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ABST

RACT

A linear stability analysis of the hyperbolic tangent profiles is made. A Boussinesq primitive equation
modei with nigh vertical resoluijon is uscd. Unsiablc modes of intermcdiate scales (L, = 1000 km) are
generated when the curvature, d*@/dz?, of the basic flow in the lower levels is negative. Even if the curvature
in the lower levels is positive, intermediate-scale unstable modes appear for smaller static stability and shear
{Richardsen nimber not necessarily small) or for certain vertical distributions of diabatic heating due to
the liberation of lalent heat in the lower troposphere. The amplitude of the most unstable intermediate-
scale wave is cunined 10 the lower tropasphere and its growth rate increases with the inclusion of diabatic

heating,

1. Imtroduction

Following the pioneering works of Charney (1947),
Eady (1949), Kuo (1952) and Phillips (1954), bar-
oclinic instability as the principal mechanism for the
development of atmospheric disturbances received a
great deal of attention. Most of the characteristics
of middle- and high-latitude disturbances, such as
the horizontal scale (L), westward tilc in the vertical
and eastward movement of the upper tropospheric
synoptic-scale (L = 4000 km) transient waves are
successfully explained by this instability, even within
the framework of quasi-geostrophic (QG) theory.
However, linear analysis is incapable of completely
explaining the concentration of isotherms into frontal
ZONeEs.

With the ever-increasing density of observations
and the advent of satellite-based cloud pictures, tran-
sient disturbances of subsynoptic scales (L < 2000
km) have been observed in certain preferred locations
such as the polar frontal region (Reed, 1979) and
aiong the “Baiu” frontal zone (Matsumoto ez al.,
1970) in the Northern Hemisphere, Similar distur-
bances have also been observed, by the authors, to
develop or intensify over and around extratropical
South America. Carleton {1979} has given observ-
ational evidence for local winter cyclogenesis over
South America, Some of these disturbances seem to
be simi'cr 1o the frontal waves observed by Bjerknes
and strgied b €20 o-2 (1028), Eliasen (15960) and
Orlamkl (1968)
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stal (Phillips, 1970). Whatever may be the case, there
is a general consensus that the waves and fronts are
closely associated. However, it appears that there is
a fundamental difference between long upper waves
(L = 4000 km) and the surface frontal waves
{L = 1500 km) which are due to the secondary in-
stabilities of the frontal zone {Charney, 1975).

Most of the earlier linear studies of the baroclinic
instability used the QG assumption (i.e., Rossby
number, Ro = ki/f < | where k is the zonal wave
number, # the basic zonal wind and f the Coriolis
parameter), while a few used a two-level mode! of
the atmosphere or deliberately took the basic state
to have constant vertical shear (di/dz) and static
stability (5). Kuo (1953) studied quasi-geostrophic
baroclinic instability for basic states with constant
shear and static stability. His results showed a single
maximum in the growth rate curves. He concluded
that the amphitude of large-scale waves (L > 5000
km) increased with height while that of the shorter
waves {L < 4000 km) has its maximum at lower
levels. Therefore, it is reasonable to believe that the
atmospheric conditions in the lower troposphere are
more important for the growth and characteristics
of the subsynoptic-scale unstable waves.

Stone {1966, 1970) extended the solutions of the
Eady model to ageostrophic perturbations. He con-
cluded that the largest growth rates were associated
with geostrophic baroclinic instability if Ri [Rich-
ardson number = S/(dii/dz)*] > 0.95; with syr::
metric instability if 0.25 < Ri < 0.95 and with Kel-

“ine ncimhovz mstablllty if 0 « Ri < 0.25. Stalev
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of barochmcally unstable waves in a four-level QG
model. Their results showed the importance of the
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vertical variation of the basic state, esreciallv tha
shear apd stot~ iy in tae lower levels, for un
stable subsynoptic-scale waves. The study of Blumen
(1979} with a two-layer QG model demonstrated
how the short- and long-wave baroclinic instabilities
depended on the relative layer depths as well as on
the jump in static stability between the two layers.
Extending the study of Blumen, Hyun (1981) found
that the shorter-scale instability characteristics were
affected also by the jump in shear.

