or propagation of vehicle state
from noisy measurements of strap-down inertial instruments. In
the procedure proposed, global errors are treated with.respect to
their orders of magnitude., They are represented, or modelled,
through the distribution of zero mean random variables belonging
to stochastic sequences, which take into account the influence of
both local truncation and round-off errors. The dispersions of
these random variables, in terms of their variances, are assumed
to give an estimation of the errors. Extending the results of a
previous work, where only single-step methods were considered
(Rios Neto and Cardenuto, 1983), an error estimation procedure is
developed for Adams-Bashforth-Moulton (ABM) type of predictor-
corrector multistep methods. The selection of this method is due
to the well-known fact that it is one of the best methods avai{g
ble to solve the orbit propagation problems (Janin, 1979;
Kondapalli, 1986). To propagate the errors, the procedure makes
use of the first order variational equations associated with the
system being integrated; however the computational effort is
minimized since only a method of much lower order - like first
order Euler method or second order modified Euler method - is
employed to integrate the error covariance matrix associated with

error magnitudes and correlations.
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Preliminary testing results are shown for three
satellite orbit propagation problems, selected from a set of test
problems used by several authors {Szebehely, 1967; Hull et él.,
1972; Shampine and Gordon, 1975): two cases of two-body motion
(circplar and elliptic) and a case of thé restricted three-body
problem. Global error estimates made in short-term as well as in

long-term propagations are given along with concluding remarks on

the performance of the proposed stochastic procedure in all the

cases considered.

2, PROBLEM STATEMENT

Consider a system of first order ordinary differential

equations,

% = £(x,t), (2.1)

where £ is a vector function of an nxl dependent variable vector,
x, and of the scalar independent variable, t. Giyen an initial
condition x(ty, ), assume that the system (2.1) has a wunique
solution x(t). Also suppose that a discretization method is used
to generate a numerical approximation x(j) at mesh points tj(tO <

tjétf).

-



The aim of this work is to estimate the contribution of
the truncation errors and the round-off errors to the global

error v {j), defined as:
v (j) = x(j)-x(tj), (2.2}

where x(tj ) is the true solution at tj, and the approximation
x(3) is obtained by using a zero-stable method of order k. This
implies that, in the asymptotic dependence on the stéb size, the
difference between the exponents of the local and giobal erfors‘

is equal to one (Dahlgquist and Bjorck, 1974}.

3. STOCHASTIC ESTIMATION OF GLOBAL ERROR

Since the errors involved are small, it is assumed that
linear perturbations give valid approximations, allowing the  use
of the superposition principle after separately treating the

contributicons of the truncation errors and the round-off errors.

At an intermediate paint tj , being x{j) a numerical
approximation to the true solution x(tj), let E{(j) be a zero mean
random variable whose dispersion in terms of its variances gives
an estimate of the order of magnitude of the global error. Thus
E{j) belongs to a stochastic Markov sequence with g¢given

statistical properties:

r (E(§)] = O, ME(ET ()1 = P(i), (3.1)



where T [ ., ] represents the expectation operator and 1in the
methodology developed here, the standard deviations correspondiné
to the diagonal variances of the covariance matrix P{j} are
supposed to be related to approximations of orders of magnitude
of the true global errors, v{j}. One should note that, at each
step, the zero mean E(j) accounts for the stepwise error
accumulation through 1its covariance. To start the process, the
same reasoning concerning the error order of magnitude is used

in calculating the diagonal matrix P{0).

Motivated mainly by the objective of applying the
method to orbit propagation problems, as it is well-known that
the multistep integrators of type ABM are some of the most
suitable ones for this kind of problems, a multistep numerical
integrator has been chosen here. However, there is no hindrance
to apply the procedure to other methods, as .was shown by Rios

Neto and Cardenuto (1983).
4. ESTIMATE OF THE CONTRIBUTION OF TRUNCATIQON ERRORS

Considering a multistep numerical integrator of order

k-1, in a typical step, one has:

%% (. = ¢!

