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DETERMINATION OF CONDUCTIVE THERMAL RESISTANCE OF PLATES WITH NONUNIFORM
INTERNAL HEAT GENERATION AND UNDER VARIOUS BOUNDARY CONDITIONS

Olavo B. Oliveira Filho; Santiago A. Tavares; Nellore 5. Vankataraman
Instituto de Pesquisas Espaciais - INPE/CNPq
Sao. José dos Campos, S.P. - Brazil

ABSTRACT

The conductive resistance of thin rectangular plates with
internal heat generation in two regions, with one end
subject to an intermal flux is determined using the finite
element method. The dependance of the thermal resistance
on various parameters is discussed. A comparison is made
with the one dimensional resistance.

INTROGDUCTION

The motivation for this work arose while trying to make a thermal
analysis of the first Brazilian satellite. The thermal analysis of
satellite is done by dividing the satellite into many isothermal
nodes and the knowledge of the internodal conductive resistance or
conductive coupling coefficients is essential for the thermal design
and analysis. The calculation of these coupling coefficients is often

difficult because of geometrical complexities and uncertainties about



the contact resistance. Often in satellite thermal control design, for

lack of information, a one-dimensional approximation is made.

Oliveira and Forslund (1974) considered a convectively cooled
plate with constant heat flux and no internal heat genération.
Schneider et al. (1980) extended the same to include the case of
nonuniform heat fluQ, but again with no internal hezt generatiom.
Venkataramen et-al. (1981) extended the problem to include internal
heat generation. Three different internal heat generation cases were
considered and thermal resistance was calculated for the various
cases. The objective of this work is to find the thermal resistance
between two heat generating boxes (which may be the heat dissipation
by electronic components) mounted on a thin rectangular plate as shown
in Figure 1. One of fhe sides is subjected to anexternal heat flux,
the adjacent side is at a constant temperature and all other sides are
maintained at zero temperature. If the other sides are at a non—zero
constant temperature, the problem can be reduced to the present one by

using superposition.
FORMULATION

The geometry is shown in Figure 1. We consider a thin rectangular
plate of length a and width b, with the coordinate axes as shown. The
plate is subjected to a constant internal heat generation g; per unit
volume confined to the region x; £ x £ %2, yv1 £y £ y2 and constant
heat generation of g, per unit volume confined to %3 £ x 2 xu,
y3 £y £ yy. The bottom side is subjected to constant heat flux qo.
The side x=0 is maintained at a constant temperature. The problem is
to find the thermal resistance between the two heat generating boxes.
The governing differential equation for the temperature 8(x,y) is the

Poisson equation given by

328 , %8 _ _glxy)

ax® dy? k

(1

where k is the plate thermal conductivity, g(x,y) is the internal heat

generation per unit volume:
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G(O’Y) = fg (1-3)

8(x,b) = 0 {1-b)

6{(a,y) = 0 {(1-¢c)
38

"-k{gg}y=; qQo (1-d)

“THE SOLUTION

Tohe finite element method (Caung, 1978) has been used because it
offers flexibility in choosing various types of internal generation
and boundary conditions, and there is better contrel an error

propagation.

The functional corresponding to the Euler's Equation (1) is

(Heuser, 1973)
| 2 12
1=ke J [% [%] + % [%J st - Ejg(x.,y)ﬁds . qu(x_)edF (2)
S ) S F

Here q(x) is the external heat flux and £ is the plate thickness. The
first two integrals are over the plate area and the last one is on the
plate boundary. The problem has been solved starting from this
function using the method of finite elements based on the method of
Ritz. A triangular element with six nodes and quadratic interpolation
have been used. The interpolation function was selected such that the
second derivatives of the temperature with respect to x and y are
constant. The condition of the temperature continuity along the
boundaries of the triangle was'imposed, with no restriction on the
normal derivatives. One could presumably obtain better results by using
the Hermite interpolation polynomials with continuous first derivatives

across the interelement boundaries.