None of the studies mentioned above have ex-
amined the baroclinic instability of subsynoptic
scales when the basic state’s vertical shear and
statification simultaneously vary with height. [n the
present study, we shall examine subsynoptic baro-
clinic instability with a primitive equation model
possessing high vertical resolution.

2. Mathematical formulation
a. Model equations

We consider the inviscid primitive Boussinesq
equations (see Duffy, 1978), including diabatic heat-
ing. Our basic state (denoted by an overbar) which
is independent of time and zonal coordinate, is then
perturbed by an infinitesimal wave perturbation
propagating in the zonal direction (denoted by a
caret). For example, the zonal component of the wind
is expressed as

ulx, y, z, 1) = iy, z)
+ Reld(y, z) expik(x —e1)]. (1)

The equations governing the perturbations are then
found to be

ay dy
% 6u a4 a ¥ )
+ +F——86——Ww=0, (2
(c'!vaz oz 6y az dydz ¥ (2)
(50 4,000 o @ 0w o)
l dz dz dy Byaz az ayaz)
Ao 9 di)‘_i ;
5 e 972 w_c_,,TH’ 3
where
; {08 o g9
b= (i —c), Fa( ay), =i @

and where ¢ is the complex phase speed, 8, a constant
reference potential temperature, & the rate of dia-
batic heating and the remaining symbols have the
usual meaning. Besides considering the atmospherz
1o be hydrostatic, other approximations used to arrive
at (2) and (3) are that 8, » 8 or 6, implied in the
Boussinesq approximation, and the finearization.
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basic state and the heating functions are speciiled.
On the other hand, if the heating is taken to be zz2ro
or is only a function of the dependent variables, the
equations become homogeneous and an eigenvalue
problem occurs, in which c is the eigenvalue and 9
and W constitute the eigenfunction. In any case, an-
alytical solutions are difficult to obtain. Numerical
solutions may however be obtained using a finite
difference grid in the y-z plane. The problem reduces
to finding eigenvalues and eigenvectors of a very
large complex matrix, for a reasonable resolution in
both y and z directions. Therefore the problem has
been further simplified.

Under the mean conditions, the meridional shear
of the zonal wind {d:/dy) is of the order of 1077577,
whereas the Coriolis parameter is taken to be of the
order of 107* s™'. Thus F may be approximated by
f and, by the same argument, (8% dydz)® may be
neglected in comparison with f(aw/az) in {2) and
6(6‘%/6}:62) may be neglected in comparison with
f(815/dz) in (3). Theréfore a justifiable simplification
would be to consider the basic state zonal wind to
be independent of y. This approximation does not
hold in strong frental zones. However, for simplifying
the problem the above approximation is used. Con-
sidering df/dy = 8 to be constant (8-plane approx-
imation), the coefficients of (2) and (3) become in-
dependent of y and will allow us to assume the
structure of the dependent variables to be sinusoidal
in y; w = wexp(ily). This kind of structure is in fact
necessary for the separability of Egs. (2) and {3}.
Introducing these simplifications into (2) and (3) and
eliminating D, we arrive at a single equation for w:

pem 1T

dw aw
A e + B'd— +OF = Q. (5)
where

A = D§(f1 + I*3° + Db) J
! ;
= s+ e B - DGR
l

C= (d ) [H(k? + P)f + ils) — ilD(f — ilo)] ' .

+ [ilsD(f + th)] L th

¢ A D=8 — (k* + P} '|

2

)

!

Q=

3

]

7

(6)

The only form of diabatic heating employed in this
study is that due to the liberation of latent heat, for
which the wave-CISK (Chang, 1976) mechanism is
assumed. Consequently we write the heating term
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F1G. 1. Vertical Grid.

as

Q = D*S(z)(z)W, M
where w, is the vertical velocity at the cloud base
level and #(z) is a non-dimensional vertical distrib-
ution function. This kind of parameterization is
mathematically convenient for posing an cigenvalue
problem. CISK is 2 mechanism more appropriate for
the tropical atmosphere but there have been in-
stances in which it is invoked to explain extratropical
phenomena (Nitta, 1964; Rasmussen, 1979). For
secondary instabilities on pre-existing frontal zones,
liberation of latent heat from convective clouds is
important {Nitta and Ogura, 1972). Eq. (5) becomes
homogeneous once (7} is introduced into (6).

