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RESUMO

0 comportamento de persisténcia em séries de tempo pode
ser modelado através de processos autoregressivos (ouw  Markovianos),
contanto que as séries sejam estacionarias. Em geral, variaveis meteo
roldgicas tém um ciclo sazonal promunciado, que resulta na média de
pender do tempo. Assim, ¢ ciclo sazonal deve ser filtrado, antes de
se proceder a modelagem estocastica ou a analise espectral. Manter o
ctelo sasonal conduz a conelusao falsa que o modelo autoregressivo de
primeiva ordem é o que melhor representa as series temporais em Meteo
rologia, Se o eiclo sazonal & removido _antes da modelagem, o8 proces
sos autoregressivos mais apropriados sao os de ordem maior que  um.
Frequentemente estas processos tém soZugoes livres que sao Osczlato
rias e, portanto, eao mate relevantes 4 dinamica do tempo.



Abstract

Autocorrelation functions (acf's) and spectra are computed for
many meteorological time series consisting of direct observational
data and modified data. Time series of unmodified data have acf's
which often decay very slowly with lag (counted in days), and are
modeled correctly by an autoregressive (AR) model of order 1. This
low-order model indicates great persistence and produces a red-noise
spectrum.

Meteorological time series contain information about phenomena
such as cyclones, anticyclones and blocking, as well as about the
annual cycle and other siow oscillations such as the semiannual
cycle and climatological variations. Since the Jatter have longer
periods than the former, it is of interest to study time series not
containing the latter, with a view to assessing the statistical
characteristics of the relatively high-frequency weather phenomena.
When meteorological time series modified for this purpose are
studied, the acf's are seen to decay rapidly. The appropriate models
for the modified time series are AR processes of order 2 or more.
These higner order models often have dynamical representation in
terms of oscillating mechanisms, which are more characteristic of

weather systems,



1. Introduction

Meteorological events occur in space and time. Hence, to
comprehend them,it is necessary to analyze meteorological data in
both these domains.

Spatial analysis of meteorological data is made somewhat easier
than temporal analysis by the fact that the former is in a finite
domain. Time is unbounded and time series analysis involves
fundamental assumptions concerning determinism, stationarity, etc.,
which demand greater initial care than spatial analysis.

The question of the time scale of meteorological events is,
however, unavoidable. This scale must be distinguished from the
climatological time scale and also from the scale of the seasons.

An aim of this work is to attempt a separation of these scales
and, thus, isolate a frequency range which may be deemed specifically
meteorological. This separation of scales is aided by the conventional
power spectrum analysis as well as by stochastic modeling, which is not
as widely applied.

The stochastic model, various types of which are discussed at
length by Box and Jenkins (1970), becomes useful in representing
meteorciogical series, since it could be made to incorporate the
memory or persistence inherent in the series. The stochastic process
which exhibits this quality is the autoregressive process of order p,
denoted by AR(p). If x is the variable whose changes are to be treated,

we write this process as

Xp = aqXp g tooXe o+ iill, + . X +ay (1)



Here the relative chservational time is subscripted and 2y is a random
(or white noise) process, whose theoretical mean, variance and

autocorrelation function (acf) are given, respectively, by

E Lat_l =0 (2)
var [a; | = o2 (3)
and
1, k=20
kT30, k#0 (4)

th

In the last of the above equations,k denotes the k- Tag. In writing

(1) it has been assumed that the time average of x has been removed.

The expression (1) is a pth

order regression of X upon itself.
If all the coefficients Gps Ops weons o are zero, the process X¢
is equivalent to the white noise 2y, which has no memory as seen
from (4). If, however, the coefficients in (1) are non-zero, Xy
is said to have memory. Whereas the white noise a4 has a uniform
distribution of spectral energy with frequency, the processes with
memory have nonuniform distribution of energy; and the nonuniformity
of distribution is a function of the acf. This is because the
coefficients @ of (1} can be determined from the autocorrelation
coefficients Py

As the spectrum is just the Fourier transform of the autocorre-
Tation function, it is transparent that the autoregressive model

and the spectrum are closely connected (see, e.g., Childers, 1978}.

It is also obvious that the structure of the acf would affect both



the selection of a scientifically informative or useful AR model
and the spectral density distribution.

