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1 - INTRODUCTION

A typical satellite mounting plate supports several heat
dissipating electronic components. For satellite thermal analysis,
simulation and design, a knowledge of the thermal resistance between
the various components is necessary. The problem of the temperature
distribution and the associated problem of thermal resistance of two
dimensional rectangular plates, with no internal heat generating
components, have been dealt by Oliveira and Forsiund (1974) and by
Schneider, Yovanovich and Cane (1980). Temperature distributions and
thermal resistance of plates, with constant and variable internal heat
generation, have been dealt by Venkataraman, Cardoso and 0liveira
Filho (1982), who obtained a numerical solution using finite difference
methods. Here we consider the problem of a thin rectangular plate with
internal heat generation produced in two distinct regions, which
corresponds to the heat dissipation by two electronic modules on the
mounting plate. Three of the sides have specified temperature
distributions, while the remaining side has a specified flux. The
objective is to determine the temperature distribution. By linear
superposition and using the method of images, the problem is
transformed such that all the sides are at the same temperature. The
problem 1s then solved by a double Fourier expansion consistent with
the boundary conditions. It is proposed, at a Tater date to make a
comparison of this series solution with a numerical solution obtained
by the finite element method.

2 - FORMULATION AND SOLUTION

As shown in Figure 1, we consider a thin rectangular
plate of length a and width b. The coordinate system selected is shown
in Figure 1.

The side x=0 1is subjected to a temperature distribution
f(y) while the side y=0 is subjected to a constant heat flux qo. The
other two sides are at zero temperature. It should be noted that even



if these two sides had a different temperature distribution, the
problem can be reduced by linear superposition into resolving the
present one. Moreover, even if the specified flux is not a constant,
this presents no special problem. Internal heats (per unit volume and
per second) Q, and Q, are generated in two rectangular regions
defined by (xi, y1), (X2, y¥2) and (xa, ya), (X, ¥u) respectively.
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Fjg. 1 - The plate geometry,
The governing equation for the steady state temperature
T(x,y) is
32T . 8?7 ,
2T Aey) (1)

ax?  gy? k



where Q(x,y) is the internal heat generation rate and k is the plate
thermal conductivity. The boundary conditions are

T(Us.V) = f()’) » T(asy) = 0 2
(2)
_k[_?ﬂ_T_] =qo 5 T(x,b) =0
9y’ y=0

By using linear superposition, we can divide the problem
into three simple problems, each one with one inhomogeneity. Thus, let

Tix,y) = Talx,y) + Tolx,y) + Talx.y)

where T,, T; and Ty will take care of the inhomogeneity in the
differential equation (internal heat generation), the inhomogeneous
boundary condition f(y) and the inhomogeneity due to heat flux g,
respectively. T,, T, and T; satisfy the following differential
equations and boundary conditions:

& -+ a_zT_l. = - M : (3}
ax? ay? k
Ti(0,y} =0 5 Tila,y) =0
. (4)
[&J -0 Tix,b) =0
3y ‘y=0
2 2
d Tz + ﬂg’ = 0 3 (5)
ax? oy?
TZ(US.Y) = f(.YJ ) Tz(a:YJ = D ?
(6)
[B_Ta} =0 i Talx,b) =0
gy ‘y=0
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(7)
9% 2 oy?
Ts(0,y) =0 5 Tsla,y) =0
(8)
‘k[aT_a] =g 3 Talx,b) =0.
The superposition is schematically shown in Figure 2.
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Fig. 2 - The superposition of Ty, T, and Tj.



The solution for T,{x,y) and Ts{x,y} can be obtained by
the method of separation of variables (Arpaci, 1966). For exampie, if
f(y) is a constant equal to T,, we can get

: (-1)" sinh A _{a-x) cos A y
Tixy) =32 7 n__ L (9)
T n=0,1,2,... (2n+1)s1nhlna
where
v oo Len+ Um (10)
n 2b
The solution for T; is
sint1ﬂﬂ-(y-b) sin ATX
Ta(x,y) = 242 2 a (11)
kT4 n=1,3,5,... n2 COSP1D§E

To find T,(x,y), a mirror image is formed by reflecting
the boxes about the side y =0, as shown in Figure 3. The origin is
shifted to the left corner of this doubled plate with the new
coordinates as (x,£} where

E=y+b. (12)
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The coordinates of the boxes are indicated in the Figure
3. Because of symmetry, (3T1/35)g=b = 0 which signifies (aTllay)yzﬂ
= 0. Thus, the differential equation for the temperature T,(x,%)
becomes

32Ty | 3%Ty _ _ Q(x.E) |

(13)
32 aE? k
with the following boundary conditions
T.(0,8) = 0 3 T.(a,g) =0 ;
(14)
T]_(X,O) =0 : T]_(X,Zb) = D.
The solution for T,{(x,£) is obtained by expanding
T,(x,&) and Q(x,&) in a double Fourier series and matching the
coefficients. Let
Tax,g) = § 7 A sin B gin D0 mon=1,2,3,... (15)
mn a 2b

where the constants Amn has to be determined. Equation 15 satisfies
all the boundary conditions set forth in Equation 14. Differentiating
twice, we get

2 2
AL XL gya a2 sin I gqp M8 (16)
ax? Py mn m a Z2b
where
2.2 2.2
0i2n=m1T_£_n1T i (17)
m a? 4b?

Expanding Q/k{(x,Z) in a double Fourier series, we get



Qx,e) =758 sinIX gip 275, (18)
K , ma ™ a 2b
where
a 2b
= 2z ( { L (x,2) sin T gin D& gy g . (19)
ab h L a 2b
Substituting Equations 16 and 18 in Equation 13, we get
. MTX . nhmg 2 _
% E sin "'-;— s1n —é"b— (—Olmn Amn + an) = U‘ - (20)
Thus,
B
A =—2 (21)
O!.z
mn
The conditions (aTlfag)y=b = 0 gives n= 1,3,5,... (odd).
Thus, thesolution for T, becomes
B n MMX nrE
Ti(x,8) =77 2 gin B2 5ip I5 (22)
mn unzm a Zb

= 1,2,3,...
1,3,5,...(odd)

3
I

with Orn and an, givenby Equations 17 and 19 respectively. In this

case, with the heat generation confined to two distint regions, we get



X2 rEa
B -2 r Q1 [ { sin X gin nmE  dx dg +
o yab L J a 2b
X1 &s
£, Xy Eg
+ sin MX gipn LA dx d& }+-Q2 ( sin MM <ip g dx di
J a 2b i a 2b
£y gy
Eu
o [ gin WX ggq DTE dxdg}]-. (23)
é a 2b
3

These integrals can be evaluated quite easily. This
completes the solution for T.. The complete soluti-n for (x,y) is
given by the superposition of T, (Equation 22), T, (Equation 9) and
T, (Equation 11).

3 - CONCLUSION

Thus, we have obtained an analytical solution for the
temperature distribution on the mounting plate using the method of
images, in a series expansion. This does not necessarily mean that the
precision here will be better than in a numerical solution. Later, it
is proposed to make a comparison of the analytical method with a
numerical solution obtained by the finite element method.
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