501 ) (K(3)seee X (3= (k=1 410+ & (8 1), (4.1)



where x% (t 341 ) represents "a local true value", generated from

the numerical approximations x(3),.0.,x{(3~(k-1)+1}) and k- is an

-

operator representing the (k~1)st order integrator used. It is a

usual practice to approximate the local truncation errore(tj+1)
at (j+l})st step by the difference between the solutions obtained
by tw? integrators of consecutive orders, k-1 and % (Shampine and

Gordon, 1975). That 1is,

e(ts,1) = TEO (3+1), L0 x (G- (k=1)+1)) -
Tk"T(x(j),...,x(j-(k—1)+1)+e(tj;1j (4.2)
= g(j+l)+e(t . ),
j+1
where x* (...} represents the numerical solution obtainead by the

method of lower order, e(j+l), a numerical approximation for
dtj+1 ) and e(tj+1) is in general a locally negligible value. 1In

a multistep method of: type of ABM, the method of order k-1 1is
called predictor and the method of order k, coz."rectorT Looking
at the equﬁtion (4.2), one can see that an estimaté of the
guantity ettj+1) is necessary for getting a global errbr
estimate, However, one should recall that the maip iQea is to
estimate the exror bounds but not the errors theméelées. With
this in- mind,erﬁj+1] is modelled here as a white!vecﬁor seguence

of independent components e™ (j+1), with the superscription

representing a modelled variable, such that

rie® (3+41)] = 0. (4.3)

-7~
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In modelling its dispersion, one uses the Chebychev
inequality (Jazwinski, 1970; Rios WNeto and Cardenuto, 1983),

through which one obtains,

Pie™ 2 ef{ji+1l)] $var(em[j+1))/ Eij+1);

and then cone can consider
T ¢ - 2 .
var{e {j+1) ) = & (j+1)/100,

so as to guarantee that e™(j+1) has realizations with:99% chance
of being inside the tolerance limits, given by e (j+l). As  a
direct consequence one gets for the covariance matrix,;

2
Q14 (3#1) = Tlel (3+1)]

|

var (€] (j+1))

e (3+1) /100

1 ..k, :
[T, +1), -
755 (T3 O (3D (3

Ti(x(j),x(j-l),...)li (4.4)

where i = 1,...n, n being the dimension of the vector x(tj}.

Following the same reasoning, x(t is modelled by ™ (t ),

ja1) 341

given by:

x® (t,

_ mk=1,m m i NP .
:|+1) = T (X ttj)rx ttj_1)r--')+ (tJ,','])f (4 5)

where

B



x™ (k5 ) = x(3)+E(H),

¥ (e 1) = x(J-1)+E(j-1), (4.6)

etc -

Identifying the first term on the r.h.s. of the

equation (4.5) as x*m (tj+1)’€(t j+1)of the equation (4.2} is

modelled as:

m _ &
ety q) =T mﬂW%+H.ﬂW%)“.J-

-1
7 (f“(tj),;é“(tjq),...)+em(j+1}.~ (4.7)
Using the equations (4.5) and (4.7), one gets:

k
1) = T O™Ey 0K (8) L0+ (41D (4.8)

Expanding the first term on the r.h.s. of the equation
{4.8) about the point (x*(j+1),x(j),...) up td first order, it

results:

X0 (k) = TR (x *(341) ,x(3) 400 +
[k,

X0t )

(e 1) =0 (341) 3+

k ] :
Txm(tjy (x* (3+41) ,x(3) ,...).

(x *{§+1} ,x(§) s..-) .

{x“_‘(tj}-x(j)}+...]+em{j+1). (4.9)

Identifying the first term on the r.h.s. of the

equation (4.9) as x{j+1):



m :

* {tj+1)'x(3+1) = The term within the brackets+d® (j+1),
or, using the equations (4.6),

E(j+1l) = The term within the brackets + eM(j+1). (4.10)

Now, considering the equation of the system (2.1),
for a tjé ti <t j+vexpanding the function f(x(t;),t,;) about x({i)

up to first ordexr, and defining
sx(t ) 2 x(t, )-x(i)
i i e
there results:

Sk(ty ) = £, (x(ty),t ] Sx () (4.11)

x(ti} =x (i} "

Then by using the definition of transition matrix,

$(t, +t.), one has:
j+1° 3]

Gx(tj+1} =¢(tj+1,tj).5x(tj), {(4.12)

(L. )} is as usual the solution of the equation

where & {t, 3

J+1

d(t,ta) = £y (x,8).0 (k) (4.13)

with the conditions:

-10-



CI*(tj,tj} = I, x(ti} = x{1i).