In view of these considerations, it is necessary to evaluate
the time series a priori, for instance using physical considerations, as
to their various parts such as trend, seasonality, and fluctuating
(or stochastic) components (see Parzen, 1974). This is so because
both trends and seasonal components can inflate the acf positively
such that the acf does not die out rapidly (see Box and Jenkins, 1970,
p.175). Now, what is called trend in statistical parlance may be
short lived in a long time series, and therefore it is legitimate
to think of long period oscillations as nonlinear trends,

One may deem the seasonal cycle as being deterministic (see
Jones, 1964) and other Tow-frequency oscillations in meteorological
time series as being stochastic. The seasonal cycle, therefore, in
addition to inducing a nondamping quality to the acf due to the
higit-frequency components alone, produces nonstationarity. This non-
stationarity means that the mean or the statistical expectation
is dependent on the calendar day. As the conventional procedures
for time series analysis, both modeling and spectrum analysis, are
valid only for stationary time series by assumption, it is doubly
necessary to remove the seasonal cycle.

If the seasonal cycle is not removed from meteorological time
series, the acf is often so positively augmented that an autoregressive

model of the first order, AR(1), is chosen. This model has

Pk = Pi]'i (5)
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With oy > 0, the acf of AR(1) can never be Tess than zero. The
spectrum of AR(1) reflects this by having generally higher spectral
density at Tower frequencies (see Gilman et aZ, 1963). Such a
distribution of spectral energy is known as “red noise" (see Lorenz,
1965). It may be noted that whereas AR(1) always has a red-noise
spectrum, higher order AR processes may or may nor have red-noise
spectra. AR(p) of order greater than 1 mayhave more rapid damping

of the acf than is indicated by (5), resuiting in stochastic spectral
plateaus at some frequency 1ntermed1ate to 0 and the Nyquist frequency
(see, e.g., Box and Jenkins, p. 63).

Until rather recently, a widely accepted stochastic model for
meteorological time series has heen AR(1) (see Lorenz, 1965, Julian,
1971 and Leith ,1975}. The study of Straus and Halem (1981), however,
concludes that at least a second-order AR process is required to
adequately describe surface observations and simulated data from a
general circulation model.

Our aims -in this paper are to demonstrate how, by biasing the
series through the deletion of the seasonal cycle and other Tow-
freguency components, one might arrive at AR(p) models with p > 1,
and to show the fundamental dynamical differences between AR(1) and

certain kinds of higher order AR processes.
2. Data, method of analysis and terminology

We intend to determine here the common properties of meteorological
time series. With this in mind, we have brought together a wide
variety of variables. The variables are a zonal index, a meridional

index, station pressure and 850-mh temperature. They pertain
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to the tropics and extratropics of both the Northern and Southern
Hemispheres.

The upper air data used have been taken from the U.S. National
Meteorological Center tropical grid analyses, which were obtained
from the National Center for Atmospheric Research* at Boulder,
Colorado. Only 1200 GMT data are used in this study. The missing data,
which amounted to only nine days in the four-year period from 1 July
1975 to 30 June 1979, were linearly interpolated.

The Brazilian station pressure data were obtained from the
Instituto Nacional de Meteorologia in Brazil. Observations for
1200, 1800 and 0000 GMT were averaged to give a single value for a
day. These values are used to form the time series of station wressure
studied here.

We have stationarized the mean of each time series by removing
Fourier components, in the manner of Blackmon {1976) and Blackmon
et al. (1977). For a series one year in Tength, the first four
harmonics are subtracted out. The sum of these four harmonics is
referred to as the estimated seasonal cycle.

The autocorrelation function estimates are positive definite
rather than unbiased. That is, if the series has N observations,
the kth lag correlation is not computed by using N-k as the divisor,
but, rather, Niitself. This produces estimates with smaller mean
square error, according to Jenkins and Watts (1968, p. 184). Jones
and Kearns (1976) have mentioned that positive definiteestimates de-
emphasize the higher lags.

* The Natibna] Center for Atmospheric Research is sponsored by the

National Science Foundation.



A lag window is always used in obtaining the spectrum., The
rectangular window may be chosen intentionally or by default. It may
be seen from Jenkins and Watts (1968, p. 252) that, for the same time
series and length of acf used, the rectangular window has fewer degreas
of freedom than the Bartlett, Tukey and Parzen windows. As a result,
the rectangular window produces less biased estimates, which,
however, have greater variance. Since we are not intent on
discovering any spectral peaks, we decided to use the Parzen lag
window. This is a wide window which yields biased, but less variable,
estimates.

The smoothed spectral density estimates, g(f), were obtained
through the discrete cosine transform of the window-modified
autocorrelation function:

L-1

g(f) = 2at J 1+2 ¢ i W cos(2nfkat) (6)
k=1

In (6) the frequency, f, has the range 0 < f ¢ 1/(2at), At being the
time span of unit lag. Also, r is the estimated autocorrelation
function, w the Parzen window function and L the maximum lag.