b. Method of solution

Eq. (5) with the coefficients given by (6) and (7)
is applied at the intermediate levels of the grid shown
in Fig. 1, If centered finite-differences are used, (5)
becomes

A:,ﬁ;".'.l + B:,“'T’,, + C:l‘;'n—l + D:,ﬁ)m = 0,
n=1,2,3+++-N-1, (8)

where MV is the maximum number of layers of depth
Az into which the atmosphere is divided, m repre-
sents cloud base level,

/4 B , 24
i) me(e-3)
L9

L = (nSte — a, j

ovzlpe ot the level v The

(10)

Wy = Wy = 0

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 3y

The system of equations {8) forms a linear aige-
braic homogeneous set which can be written as

(CP+PQ+R+eB+T)W =0, (1)

where P, Q, R, § and T are complex square matrices
of order (N — 1) X (N — 1) whose elements are
functions of the basic state variables and W is the
column vector formed by W, W, - « « W, We note
that (11) constitutes » generalicod -iwnﬂ-ﬁ‘-\lem-
SOl\flILg “w e QULLE O \,,,..'...:.."_"

genvectors of a compiex matrlx of thc order (4N
— 4) X (4N — 4), The problem can be solved by
using the algorithms developed by Garbow (1978).

For a given basic state {#(z), S(z), f and 8] and
zonal wavelength L, = 2II/k, the eigenvalues ¢
= ¢, + i¢;, and the eigenvectors W = W, + iW, are
obtained. The procedure is repeated for several val-
ues of L, between 100 and 10 000 km to obtain e-
folding times {1/k¢;). The graph of the e-folding
times versus L, will hereafter be referred to as IS
(instability spectrum).

Having obtained w for the modes with maximum
instability (or minimum e-folding tirne) i is obtained
from the simplified version of (2), # is obtained by
using continuity equation, gcopotentlal qb, the x-com-
ponent equation of motion and § the hydrostatic ap-
proximation.

¢. Basic state

The procedure outlined above can be used to ob-
tain the IS of any zonal wind and static stability
profiles. We are interested in examining the insta-
bility characteristics of the intermediate scale (L
== 1500 km) disturbances in the vicinity of baroclinic
zones associated with idealized weak thermal fronts,
Thus the profiles considered are mathematically ex-
pressed as

i To" [t h(yozyz)_
2l

where y, is the meridional distance of the center of
the surface frontal zone from the vertical section
where the profiles are taken; 4,1 /v and g are the half
width, slope and the intensity of the frontal zone,
respectively. If we vary both 2 and y,, {12) produces
a meridional section of the mean zonal conditions in
an idealized frontal zone. The point z = 0 and ¥,

= ( corresponds to the midpoint of the frontal zone
at the bottom boundary The governing equation (5)

tanh(yo/d)]
. (12)

is indepencent ! therefore the veriical profii
e e v LY Luuuuuu P R Y T P R I TPy |
zone may I: -btained by choosing y, properly.

The 7~ "les ¢f # and 8 obtained by (12) for dif-
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e o Oaje {12507 . b
Lati- d Cosyceats o Lie governing equation
Sym-  tude g (5w So)  (di[dz) (i) o LR eals oa e gurerning eq
bol “S)  tk Ri, (1075 25y (k .
—_ s ET b (10767 (07 ) The present model takes into account the effects
P! 30 -800 47  1.5:08 5.7 3 of the curvature of the basic zonal wind profiles and
*PIL 30 —-800 82 0.3 31 — the ageostrophic terms. In the usual QG formulation
P2 0 0 32 L1505 6.8 0 the terms k% and /%8? are neglected in comparison
”ggl- gg +sog g»g 0:?'%2 gg 3 with f? in the coefficients given in (6). For the in-
. e : termediate-scale disturbances (L., L, ~ 1500 km)
* Latitude = latitude of intersection of the frontal zone with this approximation is not justified. The retention of

the surface (z = 0)

Yo = meridicnal distance of the vertical cross section
at which the profile is obtained from the surface
frontal zone

Riy, = minimum value of the Richardsen number

(Sm: S,) = maximum and average values of the static sta-
bility

{diE{dz} = maximum value of the vertical shear

(he) = height below which d%i/dz* > 0; level at which
(S.); {di/dz) and Ri,, occur.