The solution of the problem in terms of the shape functions Nj

are



[=)]

8(x,y) = .E

. . ' 3
i NJ (x,y)BJ (3

The shape functions in terms of the area coordinates £;, £2 and £3 are

L5 El(zgl - 1)3 N2

£3(285 - 1)

it
It

£2(282 - 1), N3
{4)

Ny = 4&382, Ns = 4£2&,, Ng = 4E3E;.

By dividing the domain and the boundaries into finite subdonains,

we can write the function as
% e
I= ) I (5)
e=1 ’

where the superscript e corresponds to the element and n the number of
elements. Substituting Equations (2) and (3) in Equation (5) transforms
the problem from function space to RF space, where the variables are
81, 82, ..., 9. The problem of finding the function that makes the
functional stationary is reduced to the problem of obtaining the points

of RN that will make the function a minimum. Thus:

31
_s-a-l-c-sek=o, k=1,...,N , (6)

from which we obtain a system of n equations

91

aek

=0 k=1,...,N (7

Solving this equation, we obtain the solution in each element

(subdomain), in the form

BE(x,y) =
]

l 10N

1Ni(ai,£z,aa)e§’ ' (8)

k
Substituting from Equation (5) into Equation (6) we get

where B; are the values of 6, at the nodal element e.



. ;
ag =ZIE=0 ouz o1 =0 (9)
e

“where aze/aei for each i corresponds to the nodes.of the elements and

forms the matrix of element e.

Bz (i=1,...,6) being the nodal parameter of element e, we have, for
the problem considered, six expressions of the type
a1

20°
1

i=1,...,6 . (10)

Substituting Equation (2) in Equation (10)

S SN I 38 38 3 26
36 ‘”“_ax 59 [a;:]* By 8, [BY]:I ds -

8

- 2Jg(x,y) —:(;L ds + EJq(x) :ee dF (11)
s i F i

Using Equation (8), the first term of Equation (11) becomes

30 2  [28) g W,
Ix 8B, ax | . ax
1 =1
6 (3 3N, 3, 3 N, BE_
= E[z agl 32 E QEJ amJe. (12)
j=tle=1 “%p K gy g X )1

and similarly for y. From the relation between the cartesian and
natural coordinates

1 i 1 1 Y
x | =] % %2 x3 £ (13)
¥y Y1 Yz Y3 &3

which can be writeen as

£y g1r 812 £13 1

1
§2 | = —— | 821 822 829 x (14)
Eg- E31 g3z g33




we obtain

%, 8y, B
x = A * x A
(15)
aEE = Bgs ’ BEI:l'l = Bm3
3y A dy A
where A is the determinant of the matrix of Equation (13) .
Using Equatioms (10), (11) and (15) we get
e b aN. oN,
al k2 z [I E ( J i _]jl
= : g,, 8, *+ 8, & )z 57 [0: -
BBi A2 j=iLl¢ = 22 “m2 £3 “m3 SBF,R' p o j
- zjg(x,y)Nids + QJq(x)NidF i=1,2,...,6 (16)
S F ’
The above six equation can be written in matrix notation as
[k®] 6%} + {r°} = 0 (17
where
9N. 9N,
e k2 zz ( I i ]
1] A2 S m £2%m2 lagma sagl 9 n
F? =F° 4+ 7 (19)
i B
e
Floos JJaG) n, dF (20
i } .
F
Fo = - EJg(x,Y) N, dS . (21)
g; 3 1

The value of the matrix elements are shown in appendix A.

Following an analogous approach for the remaining nodes and
using Equation (7), we have the following final system of matrix

equations.



(K] {6} + {F} =10 (22) :

-where the matrices K, § and F correspond to the entire plate.
- NHONDIMENSTONALIZATION

To have more generality, the variables are nondimensionalized

as follows.

Non dimensional lengths x = %%—, y = %5~, € = {}-, Xy = ——— ,

‘where

Q = qoa% is the total external heat flow

Xz Yz Y2 ¥z
QV-E’[ J gldxdy-t-!?,J ngdxdy
X1 N X2 X3

is the total internal heat generatiom.

Ratio of internal heat generarion to external heat flux,

Gy = agi/qo, G2 = agz2/qo.
Boundary condition parameter C = k8j/aqgo.