The maximum lag, L, we have used is 40, Since the
shortest of our time series are daily data for a year, having N = 365
(366, in the case of leap year), L is never more than a ninth of
N. This is in accord with a Jenkins and Watts caveat to utilize fewer
lags, as a large L would reduce the degrees of freedom, narrow the

bandwidth and, possibly, generate spurious peaks,



Following a suggestion of Jenkins and Watts (1968, p. 255), we have
plotted the spectra on a logarithmic scale. This has the advantages
that more detail is seen over a wider ordinate range and that the
confidence limits become independent of frequency.

The degrees of freedom for the Parzen window are given by
v = 3.71 N/L. (7)

With this equation and the information contained in the Jenkins and
Watts text, we have indicated the confidence intervals and
bandwidths for the estimated spectral densities.

The older methods of computing the spectra and related statistics
are used instead of the more recent techniques collected together
in Childers (1978). We believe that more meteorologists would be
familiar with the older methods. Hence, their use will facilitate
understanding of our findings. Moreover, since our time series are
long, containing more than a hundred ohservations, the use of the
maximum entropy method, or other methods, meant especially for
shorter records, is not crucial.

In modeling, rather than using the final prediction error criterion
of Akaike (see Childers, 1978}, we have used the straightforward
variance reduction method. For Tong time series, the two methods must
yield nearly the same results, as can be verified from Ulrych and
Bishop (1975).

The coefficients of (1) are computed from the autocorrelation
function via the Yule-Walker equations (see, e.g., Box and Jenkins,

1970, Parzen, 1974).



3. Results

The first of our illustrations, Fig. 1, pertains to the zonal
index at 419N and 500 mb for the year 1978, We define the zonal
index, Iz’ as

72

U, (8)

L= am oz

;
where the zonal component of the wind at a particular longitude is
denoted by Uiy data being available at 72 longitudes, at 5 degree
intervals.

In Fig. 1, the autocorrelation function (acf) of the unmodified
zonal index has a unit lag value greater than 0.9, The acf decays
extremely slowly with lag, being 0.255 even at 40 lags. It is, of
course, true that the autoregressive process of order one, i.e., AR(1},
has a monotonically decreasing acf, if the unit-lag correlation is
positive. This can he verified from (5). However, the decay of the
acf in Fig, 1 is not as rapid as that calculated from (5). Moreover,
we know that a nondecaying acf is indicative of nonstationarity
(Box and Jenkins, 1970, p. 55). The prime suspect then is the seasonal
cycle, on the back of which, so to say, the weather is carried.

In Table 1, the percent variance explained by the harmonics
contained in the estimated seasonal cycle is given. In the case of
the zonal index, the annual cycle alone explains dver 60% of the
variance, and the remaining three harmonics together explain another
4.5%. There can be little question that the annual cycle is deterministic.
It would indeed be wrong to treat this cycle as part of the statistical

variations,
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It is arguable that the second, third and fourth harmonics of the
annual cycle are not statistical, but, rather, deterministic.
Nevertheless, following the precedent set by Blackmon (1976),

Blackmon et aZ. (1977) and the subsequent publications of these
authors, we have chosen to discard these higher harmonics of the
annual cycle as well.

When the estimated seasonal cycle is subtracted out, the
residuals yield an acf, shown in Fig. 2, that decays much faster than
the acf of the raw zonal index data. For this series of residuals, the
first negative value of the acf is at 12 lags. Since the unit-lag
correlation here is about 0.8, it can be calculated from (5) that
the corresponding AR(1) must have pg = 0.4, g = 0.16 and P1g = 0.1,
values which are in reasonable agreement with the estimated values in
Fig. 2. This agreement is again seen between the smoothed spectral
density estimates and the theoretical AR(1) spectrum given in Fig. 3.

The residual variances (i.e., the square of the standard errors)
for AR models up to order 3 are given in Table 2. It may be recalled
that the residual variance is not a monotonically decreasing function
of the order (or "predictors" included; see Haan, 1977, p. 210). The
residual variances are the same for the AR(1) and AR(2) models of
the zonal index. Since AR(1} 1is the more parsimonious model, having
fewer parameters, one might accept it as the best model for the
series of zonal index with stationarized mean.

The time variations of the zonal index may be thought of as
second-order effects of atmospheric eddies (see, e.g., Phillips,

1954, 1956). It is, therefore, worth analyzing some variable
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representing the eddies directly. The meridional index Im is such a
variable, We define it as an area average of the square of the
meridional component of the wind at 500 mh. The boundaries of the
area we have chosen are the latitudes 28.70N and 48.19N and the

meridians 600W and 1200W. Then it can be written

v2, (9)

13 6
z 1
1 j=1 W

1. = (1/78) iz

In (9}, i is the longitude index and j, the latitude index.