** Profiles PI1L and P2L are obtained from P1 and P2, respec-
tively, by joining the extremes by straight lines (see Fig. 2). In
these proiiles S, Ji/dz and Ri are constants.

ferent values of ¥y and f and for carefully chosen vai-
ues of a, d, v and 8, are shown in Fig. 2 (see also
Table 1). The basic state obtained for the values of
Bo=295K,a=1ms%~ =300, d = 1000 km and
f at 43°N agreed very well with those observed by
Mullen (1979) in situations in which comma-type
disturbances developed (see Fig. 2 of Mullen, 1979).

In the inviscid QG fluid the necessary condition
for the presence of dynamic instability is the exis-
tence of either a meridional thermal gradient at the
surface or a change in the sign of 64/dy (where §
is a psendo potential vorticity) somewhere in the
domain (Charney, 1973). In the profiles given by
{12), 8*G/dyodz is zero if 8 is taken to be a constant
and, therefore, the quasi-geostrophic IS of these pro-
files would present only the Eady or Charney modes,

these terms may generate additional modes of insta-
hility relevant to subsynoptic scale waves and/or
modify the existing instability characteristics. When
constant shear profiles of i are considered the second
term and a part of the third term of C in (6) drop
out. The vertical shear variation {d *#/dz%), hereafter
referred to as curvature, may have a destabilizing
effect on the zonal flow. The third term of C shows
clearly that under certain favorable conditions the
effective value of the static stability may be less by
20-30%, at least in some layers of the atmosphere
(typical values are: S ~ 107> 5™, d%i/d2* = 10 m™'
s~'and 6 ~ 10 m s™'). In addition, this term changes
the character of the governing equation because C
will have a term in ¢* in this case, even if / = 0. Since
the effect of the reduction of the static stability is
felt more by the subsynoptic-scale waves, the cur-
vature effect turns out to be more important for these
waves. If 8, d%4/dz* and Q are taken to be zero in
(5), our perturbation equation reduces to Eq. (1.2)
in Stone’s (1966) paper.

3. Discussion of the results

Table 2 describes those cases discussed in this sec-
tion. In all cases the total atmospheric depth (k) is
taken to be 10 km, which is divided into 20 layers
of 0.5 kmn thickness. However, tests with several grid
resolutions (Az) beiween 0.4 and 2.0 km were made

o«

10 Rl 1 : 1 3
!- Ri= 4.7 of\ 5km i H U nigsar
U IT:] I 1 axm
8} ! 1
/ ! 1
= / ! !
=z AF i ! 1
— piL —a, / ;‘ 1
- . ;
T 4L 8.l 7/ I|
o s I
. i
2r J ;
v}/ 1 1 v‘! L
0o ¢ 20 30 0 10 20 Uimgh
0 o 0 10 20 @(°c)

FiG. 2. Vertical profiles of the basic zonal wind {#) und
potential tlemperature (8) {see also Table 1),
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Tap!lE 2. Cases in which the instability spectra
(IS) are obtained.
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Case Profile "Figute
number used Special characteristics nember
! PIL Repetition of the Eady mode 3
2 Pl Effect of 4%F/dz* > 0 in the lower k!
levels on the IS
3 P2l Eady mode with smailer § 4.5
4 P2  4i/dz? > 0 throughout 4,5
5 P3  Small § and #%G/dz? < @ throughout 6
6 P1  Reduced fluid depth 3
7 | o} 3 = g, heating maximum in the 8
upper troposphere
8 P1 n = 73, heating maximum in the 8
middle troposphere
b Pt 7 = 53, heating maximum in the 8
lewer troposphere
10 P2 5 = n, satne as ¢ase 4 but with 10
upper tropospheric heating
] P3 5 = p, Same a5 case § except with 6, I}
upper tropospheric heating .
12 PIL g = 0, Eady-Charney mode 12
13 Pt g # @, Eady-Charney mode modified i2
by curvature
14 P1 As in case 13 except 7, included 12
15 P1 As in case 13 except{ = & 12
16 P2 Asin case 10 except § =~ 0 i{H

and the resolution of Az = (.5 km was found to be
quite adequate. For wavelengths less than 2000 km,
inaccurate results were obtained with Az > 1.0 km.