As the equation (4.12) . is the solution of ''the
differential equation associated with (4)11), comparing the
equation (4.12) with the equation (4.10), one can see that, in a
mean square sense (Jazwinski, 1970), the numerical solution of
the differential equation associated with (4.11) obtained by the

k

integrator T {...), when E(Jj)}) is taken for the first variation

in tj' can be written as:

E(j+1) =& (§+1,3)E(3}, (4.14)

which is same as the term within the brackets on the r.h.s. of

the equation {4.10).
Thus one obtains from the equations (4.10) and (4.14),
E{j+1) = &(j+1,)E(j)+e™ (j+1). (4.15)

It is noteworthy to mention that the transition matrix
in orbit propagation problems 1is usually available for use in
other purposes and so 1its use 1in evaluating E(j+1) is straigﬁf
forward and does not require any extra computational effortl
Here, one knows that the local truncation error of the predictor

of order k-1 is Of(h k ); the 1local truncation error of the

1

corrector of order k is 0(hk+ : and the local truncation error

-11-



of the predictor-corrector is O(hk+1), where h is the step size
(Shampine and Gordon, 1975). As E(j) 1is a variable created to
estimate the global error after applying the predictor-correctoi
method, and as this estimate differs from the local t;uncaﬁion
error by only one order of magnitude, one will have E(j) with

dispersions of order 0(hk),

Consequently, the integration of the equation (4.13) by
Euler's method of order one, which gives results with an error of
O(h’ ), should be sufficiently accurate to take into account the
texm e™ (j+1) of the equation (4.15), which is o+ ). However,
for studying the numerical behaviour of the results, the modified
Euler's rule {Euler's method together with trapezoidal rule} of
order 2 1is also embedded in the computer program developed.
Whatever be the integrator used for integrating the equation
{4.13), one should note that the accuracy will not be degraded as
the transition matrix is evaluated on the orbit generated by a

more sophisticated integrator, to be explained in Section 6.

Then, the covariance matrix P{j+l), defined in (3.1)

can be deduced as:
P(j+1) = ¢(j+1,j).P(j).¢Tkj+1;j)+Q(j+1)f

using the eguations (4.15), (3.1) and (4.4).

-12-



Thus the standard deviations corresponding to the

variances of the matrix P(j) furnish approximations of orders of

magnitude of the true global errors v{i).
S. ESTIMATE OF Ti. CONTRIBUTION OF ROUND-OFF ERRORS

Due to the limit 1in the number of digits that a
computer could carry to represent the numbers being treated, the
results obtained after a numerical process are rounded off in
order to represent them within the machine capacity; Thus, each
real number in the floating point (£f1) range of a computer can be
represented with a relative error which does not exceed the

machine unit, u (Dahlquist and Bjorck, 1974), that is:
|fl(v op W)=V op wl/] v op W | < u, {(5.1)

where “op' represents one of the four basic operations (+; -; .;

/) between the real variables v and w.

Considering the general formula of the Adams corrector

which furnishes the value of x at the instant t_: (Gear, 1971),

J+1
(3+1) = x(j)+ {B* f*{'+1)+kg13* f(j+1-1)} {5.2)
x(3+1) = x(3 hj ko J i=1 ki !
where B;i are constant coefficients, f£*(j+1) 1is the function
value at tj+1 obtained from predictor and £f{j+1-i) .is the

function value att, the representation of this formula in the

j+Teir

~13-



_arithmetic operations

in floating point of a computer is given

by:

x(j+1) = fl[x(j)+fl{hj(fl(B;Of*(j+1)}+
k=1
£1(;Z.8"  £(3+1-1))))}1. (5.3)
= ki
In evaluating the expression (5.3), one can easily

compute the bounds for absolute errors in resulting terms which

depend on the round-off errors (Dahlquist  and Bjorck, 1974):

Using the commutative and associative laws, the final expression

for a bound for the round-off error e_ in each component?xﬁ(j+1)

Rog
can be written as:

€ 3 - L] y it = .
Ry, (3+1) st]2.x, (3) [+ Thleﬂo B Gen e

~ kel . 5 s
h il | (k+1-1) . Br .+ £y, (341 iy +

~ k=1 . -
- —| * = L 3
4hji§1|8£i £,,(3+1=2) |[I* 1.06u = x,, (j+1), (5.4)

where the wave signs over the variables indicate the numerical

values obtained after rounding.