For the meridional index and the remaining vériables in this Part,
we show the estimated spectra] density distributions only after the
removal of the estimated seasonal cycle. The spectral density estimates
for the meridional index are illustrated in Fig. 4. The estimates for
the station pressure at Manaus and Sao Paulo in Brazil are in Fig. 5.
these estimates are for the original series less the first two
harmonics of the annual cycle. Finally, estimates for 850 mb temperature
at three longitudes intersecting 419N are in Fig. 6, The AR(2) models,
and in some instances the AR(1) model as well, are shown in Figs. 4,

5, and 6. The AR(2) model is seen to represent well the overall
features of the estimates.

This is further confirmed by the data on residual variances in
Table 2. These data indicate that for all the variables, except
the zonal index, the best fitting AR models have order higher than 1,
provided that the series are first stationarized for the mean by
removing harmonics of the annual cycle. It is true that the higher
order models often explain only a small fraction of the residual

variance of AR(1). From the pcint of view of parsimony alone, it may
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be thought preferable to select the AR{1) model. It will be
shown in the next section that parsimony here is a dubious criterion.

In Table 3 we present the acf's for both the original series
and series modified by the sudtraction of harmonics of the annual
cycle. The former possess acf's which decay slowly, indicating
nonstationarity of mean as suggested by Parzen (1974) and Box and
Jenkins (1970, p. 175). In the Tatter series this sluggishness is
gone. That is, when the estimated seasonal cycle is removed, each
modified series has a rapidly decaying acf structure at the first
few lags; thereafter the acf fluctuates about zero. Thus, except at
the first few lags, the acf's of the modified series are almost 1ike
the acf of white noise, as given by (4). The modified series quite
obviously have much less persistence than the original series.

It may be argued that if the seascnal cycle is estimated with
multi-annual data, the estimates will be weaker than those made with
a single year's data, thus affecting our conclusions. To explore
this, we present the acf's for 850 mb temperature at various
geographical positions, using daily data for the 4 year period from 1
July 1975 to 30 June 1972. Acf's are shown for the original series
as well as those modified in different manners. It is seen from
Table 4, which contains these acf's,that the annual cycle inflates the
acf more than any other low-frequency component in almost all cases.
Moreover, the removal of the annual cycle decreases rz.much more than
rys thus enforcing a rapid decay of the acf. The subtraction of the
other Tow-frequency components —which may be thought of as a filtering
procedure — merely augments the tendencies set by the removal of the

annual cycle. That is, the general filtering of Tow-frequency components
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merely ensures that the models of the filtered series are higher order
AR processes with a special characteristic, as will be seen from the

ensuing discussion.
4, Discussion

We need to justify the choice of modeling persistence effects
alone, instead of commencing, say, with autoregressive-moving
average models, as elucidated in the Box and Jenkins book. The choice
is Justified partly by the historical precedents, mentioned above,
which recognize the persistence in meteorological time series. Partly
it reflects our agreement with Kashyap and Rao (1976): "Accurate
estimation of parameters in a system involving moving average terms
is considerably more difficult than the estimation problem in a
system without moving average terms .... Consequently, in modeling
empirical time series, the possibility of developing a model free
of moving average terms should be explored so that the model
satisfactorily represents the data".

The initial omission of the moving average process signifies that
we do not have an a priori reason to believe that the random processes
affecting the weather are in turn persistent. This is seen from the
equation for the qth order moving average process

ay = 63, 1+ 998y o t «veu + 0 (10)

q*t-q 't

where Xy is the process under study. Comparison may be made between

(10) and (7).
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However, the best reason for choosing a model for the weather from
the class of autoregressive models lies in the following physical
consideration.

As can be deduced from (1), autoregressive modeling always leads
to a finite difference equation. This equation is inhomogeneous, and
it is vital to consider the free solutions corresponding to the
homogeneous part, as well as the forced solution. The free solutions
lead to insights concerning the mechanism which is given as a
mathematical expression, while the forced solution tells us how this
mechanism functions undarthe specified forcing. Moreover, the
characteristics of the free solutions are reflected in the acf,
which is central to much wohk on time series analysis.

The homogeneous difference equation corresponding to AR(1) is

where a; =1, the unit-lag correlation coefficient. The solution of
(11) is

t
1

X, = Kn

; (12)

where K is the value of Xy at t = 0. It must be remembered that t is
always a positive integer or is zero.

From the information on acf given above we have 0 < ap =1y o< 1.
So, for all these series, the process (19) is convergent. Moreover, as

oy > 0, the free solution of our AR(1) process is a convergent

monotonic process (see Gandolfo, 1971).
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Then it may be asked if the free response of any part of the
atmosphere is ever dynamically treated as a monotonically increasing
or decreasing function. Certainly the reply to this question is in

the negative,

Apparently, the homogeneous part of AR(1) can represent trend or
long-period oscillations, and not the weather.