a. Results with ﬁ 0 {i=0

The growth rates for cases 1 and 2 are shown in
Fig. 3. The region of instability found at wavelengths

.. 8

)

- RS

I

2o \J

L

Z4

L EADY
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z | —maEL Z
3 ot CASEG, PI ;

o) {Reducad dapth)

l"'l- o} L 1 I R B S|
hd 06 1.0 2 345 7 10

GULTRETR (103 tm

H “,

se b waraie winis, spwntia O HHE Cases j, 2 and 6 Lsee Table 2).
(Abselssa is zonal wavelcnglh) RSI: Region of short scale insta-
bility. RII: Region of intermediate scale instability. EADY: Re-
gion of Eady mode instabitity.

VOLUME 3.
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[=!
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1
@ A
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05 | 2 345 7 10

WAVELENGTH (103 km)
FIG. 4. As in Fig. 3 except for cases 3 and 4.

0.2

greater than L. = 2400 km in case 1 (continuous
curve) agrees well with the results obtained by Kuo
(1953). It is well-known that, for constant shear pro-
files, there is a short wavelength cut-off with a most
unstable wave (MUW) of wavenumber 8. The ver-
tical structure of the MUW (not shown here) (L,
= 4200 km) looks exactly like the one obtained by
Eady (1949) with the maximum amplitude of the
geopotential at the horizontal rigid boundaries and
symmetric with respect to the level /2. This region
of instability is referred to as Eady mode. In addition
to the Eady mode, the profile P1L exhibits another
region of short scale instability (RSI) with a MUW
of 600 km. This RSI is obviously due to ageostrophic
effects in the model, because test results without the
inclusion of these ageostrophic effects did not pro-
duce RSI. The amplitude of the MUW of RSI is
confined to the levels below 3 km. Kuo {1953), using
a quasi-geostrophic model, obtained a similar vertical
structure for subsynoptic-scale baroclinic waves, al-
though he did not obtain two maxima in the growth
rates. When the curvature of P1 is included (dashed
curve in Fig, 3) the RSI disappeared while the Eady
mode practically remained the same. This means that
curvature of the type of P1 is not favorable for short-
scale instability.

The IS of the profile P2L (case 3, contiruous
curve) and P2 (case 4, dashed curve) are shown in
Fig. 4. The maximum value of § and the minimum
value of Ri of P2L are about one fourth and one
half, respectively, of those of PI1L. This resulted in
the RSI of P2L becoming more unstable than that
of P1L. The Eady mode of P2L is shifted to shorter
wavelengths, compared with that of P1L, because of
the smaller value of static stability. This is 2 well-
known characteristic of the Eady mode [see Hough-
ton {1977) where the Eady wave solution for the
zonal wavelcngth of the MUW is given by L, = 27
oL i oww o T LORSnieTed conslantl. The
b e dwtein snswwbaaky Uubainiow 10 Cases | oand 3 does
not agree with the numerical results obtained by
Stone (1970

The IS of P2 {drshad citmve Fig. 4) presents sev-
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FiG. 5. Vertical structure of the unstable waves L, = 1000 km and
L, = 3700 km in case 4 and L, = 2400 km in case 3.

eral interesting characteristics. The Eady mode is not
more stable and is shifted to longer wavelengths,
because the maximum static stability of P2 is larger
than the constant static stability of P2L. The RSI
is stabilized, but an additional region of interme-
diate-scale instability (RII) with a MUW of L,
= 1000 km is generated. This shows that a low-level
negative curvature of the basic zonal wind profile
favors intermediate-scale instability. The e-folding
time of the MUW in this RII is ~2.2 days and is
comparable with that of the Eady mode (1.8 days).
The structure of the Eady mode without the cur-
vature effect (L, = 2400 km in case 3), the Eady
mode modified by the curvature effect (L. = 3700
km in case 4) and the intermediate-scale wave (L,
= 1000 km in case 4) are shown in Fig. 5. The in-
termediate-scale wave is clearly seen to be confined
to the lower levels.