The matrix {Fl can be written as
{F} = {ng} + {ng}-+ {Fq} (23)

where F81 and FS:Z are source matries due to g; and gz, and Fq is the

matrix due to the heat flux, for the entire plate.

Substituting in Equation (22), we have the nondimensional form

of the matrix equation




[Kx]{6*} + G{Fg} + GIG{Fgl} + GZG{ng} =0 (24)

where
1
G = — — - - - - — - (25)
146y Xz -%1) T2 -F1) + G2 (X - x3) (yu - ¥3)
and the asterisks represent the nondimensionalized matries.
NONDIMENSIONAL THERMAL RESISTANCE
The nondimensional thermal resistance R is defined as
_8f -8 (26)
_>
a2 |

= =%
where 9? and 85 are the average temperatures of the zones of heat
generation g1 and g2, and Qiz is the nondimensional heat flow from

region | to region 2,

o -— . - 1
Vg 2 Xy 2 |
30% - 8% -
Q2 = — dy } + — dx (27)
= ox = ay
I 'Y A .
B 2 §D 2 1%
(D % - % -
J a?_ d + J 3%_ dx (28)
2 9x & ay
e yC xA -

B,YB), (xc.yc), (x5, ¥y

limiting lines of heat flux. These limiting lines are obtained

where (EA,§A), (x ) are the coordinates of the
graphically as shown in Figure 2 for 2 typical case. The isotherms are
normalized between 0 and 100 and are plotted by a Calcomp plotter. The
limiting flux lines (perpendicular to the isotherms) between the two
regions are then drawn and thus the coordiantes of the points A, B, C

and D, on the boundaries of these heat generating regions are

determined.
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-RESULTS AND DISCUSSIONS

Equation (22) was solved by the method of Crout and Banachiewicz
{(Crandall, 1956) by dividing the plate into 400 elements. For
confirmation purposes the problem was also solved by the finite
difference method and the comparison has been very good. The
nondimensional thermal resistance has been calculated as a function of
‘the parameters C, Gi, G2, €, size and position of the heat generating
-regions. For simplicity, the size of these regions, the value of & and
their relative position in the y direction are fixed, and analysis is
made by varying Gi, G2, € and their relative position in x direction.
For comparison purposes the nondimensional one dimensional resistance
Rp between the two regions is alsc calculated. Figures 3, 4 and 5
show the behabiour of R and the percetage difference between R;D and
R against G3/G» for various values of C with £ and x3 - xp fixed.
Figures 6 and 7 show the variation of these resistances and the
percentage difference against X3 - X2 with G1/G; fixed but for
different values of C. Figure 2 shows isotherms for a typical case.
For small values of G1/G; the resistance is considerably larger than
the one dimensional resistance, but rapidly decreases to a constant
value whichis less than the one dimensional resistance. The
resistance tends to increase with C, because an increase in C implies
a higher temperature gradient along the plate. The resistance
increases as the regions of heat generation are moved apart, steeply
incresting to infinity at some separation distance. The one
dimensional resistance as expected increases lineary with the

separation distance.

In conclusion, the nondimensional resistance can considerably
differ from the nondimensional one dimensional resistance depending

upor plate geometry and the boundary conditions.




APPENDIX A

From Equation (18) we have for the elements of the matrix (k%]

e 1 2 2
Ki1 = 35 (glz + 813}
1 .
Kpiz = Kgl = - %5 (g12822 + g13g23)
e 1

Kis = K31 = - G5 (glzg_az + g13833)
e e 2 '
Kiv = K41 = BET (g12g22 + 813823)
e e

2
Kie = Ke1 = —35~ (g12832 + g13833)

e 1 ", 2 2
K22 = —55— (852 + 8330
1
Kgg = ng == er (g22832 + g23833)
e e 2 |
Koy = Kgz = - Y (g12822 + g13823)
e e 2
Kis = K52 = - 35 (g22832 + 323833)