The homogeneous part of AR(2) is
Xp = ByXpop + BoXi_s (13)
for which let us assume a solution of the form
X, = mS (14)

which resembtes{12). Substituting (14) into (13), we will have a

solution if s is a root of

s - BiS - 8, =0 (15)
The two roots of (15) may be real and distinct, provided that

s% + 4 By > 0 (16}

Then, the two independent general solutions are

xg) = m s% and xéﬁ = m, sg
which may be combined to give
_ t t
Xg = MySy + Mysg (17)

The coefficients m and m, are determined by the initial conditions.
The convergence of (17) is assured if [s;]| and [s,| are both
less than unity.
If both $4 and s, are greater than zero, (17) produces the same
result as (12}, representing trend. If, however, say, 51 > 0 but
s, < 0, rathet interesting depafthes from (12) appear. The solution

corresponding to $o Must then change sign with each increment in t,
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a phenomenon that Gandolfo (1971) calls improper ‘oscillation. This

improper oscillation would modify the monotonic growth or decline

arising from the solution with 5

If, in (15)

B% + 4 By < 0 (18)

the roots Sy and S, are complex conjugates. The solution may be written

as

x, =mst ¥t , st g~ 12Mfot (19)

t 1 2
where
1

S = (“82)2 (20)

and
1
fo = {1/2n)arccos {61/(-4 62)2 } {21}

The oscillatory solution (19) is discontinuous in time as t is
discrete. The convergence or divergence of (19) depends on whether
[B,] <1, or |62| > 1. If B, = -1, the solution is purely oscillatory

with neither amplification nor damping.

The coefficients 8, and B, are computed via the Yule-Walker

equations (see Box and Jenkins, 1970) as
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s
d
|

S ey (1-1p) /(1 - rd)

- (rp -7 /(- )

]
1

where s and ro are estimates of the unit lag and second lag
autocorrelation coefficients, respectively. Table 5 has the values of

By and B, for the series under discussion, indicating that, for all of

them, 61 > 0 and 62 < 0.

From Table 5 it is apparent that all of the series analyzed,
excepting the zonal index, satisfy (18), once the seasonal cycle is
removed. S0 these series have AR(2) models with free oscillatory
solutions. These solutions are also damped with time, as l61| <1

for the series, as exhibited in Table b.

Since the majority of the data treated have AR(2) models whose
homcgeneous parts have oscillatory solutions, it may be asked if the free
response of the atmosphere is thought of as being oscillatory. The
answer has been affirmative ever since the publication of Rossby
(1939). Although the existing literature confirming the undulatory
property of the weather is scanty, energy propagation by Rossby waves,
as given by Hovmoller (1949) and Parry and Roe (1952) may be adduced

as partial evidence.

The solution for the inhomogeneous equation for AR(1), with
ay > 0, is marked by a concentration of spectral energy in the low
frequency portion of the spectrum. This feature is dealt with at

length by Gilman et al. (1963), Jenkins and Watts (1968) and Box and
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Jenkins (1970). There is no need to consider it again here.

The formal solutions for all orders of autoregressive processes are
given by Box and Jenkins (1968, p. 54}, and Jenkins and Watts (1968).

We will present here only a few points not explicitly dealt with by

them.

Box and Jenkins have shown that theacf's of the autoregressive
processes satisfy difference equations analogous to the homogeneous
equations examined above. Therefore, if the free solutions of, e.qg.
AR(2), are dapped and oscillatory, then so is the acf. The damping
factor and the frequency of the acf are, accordingly, identical to

(20) and (21) for the free solutions.

The spectrum, however, being the cosine transform of the acf, may
be expected to display some special characteristics of its own, when

the acf has a damped oscillatory structure. This proves to be true.

The spectrum of AR(2) is given by
(f)y =2 o /41 + 83 + 82 - 28, (1 - B,) cos 2nf - 2B, cos 4rf W
P a ') 1+ B 1 2 2 :

0<f<i/2  (23)

Upon differentiating (23) with respect to frequency f, and setting the
resulting expression equal to zero, we get an equation for the

frequency having an extremum in the spectrum
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fl = {1/27) arccos {8](82 - 1)/4 82} (24)

The frequency f] is different from the frequency of the free
oscillation and of the acf, given by fo in (21). We can write (24) as

fy = (1/2r) arccos {[31/(-4 82)%:[ (1 - B,)/(-4 62)%]} (25)

The expression within the first pair of brackets of (25) alone will
lead to fo, if

L
2

(1-8y) / (-4 8,) (26)
equals unity, that is, if 82 =-1. As 82 rises from this value and
approaches zero, the denominator of (26) becomes increasingly more
dominant, and, as can be seen from (25), f] decreases with respect

to fo. One also infers from {20) that as 82 -+ 0, the amplitude

of the oscillation weakens. In fact, the expression in (26) may be so
large that the entity within the braces of (25) overshoots the
functional bound at 1; following this, there will be no f1 although

fo has a definite value. This is plainly a reversion to AR(1).
Reference may be made to Papoulis (1962) and Godin (1972} for further

clarification of the issues arising here.