For studying the effects of smaller static stability
and smaller shear, the profile 3 is examined in case
5 and its IS is presented in Fig. 6 (continuous curve).
The whole spectrum is displaced to shorter scales and
e-folding times increase in comparison with case 4.
The Eady mode presents a MUW of L, = 1800 km
in the intermediate scales and the RI1 is shifted to
shorter scales with a MUW of 600 km. It seems that
in a mulitileve] model, any small shear is sufficient
to cause baroclinic instability if the static stability
is sufficiz.ily small, even if the Richardson number
is considerably high. It is 2 known feature of the
Eady mode that the wavelength of the MUW is pro-
portional to the depth of the fluid (Houghton, 1977).
This feature is verified in case 6 (curve with circles
in Fig. 3} where the wavelength of the MUW is re-
duced to 2500 km (compare with case 2) with an e-
folding time of roughly one day.

The studies of Blumen (1979) and Hyun (1981)
showed the existence of the shorter-scale instability
when one of the two layers was shallower than the
other. The MUWs of the shorter scale instability
in those studies were found at k(=khVS,/f) ~ 6,

where k is a nondimensional wavenumber. In case
4 of the present study the average static stability S,
= 0.5 X 107572 h = 10 km and f =073 x10™
57", So as to satisfy the above formula the wavelength
of the MUW should be ~ 800 km, whereas the actual
wavelength obtained in case 4 (see Fig. 4) is ~1000
km. Thus, our results agree qualitatively with those
of Blumen and Hyun. The quantitative disagreement
may be attributed to the model differences. The sharp
jumps in S (Blumen, 1979) and di/dz (Hyun, 1981}
are rather unrealistic, In the present study these two
parameters vary fairly smoothly. All the same we
may note another qualitative agreement that the
growth rate of the shorter scale MUW is smaller
than that of the Eady mode. This has been the case

“even with an observed profile in the study of Mishrz
and Salvekar (1980).

A reduction of the static stability or the depth of
fluid may bring the Eady mode to shorter scales,
thereby presenting a MUW in the intermediate
scales. However, a rather smooth vartation of .5 and
di/dz in the vertical with a favorable curvature
(d*%i/dz? < 0) has generaied a new region of sub-
synoptic-scale instability (case 4), These unstable
waves are confined to lower levels.
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WAVE LENGTH (103 km)
FiG. 6. As in Fig. 3 except for cases 5 and 11.
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FIG 7. Veracal profiles of the heating parameter.

b Inmflvenc: o wave-CISK

In the past many authors employed the heating
due to liberation of latent heat to produce unstable
modes at shorter scales (Nitta, 1964; Ooyama, 1969;
Yamasaki, 1969). In this section a similar exami-
nation of the effects of wave-CISK mechanism on
the IS is made. An important parameter included in
our parameterization of wave-CISK is n(z) (see Eg.
7). In a three-level model (equivalent to the conven-
tional two-layer model) if n <« 1.0, the wave-CISK
alone cannot produce instability. To see this, consider
# = 0 and 5 and S positive constants. In this case
{5) is simplified to be

a3
(fF - kzcz)——- - kKSW = -k2Spw, . (13)
Applying this cquatlon to the finite difference grid
with ¥ = 3 and w,,, = W, we get the condition

f — k2t
Az!

From (14) we see that only with the plus sign can
¢ become imaginary. In that case the necessary con-
dition is > 1 + (f/&*)SAz%. Moreover, k¢, is max-
imum as & — o or L, — 0, In other words, the wave-
CiSK mechanism destabilizes very short scales.

A multilevel model, such as the present oune, allows
more realistic profiles of 5(z). The profiles used in
the present study are shown in Fig. 7. The profiles
71, 2 and 1, are generated by a function of the type
7 ~ z¥sin(z - 2,}/{z, — z.) where z, and z, are the
cloud basv an< cloud top levels which are arbitrarily
fixed to be 2 ané 8 I:m, respcctwely Such a function
was used ® T b0 For b =1, Q, —1, the
o g weww a.ent MG PEAK values in the
uppcr rmddlc or lowcr troposphere, respectively (see

= g K'S[(3n ~ 4) £ (35— 2)]. (14)
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Fig. 7). The profile 4, is an idealization of the one
used by Shukla (1978) to study the monsoon dis-
turbances whose scales are subsynoptic. The peak
values of n used by Shukia are 2 and 3 whereas we
use a peak value of 1.5 because the capacity of the
midlatitude atmosphere to hold water vapor is
smaller than that of the tropical atmosphere.