Now, superposing the contribution of the round-off
error over the contribution of the truncation error, one gets for

the augmented covariance matrix of the total error:
Pp (3+1) = ®(j+1).PT(j).¢T(j+1)+o(j+1)+R(j+n, (5.5)

14—



where

Here, the 2-th diagonal variance of Pp (j+1) furnish a
measure of the order of magnitude of accumulated global error in

the component x, (j+1).

L

6. NUMERICAL INTEGRATOR

The numerical integrator has been formulated based on
the ABM multistep method. A specific fixed step algorithm of
order 7(8) has been prepared after computing the B coefficients
as given in Gear (1971) (see also Henrici, 1962). The proposed
methodology for estimating the global errors has been embedded in
the integration algorithm so that the integrator returns an
estimate of global error as an cutput parameter (matrix PT{j+l))
after each integration step., The computer used for testing the
procedure 1is a BURROUGHS5-6900 machine and the programming

language is FORTRAN-IV,
7. TEST PROBLEMS
With the aim of applying the proposed procedure to

orbit propagation problems of artificial satellites, three

specific problems of such type have been chosen. These problems,

-15-



in fact, form a part of the test problems chosen by several

authors, as explained in introduction.

Pl - The first problem chosen is the well-known two-
body problem which 1involves the integration of Newtonian

equations of motion:

x.
i

1 x3
B = x,
3
X, = =x /(2 +x )/2
1 1 2 %
¢ = - /(x2 +x2 )
%, *2 3 z ’
with the initial conditions:
x, (0} = 1-e
x (0) = 0
2
x3 (0) =0
x (0) =/ (1+e) (1-e)

4

where e is the orbit eccentricity.

The motion in this case is periodic with period 2w,

and the analytical solution of the problem is given as:

~16=



b
=
il

Ccos u-e
x, =,/1-e% sin u

-sin u/{l-e cos u)

"
i

x, =/1l-&® cos u/(l-e cos u),

where u is the solution of the Kepler's eqguation:

t = u~e sinh u.

In this first case, the orbit considered is circular

{(e=0).

P2 - The second problem chosen is the same as the first
one except that a reasonably high elliptic orbit with e = 0.3 has

been considered.

P3 - The third problem is the famous restricted three-

body problem. The equations of motion of this classical problem

are:
X1 T %
2 T X
X = 2%, +X%, = { y/e] = (e, = ) /e?
X, = 2x,+x —u (Xah) /e, —plX,-p N
, _ 4 - 3
X, = -2x3+x2-]fx2/rf uler2 '

where
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u o= 1/82.45
u* = 1-yu
2 2 ]/2
ry, = ({x4u) +x; )
1
r2 = ((x,-u*) +x’ f2 .
2

For this system of equations, there is no analytical

solution. However, given the initial conditions:

x, (0) = 1.2

x, (0} =0

x4 (0) =0

x, (0) = -1.04935751,

there is a periodic solution with period T = 6.19216933.

8. RESULTS

In order to examine the influence of round-off errors
on the solution, the problems Pl and P2 were initially intégrated
in one complete period. As it 1is a common practice in orbit
propagation problems of low orbit earth satellites to diyide the
orbit in 100-150 discretization points, the orbits here were
divided in 100 iﬁtervals of integration. Tables 8:1 and 8.2 show
the true global errors (TE) and the estimates at few points iﬁ
the orbit, both with (E2) and without (E1l) inclusion of round-off

errors. In the case of Pl, the influence of round-off errors can

clearly be seen. However, in the case of P2, the influence is

-8



practically nil. This later case can easily be explained because

the global errors here are of orders greater than 1.0E-08 andit
is evident that the round-off errors' influence can only be seeﬁ
while working in the neighbourhood of machine accuracy, which is

1.0E-12 for the computer used here.

Then, to better test the influence of round-off errors,
the number of discretization points considered in oné orbit was
increased from 100 to 500 in both the problems, forcing !an
improved accuracy 1in the solution. Beyond obtainingl a high
precision solution, the results obtained in the case gf P1 4id
not reveal anything new. Nevertheless, the Eesﬁlts obtained for
P2, given 1in Table 8.3, confirmed the remark th;t the round-off
errors have influence when working in the proximities of machine

accuracy.