In Table 5, the values of B, are larger than -1, but Tess than
zero. Obviously, where (18) is satisfied, the spectral peak occurs
at a lower frequency than the free oscillation. That is, f] < fo.

And, of course, twin-sided spectral peaks do not always occur when the
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— free solution is oscillatory, as can be seen from Table 5. This can be
further verified from the theoretical AR(2) spectra for station
pressure at Manaus and 850 mb temperature at 419N, 1200W. This
contrast of the acf and the spectrum makes for their essential
difference.

— The plateaus in the spectra of AR{2) reflect the tendency of the

| free solutions to he oscillatory. Hence the term 'pseudo-periodic
behavior', employed by Box and Jenkins (1970) in this context, seems
to be misleading. Perhaps 'AR(2} with complex roots' is adequate, as
it reflects the cause of oscillatory response found in other parts of

— dynamics, for instance, mechanical vihrations {Tse et al:, 1963).

We have discussed the AR(2) process at some Tength, not because it

" is always the best model for meteorological time series, but rather

because the chief difference hetween AR(1) and all higher order

autoregressive models is one and the same thing. It is that AR(1) can
never have free oscillatory solutions while all higher order processes

permit such solutions.
5. Conclusion

— In this paper we have attempted to assess the influence that
relatively low-frequency components, such as the seasonal cycle
and climatological oscillations, have on meteorclogical time series,
by studying the time series with and without such low-frequency
components. Filtered time series containing only the high-frequency
oscillations have, at lags of one and two days, positive autocorrelation.
This indicates the persistence in the series. But these lag correlation
coefficients are both small and rapidly decaying with lag. This is
characteristic of stochastic processes which have a low degree of

persistence,.
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However,unfiltered time series containing low-frequency oscillations
have lag correlation coefficients which are large and positive up to
lags of several days. Therefore, unfiltered time series exhibit very
strong persistence. A chief disadvantage of using unfiltered time series
is the possibility of mistakenly attributing their strong persistence
to the weather itself. Furthermore, it is essential to remove the
seasonality in the time series, for otherwise there would be
nonstationarity in the mean (or statistical espectation) and the
conventional methods of time series analysis are concerned with
stationary series only (Jones,1971),

The stationarization of the mean by removing the seasonal cycle,
and the subtraction, in general, of low-frequency energy, are no
doubt arbitrary procedures since the governing dynamical equations
are nonlinear. In other words, the low-frequency components may bhe
dependent upon the high-frequency components, and vice -wersa.

Filtering is therefore justified only so long as the filtered saries

are not mistaken for the unfiltered series with their great

complexity and to the extent that filtering actually enhances the
understanding of all the components of the original series,incTuding their
mutual interaction.

Both dynamic and synoptic meteorologists have been historically
more concerned with the study of higher-frequency weather phenomena
rather than with the low-frequency oscillations of the type mentioned
above. Hence statistical analysis of time series can aid the
development of synoptic and dynamic meteorology hy focusing on the
phenomena of interest in these branches of meteorology. In this

context, we have found that often the filtered time series not
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containing low-frequency oscillations have autoregressive models of
order 2 or more, with compiex roots for the corresponding homogeneous
difference equations (see also Straus and Halem, 1981). These complex
roots are representative of oscillatory mechanisms. Oscillatory
mechanisms, such as the wave propagation studied by Rossby (1939, 1945),
Parry and Roe (1952) and others, are important conceptual aids in
dynamic and synoptic meteorology. Some connections between the
oscillatory character of autoregressive processes of order 2 and

the weather will be discussed in a future paper,



- 27 -

Acknowledgments

The authors are grateful to Dr. Ivan Kantor, for reviewing the
manuscript, and to Fatima Ricco dos Santos who did the typing. They
are also grateful to Will Spangler for his help in acquiring the NMC
data and to the reviewers for their many helpful comments. This research
was partially supported by Financiadora de Estudos e Projetos (FINEP)
through Convenio B54/81/042/00/00 - FINEP/CNPq/INPE and Programa

Tropico Semi-Arido do CilPg - Polo Nordeste em 37/383.