2
K3s = Ks3 = —7— (g22g32 + g23833)



2
Kgs = Kg3 =33 (g12832 + 213833)

Kilu= —33—-(g§2 * gia *B1a8yn T BBy + giz * éza)
Kis = Ksu = ~ 8 Ki3

K5s = Key = — 8 Ko

K55 = —%%— (g2, + 83, + £22832 + 8,35853 * B3p * g54)
Kss = - 8 K32

e 4 2 | 2 : ' 2
Kee = =33 (832 + 815 + 812832 * 813833 * g3z *+ 833)

Considering that g(x,y) is defined in two regions, we have the

following elements for the matrix {¥®}

where g. = g for region 1 and g; = g for region 2.

From Equation (20) we obtain the matrix elements of {Fz} as

e = B e B0" e _0, 8 - e

q1 6 * "qz 6 ' g3 * Tqu 3 '
# =5 =0,

qs qe

where L is the characteristic dimension of the element perpendicular

to the direction of the specified flux qo.



LIST OF SYMBOLS

0 : Plate temperature.

8o ¢ Temperature of one side of plate.

B;,...,BN : Temperature parameter in RN space.

p,0%,0% ¢ Nondimensional temperature,

€ : Plate geometric parameter.

E1,82,E : Area coordihates.

a,b : Plate dimensions.

c : Boundary condition parameter.

g(x,y) : Ingernal heat generation.

£1:82 : Internal heat generation in the two regions.

€11:1812,+++5866 ¢ Matrix elements of Eq.(14).

G1,62 : Nondimensional heat generétion parameter.

i,j.k s Suffixes.

K?.,Fe.,Fe. : Elements of the generalized matrices Ke, FS and F°
ij' qi' gl - q g

2 : Platé thickness.

N : Total number of nodes.

n : Total of number of elements.

Ny,aeseslg + Shape functions.

q(x) : External heat flux.

G0 : Constant external heat flux.

Q ¢ Total external heat flux.

QV : Total internal heat generatiomn.

R : Kondimensional thermal resistance.
D : Nondimensional one dimensional thermal resistance.

X\ ¥ ¢ Rectangular coordinates.

Nomdimensional coordinates.

L
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(X1,¥1), (x2,¥2)
(1—{3 p§3) » (;{‘i ’§|+)

RS I

-

-

Nondimensional coordinates of region 1.
Nondimensional coordinates of region 2.

Coordiantes of limiting heat flux lines.
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DETERMINATION OF CONDUCTIVE THERMAL RESISTANCE OF PLATES WITH
NON-UNIFORM INTERNAL HEAT GENERATION AND UNDER VARIOUS BOUNDARY
CONDITIONS

Olavo B. Oliveira Filho, Santiago A. Tavares and Nellore 5. Venka-

taraman

Instituto de Pesquisas Espaciais - INPE, Conselho Nacional de De-
senvolvimento Cientifico e Tecnolégico - CNPg, C.P. 515, 12200 Sao
José dos Campos, SP, Brasil. ’

ABSTRACT

The determination of the equivalent thermal resistance is
important in thermal analysis and has many engineering applica-
tions. For example, in satellite thermal analysis the structure is
divided into a large number of isothermal nodes and the knowledge
of internodal thermal resistance is necessary for thermal analysis
as well as thermal simulation. Often many of these nodes may in-
clude sources of heat dissipation like electronic components and
this can be approximated as internal heat generation. This work
determines the thermal conductive resistance of rectangular plates
with non-uniform internal heat generation with one end subject
to an external heat flux and with temperature specified on the
other ends. The internal heat generation is considered in two
regions, which represent thermal dissipation by two electronic
boxes on the mounting plate. We are interested in determining
the thermal resistance between these boxes. The governing
differential equation for the temperature distribuition is solved
numerically by finite difference and finite element methods and
the results are compared. The nondimensional thewmal resistance
is a function of the plate geometry, the ratio of total internal
heat generation to total heat flux, their relative positions and a
parameter which relates the temperature boundary condition to the
heat flux boundary condition. The influence of these parameters is
discussed. A comparison is also made with the one dimensional
resistance which is sometimes used for quick estimates.