Now, though in the theoretical analysis of Section 4,
Euler's method of order 1 was shown to be sufficient_to take into
account the term e™4§+1) of the equation (4.15), it was felt
necessary to verify the results in terms of numerical behaviour
by examining the effect of using modified Euler's rule of order 2
for integrating the equation (4.13). In both the problems Pl and
P2, the global error estimates (E3) obtained with Euler's rule of
order 2 (Tables 8.4 and 8.5) show a slight improvement over éz
(obtained with Euler's method of order 1) in the sense that they

are not as conservative as the latter ones, when 100

-19~



discretization points were considered. As the effect was nil when

500 points were considered, those results are not shown.

The above results show that for short-term
propagations, e.g. one orbital period, use of simple Euler's
methqd is sufficient for solving the variational equations (4.13)
if the orbit is divided into sufficient number of discretization
points. In fact, with 150 discretization points, the estimates
obtained with Euler's method (E4) are almost as good as the ones

obtained with modified Euler's rule (E5), as shown in the Tables

8.6 and 8.7.

Having tested successfully the proposed procedure in
the case of short-term propagations, the next step was to examine
if the procedure furnishes reasonably accurate global error
estimates in long-term propagations - the principal aim of the
methodology developed. To analyze the behaviour of the procedure
in these cases, the results of the Tables 8.6 and §.7 were
extended to a time period egual to 10 orbital pgriods. To one's

dismay, the estimates in this case were found to be very much
conservative. To better study this problem, some more tests were
performed, now by employing modified Euler's rule 1in the
integration of transition matrix equations. The results obtaine§
in the case of Pl (Table 8.8), a circular orbit problem, showed
again clearly the ability of the stochastic procedure to estimate
satisfactorily the global errors committed in the integration

process. However, 1in the case of problem P2, a highly eccentric

-20-



orbit, a division of the orbit in 300 discretization points was

required to obtain reasonably good error estimates (Table 8.9).
It should be noted here that this laﬁter case of using moré'
number of steps per revolution to get good error estimates only
shows the influence of the order of the method used in
integrating the variational equations on error estimates and does
not belittle the capacity of the proposed procedure in making
these estimates. Through a careful analysis, one can easily infer
that a use of a higher order method for the variational equations
will certainly need a less number of points to give same accuracy |

{(Rios Neto and Cardenuto, 1983).

Now coming to the problem P3, the equations werxe
integrated by dividing the period T into intervals of 0.l1l. As Qhe
problem does not have an analytical solution, the !soluéion
obtained by a sophisticated variable step variable oide; Runge~
Kutta method of order 7(8), RKF78 (Fehlberg; 1968} was tgken'as
the true solution. Till about one-fourth of the orbital time
period, the fixed step integrator used here provided solution
comparable with the true solution. But later, it qould not éope

with the problem and the solution started deteriorating, showing
that the problem of type P3 cannot be deal£ with fixed step fixed
order integrators. However, the manner the global error estimates
agreed with the true global errors was very much impressivé.
Solution results obtained at few points, till the global error

becomes of the order 1.0E+00 in anyone of the components, are

given in Table 8.10. ©One can easily see that even when dealing

21



with solution values corrupted with large errors, the procedure

b

proposed in this paper behaved very well in estimating ﬁhe global

errors.

9. CONCLUSIONS

The analysis done over the results of Tables 8.1, 8.2
and 8.3 shows that, for obtaining reasoﬁably good global error
estimates, when working in the limits of machine precision, one

should take the round-off errors into account.

The study on the results of Tables 8.4, 8.5, 8.6 and
8.7 indicates that in short term propagations, integration of the
transition matrix equations by Euler's method of order 1 gives
sufficiently accurate, and very often conservative, global error

estimates.

Nevertheless, in long-term propagations, it is
mandatory to use a higher order method such as modified Euler's
method of order 2 in the integration of variational equations, to
get reasonably good global error estimates, as seen from the

Tables 8.8 and 8.9.
The methodology developed here could not be used fully

in the case of the restricted three-body problem, as seen from

Table 8.10, not because of its incapacity to deal with this type

-22



of problems but because of the constraints involved in the fixed

step fixed order numerical integrator used here.

On the whole, one concludes that the diagonal variances
of the covariance matrix, which estimates the global error and
whose expression was derived using the stochastic approach
developed in this paper, furnish reasonably precise measures of
the orders of magnitude of accumulated global errors in short-
term as well as long-term oxrbit propagations as confirmed in two-
body circular, two-body elliptic and the restricteﬁ three-body,
problems, similar to those encountered in flight mechanics and

control.
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