- 23 -

References

Blackmon, M.L., 1976: A climatological spectral study of the 500 mb
geopotential height of the Northern Hemisphere. J. Atmos. Set.,

33, 1607-1623.

, J. M. Wallace, N. -C. Lau and S.L. Mullen, 1977: An
observational study of the Northern Hemisphere Wintertime

circulation. J. Atmos. Seci., 34, 1040-1053.

Box, G.E.P., and G.M, Jenkins, 1970: Time Series Analystis:

Forecasting and Comtrol. Holden-Day, San Francisco, 553 pp.

Childers, D.G., (Editor) 1978: Modern Spectrum Analysis., Wiley,
New York, 334 pp.

Gandolfo, G., 1971: Mathematical Methods and Models in Economic

Dynamics. North Holland, Amsterdam, 511 pp.

Gilman, D.L., F.J. Fuglister and J.M. Mitchell, 1963: On the power

spectrum of "red noise". . Atmos. Seci., 20, 182-184.

Godin, G., 1972: The Analysis of Tides. Univ. of Toronto, Toronto,

Canada, 77-78.

Haan, C.T., 1977: Statistical Methods in Hydrology. Iowa State Univ.

Press, Ames. 378 pp.
Hovmb1ler, E., 1949: The trough-and-ridge diagram. Tellus, 1, 62-66.

Jenkins, G.M., and D.G. Watts, 1968: Spectral dnalysis and Its

Adpplications. Holden-Day, San Francisce, 525 pp.

Jones, R.H., 1964: Spectral analysis and linear prediction of

meteorological time series. J.dppl. Meteor.,3, 45-52.



- 24 -

, 1971: Spectrum estimation and time series analysis: A review.
Preprints of papers presented at the International Symposium on
Probability and Statistics in the Atmospheric Sciences, June 1-4,

1971, Honolulu, Hawaii. Amer. Meteor. Soc., 35-40.

, and J.P. Kearns, 1976: Fortaleza, Ceara, Brazil rainfall.

J. Appl. Meteor., 15, 307-308.

Julian, P.R., 1971: Investigations of some aspects of non-stationary
behavior of synoptic-scale motion systems in the tropics.
Preprints of papers presented at the International Symposium on
Probability and Statistics in the Atmospheric Sciences.June 1-4,

1971, Honolulu, Hawaii. Amer. Meteor. Soc., 47-52.

Kashyap, R.L., and A.R. Rao, 1976: Dynamic Stochastic Models from

Empirical Data. Academic Press, New York; p. 47.

Leith, C.E., 1975: The design of a statistical-dynamical climate
model and statistical constraints on the predictability of

climate. GARP Publication n9 16, WMO, Geneva, Switzerland, 137-141.

Lorenz, E.N., 1965: On the possible reasons for Tong-period
fluctuations of the general circulation. Technical Note nQ 66.

WMO, Geneva, Switzerland, 203-211.

Papoulis, A., 1962: The Fourier Integral and Its Application.

McGraw-Hill, New York, 15-24.

Parry, H., and C. Roe, 1952: Record low temperatures in the
mid-Atlantic and east central states, QOctober 20-22, 1952. Ion.

Wea. Rev., 82, 195-202.



- 25 -~

Parzen, E., 1974: Some recent advances in time series modeling.

IEEE Trans., Autom. Control, AC-19, 723-730.

Phillips, N., 1954: Energy transformations and meridional
circulations associated with simple baroclinic waves in a two-level

]

quasi-geostrophic model. Tellus, 6, 273-286.

, 1956: The general circulation of the atmosphere: a numerical

experiment. Quart. J. Roy. Meteor. Soc., 82, 123-164.

Rossby, C. -G., and collaborazors, 1939: Relation between variations
in the intensity of the zonal circulation of the atmosphere and the
displacements of the semi-permanent centers of action. J: Marine

Res.,2, 38-55.

» 1345: 0On the phopagation of frequencies and energy in certain

types of oceanic and atmospheric waves. J. Meteor, 2, 187-204.

Straus, D.M., and M. Halem, 1981: A stochastic dynamical approach
to the study of the natural variability of the climate. Mon. Weq.

Rev., 108, 407-421,

Tse, F.5., I.E, Morse and R.T. Hinkle, 1963: Mechanical Vikrations.

Allyn and Bacon, Boston, 34-38.

Ulrych, T.J., and T.N. Bishop, 1975: Maximum entropy spectral
analysis and autoregressive decomposition. Rev. Geophys. Space

Phye., 13, 183-200.