The height of the peak of the heating rate seems
to have a profound effect on the baroclinic IS (Syong
and Yamasaki, 1966). 7o examine this effect the IS
of PI with the inclusion of 1, n, and »; are obtairss
in cases 7, 8 and 9, respectively. The basic state pro-
file P1 is chosen because its curvature does not favor
the subsynoptic-scale instability and any region of
instability may safely be atiributed te the diabatic
heating alone. The results are shown in Fig. 8. The
continuous and dashed curves show that the upper
or middle tropospheric heating (with 5 < 1) does not
produce new regions of appreciable instability, The
curves with circles are due to the lower tropospheric
heating (5,). It shows, curiously, several regions of
instability in the shorter and intermediate scales in
addition to the Eady mode which has merged with
the RII. The. e-folding time of the MUW at L,
= 1800 km is almost equal to that of the Eady mode
(L, == 4000 km). The complete structure of the
MUW at L, = 1800 km is shown in Fig. 9. It may
be noted that the amplitudes are confined to the lower
troposphere. Thus the lower-level heating is capable
of generating intermediate-scale unstable waves
whose characteristics resemble those of the observed
intermediate-scale disturbances.

Gall (1976), in a study of the effects of release of
latent heat on the unstable baroclinic waves, obtained
a MUW around wavenumber 15 (zonal wavelength
~ 2500 km) both in dry and moist experiments with
primitive equations. In his study the growth rate of
the MUW is twice that of wavenumber 5 and the
release of latent heat almost doubled its growth rate.
In the present study the intermediate scale MUW
has a wavelength of ~1800 km and its growth rate
is not larger than that of a 4000 km wave. These
discrepancies may be due to the lack of meridional

—- CASE 7,7
—=~CASE B, 1z
g CASE 9 VM

e-FOLDING TIME (DAYS)
mn +H

—— e e ———— et h—
0 KA

0 o0F AT 7 T zac
WAVELENGTH (10° km )
Fro. 8. As in Fig, ? excent for case: 7.8 and 9.
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variation and the differences in the parameterization
of the release of latent heat in the present study. It
may be noted, however, from Fig. 9 that the ampli-
tudes of u# and ¢ of the intermediate scale wave pre-
sent a second peak around 5 km height which means
that this wave has a second peak in Kinetic energy
at that height. This is in good agreement with the
results of Gall (see Fig. 11 in Gall, 1976).

Case 10 is obtaired by introducing #, in case 4.
The diabatic heating slightly reduced the scale and
e-folding time of the Eady mode. Surprisingly, it in-
creases the scale of the MUW of RII to 1600 km
(continuous curve in Fig. 10). Case 1! is obtained
by including #, in case 5 and the resuiting IS is shown
by the curve with circles in Fig. 6. We may note that
the heating merged the two regions of instability with
a single MUW at L, = 1200 km. The structure of
this wave, given in Fig, 11, shows that its amplitude
is maximum in the lower troposphere, although it
does not fall off sharply with height.

From these results we may conclude that the dia-
batic heating slightly increases the growth rates and
decreases the scale of the Eady mode, and low-level
Eeating is favorable for the subsynoptic-scale insta-

ility.

¢ Effects of 8 and |

The well-known effect of 3 is to stabilize very Jong
vaves, The Eady mode modified by the 2-2Fzct i
referred (0 as the Eady-Charney mode. The effect
of the meridional variation of the perturbations (/
= 0} is to decrease the growth rates and increase the
scale of the Eady-Charney mode. It is known that
for a given % (or L,) the growth rate of the Eady-
Charney mode is maximum for / = 0 {Green, 1960).
For a qualitative discussion, in the case where / is
different from zero, it is put equal to k, i.e, / = k.
In this case the wave moves at a 45° angle to the
basic flow,

Cases 12 and 13 are obtained by including g in
cases | and 2, respectively, and case 14 is obtained
by including #, int case 13. The IS for these three
cases are shown in Fig. 12. All three IS have long-
wavelength cutoffs. It appears that 8 slightly in-
creases the instability of the subsynoptic meodes
(compare with Fig. 3). It can be seen that the RSI
is stabilized by the effect of the curvature of P1 and
the diabatic heating again increased the instability
of this region as is the case in fplane model.

Case 15 is obtained by introducing / = k in case
13. The IS is presented in Fig. 12 {curve with
crosses). In case 15 the horizontal wavelength is
given by L,./V2, because / = k in the expression L
= 2x(1/k* + 1/17)"/2, Thus the wavelengths of the
MUWs of the Eady mode in the two cases 13 and
15 agree well. This IS shows that the e-folding time
of the Eady-Charney mode is increased in compai-
ison with case 13, In addition ‘h: meridional vagi-
ation produced a new region of instability at wave-
lengths less than 100 km. The maximum instability
is tending to occur in the shortest scales. Thess taudes
are, apparently, not due to Kelvin-Helmholtz insta-
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bility because Stone’s {1966} results show that this
kind of instability appears only for Ri < 0.25 whereas
in the present case Ri > 1.0. For very small-scale
waves the non-hydrostatic or non-Boussinesq effects
become important and the results obtained in the
present study do not represent their behavior.

Case 16 is obtained by including & in case 10 and
the IS is presented in Fig. 10 (dashed curve). The
results show clearly that the effect of the curvature
of P2 type (favorable for intermediate-scale insta-
bility) remains the same even in the 8-plane model.
The growth rates of the RII increased slightly while
those of the Eady-Charney mode decreased slightly.
The structure of the MUW of the R]I in this case
remained the same as in case 10 (not shown here).

In Fig, 13 the energetics of the intermediate-scale
wave are compared with those of Eady-Charney
mode of case 10. The energy conversion from K to
K'is due to the term {d#1/dz)u'w’ alone because there
is no meridional variation of the basic states. It may
be noted that the shorter-scale mode converts its
potential energy into kinetic energy almost at the
same rate as it receives it from the basic state,
whereas the Eady-Charney mode retains a substan-
tial part in its potential energy. That is, the kinetic
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energy of the intermediate-scale unstable wave grows
faster than iis potential energy.

4, Conclusions

The results presented in the preceding section show
that the curvature (d%i/dz*) of the basic zonal wind
profile is important for the instability of the sub-
synoptic-scale perturbations. It seems that a nega-
tive curvature in the lower levels favors destabili-
zation of a new region in the intermediate scales (L,
~ 1000 km) of the spectrum while a positive cur-
vature stabilizes the subsynoptic waves. The inter-
mediate-scale unstable waves have their amplitudes
confined to the lower troposphere. Low-level heating
due to the liberation of latent heat is also capable
of generating instability in the subsynoptic scales
besides increasing the growth rates of the pre-exist-
ing modes. Reduction of static stability and shear
(Richardson number not necessarily small) reduces
the scale of the Eady mode to produce intermediate-
scale instabijlity. In the real atmosphere this may not
be the case because the important parameters in de-
termining the preferred scale of the Eady mode seem
to be the depth of the fluid and the average static
stability. The intermediate and shorter-scale unsta-
ble modes obtained in the dry cases agree qualita-
tively with those obtained by Blumen (1979) and
Hyun (1981). The vertical structure of the inter-
mediate-scale fastest growing wave, in the case with

CASE 10
k4
£-PLANE <i> (2] <(>
n=% 104
; Jies

= 100 40
<P>'{|ooi @ 50} - °
Fis 12 Frerpy conversion in case 10, Numbers without pa-
grihe o TEAN ke 1Tt Toraunthuest L, = 2005
km; £ = potential erergy of the basic state; £ = kinetic energy
of the basic state; £' = potential energy of the perturbation; X*
= kinetic energy of the partarbation: G = generation.
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by Gall (1976).

t'he Green's modes obtained in the 3-piane model
oeyond L, = 8000 km had e-folding times greater
than eight days and they were not presented in the
results. There are some limitations in the present
study. The meridional variation of the basic state is
not considered and a rigid lid is assumed at the top.
The first limitation renders the results inapplicable
to a front. It can be overcome if larger computational
facility is made available, although a new difficulty
about fixing the appropriate lateral boundary con-
ditions is likely to appear. The rigid top may be re-
moved by imposing a radiation condition at the upper
boundary. However, the rigid top may not affect the
short- or intermediate-scale waves which are found
to be bottom trapped, as long as it is placed high
enough, as is done in the present study.
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