- 26 -
TabTe Legends

Table 1. Percent variance in the first 4 harmonics of daily data for

individual years, as specified in the figure legends,

Table 2. Residual variances for autoregressive models for the time
series in which the mean 1is stationarized by discarding the seasonal
cycle. The first Tine of the table is the variance in the series
after the seasonal cycle is discarded. The seasonal cycle is
defined as the sum of the first 4 harmonics, with the exception

of surface pressure, for which it is the sum of the first 2

harmonics.

Table 3, Positive definite estimates of the autocorrelation

function for selected variables.

Table 4. Positive definite estimates of the autocorrelation function
for temperature at 850 mh and 419N, for various longitudes, and
with various modifications of the series, Data are far the 4-year

period 1 July 1975 to June 1979.

Table 5, Coefficients of (13), satisfaction of criterion (18), the
frequency of free oscillation f0 and the frequency of the spectral
peak,f1, for AR(2). Seasonal cycle filtered out in all instances.
The seasonal cycle consists of the sum of the first 4 harmonics
in all cases except the surface pressure, for which only the

first 2 harmonics were removed.
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Percent variance in the first 4 harmonics of daily data

for individual years, as specified in the figure legends.

Harmonic | Zonal Meridional | Surface pressure at 850 mb temperature at
Index Index Manaus | Sab Paulo | 41%, 0% [41%N, 100% | 41%. 120%
1 60,3 7.2 39.8 45.1 59.4 55.5 55.9
2 0.1 3.9 10.7 6.7 3.1 3.9 0.8
3 2.3 0.4 0.7 1.5 0.2 0.0 0.6
4 2.1 G.4 2.6 2.2 1.1 0.2 0.9
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Table 2. Residual variances for autoregressive models for time series
in which the mean is stationarized by discarding the seasonal
cycle. The first line of the table is the variance in the series
after the seasonal cycle is discarded. The seasonal cycle is
defined as the sum of the first 4 harmonics, with the exception

of surface pressure, for which it is the sum of the first 2

harmonics.
Order Zonal | Meridional Surface pressure at 850 mb temperature at
p Index index Manaus | Sdo Paulo 419 0 0 o 0 o
Indey | index ang o P o 80 | N, 100% | e M, J20%
5.73 927 1.47 6.59 32.95 37.63 19.43
1 1.99 3400 0.74 3.25 27.80 29.28 16.77
2 1.9% 2832 0.72 2.71 2711 28.24 10.55
3 2.32 27N 0.78 2.75 27.06 27.96 11.10
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Table 5. Coefficients of (13), satisfaction of criterion (18), the
frequency of free oscillation fo and the frequency of the
spectral peak fy, for AR(2). Seasonal cycle filtered out in all
instances. The seasonal cycle consists of the sum of the first
4 harmonics in all cases except the surface pressure, for which

only the first 2 harmonics were removed.

Zonal Meridional | Surface pressure at 850 mh temperature at
Index Index Manaus | sao Paulo | 419N, &0 a1, 100% |41%, 120%
81 0.805 0.787 0.826 0.995 0.45% 0.553 0.754
82 -0.018 -0.410 -0.176 -0.405 -0.148 -0.173 -0.147
[nequality
(i8) satis{ Mo Yes Yes Yes Yes Yes Yes !
fied? '
f, (cpd) - 0,145 10,028 £0.107 0,150 +0.134 +0.029
f] {cpd) - 0,132 - +0.084 0. 081 +0.057 -
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Figure Legends

Figure 1. Positive definite estimate of the autocorrelation function
_ for the zonal index, defined in the text, at 410N for 1978, with

the seasonal cycle retained.

Figure 2. Positive definite estimate of the autocorrelation function
for the zonal index at 419N for 1978, with the seasonal cycle,

assumed to be the sum of the first 4 harmonics, discarded.

Figure 3. Smoothed spectral density estimates, for the data in Fig. 2,
using the Parzen window (continuous line), and the corresponding
first order autoregressive model (dashed line). The bandwidth and

-~ 80% confidence interval are indicated.

Figure 4. Smoothed spectral density estimates for the meridional
index, defined in the text, for the year 1 July 1977 to 30 June
— 1978, with the seasonal cycle, consisting of the first 4
harmonics, removed. The estimates computed using the Parzen
lag window are shown by the continuous T1ine. The first and second
order autoregressive models are represented by the dotted
and dashed lines, respectively. The banddwidth and the 80%

confidence interval are also shown.

Figure 5. As in Fig. 4, but the smoothed spectral density estimates
are for station pressure at a) Manaus and bh) Sao Paulo, with

Jjust the first 2 harmonics deleted in each instance.

Figure 6. As inFig.4,but the smoothed spectral density estimates
are for 850 mh temperature in 1376 at 419N and a) 809U,
b} TO09W and ¢} 1209W, with the first 4 harmonics removed in

each case.
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