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ABSTRACT

Two schemes for the numerical solution of the stochastic collection growth equation for cloud drops
are compared. Their numerical approaches are different. One {the Berry/Reinhardt method) em-
phasizes accuracy; the other (the Bleck method) emphasizes speed. Our analysis shows that for appli-
cations where the number of solutions (time steps) does not exceed 10* the accuracy-oriented scheme
is faster. For larger, repetitive applications, such as a comprehensive cloud model, an objective analysis
can be made on the merits of exchanging accuracy for computational time.

1. Introduction

In attempting to theoretically understand the
interactive processes occurring in the growth of a
population of cloud droplets, whether for laboratory
experimentation or the design of a cloud model, the
numerical solution of the stochastic collection
growth equation is one of the most important and
perhaps most time-consuming computational tasks
involved. With the more sophisticated cloud models
(two- and three-dimensional with detailed micro-
physics) the computational time required to solve
the stochastic collection growth equation is one of
the major limiting factors. Several approaches have
been suggested as general numerical methods for
solving the stochastic collection growth equation
(e.g., Berry, 1967; Berry and Reinhardt, 1974,
Kovetz and Olund, 1969; Bleck, 1970; Egan and
Mahoney, 1972} which should not be dependent on
the initial conditions. Ochs and Yao (1978) have
analyzed the Egan and Mahoney (1972) scheme
adapted for the stochastic collection problem, and
compared it to the Kovetz and Olund (1969) scheme
as far as accuracy is concerned. In this paper, we
will investigate the method proposed by Bleck (1970)
and Berry (1967), as implemented in Berry and Rein-
hardt (1974). These two methods used in the litera-
ture by several authors {Almeida, 1977; Danielsen
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et af., 1972; Takahashi, 1975; among others)
have different characteristics, emphasizing different
aspects of the numerical solution. The Berry/Rein-
hardt {1974) method (referred to here as the BR
method) was designed for accuracy, with speed play-
ing a secondary role, while the Bleck (1570) method
(referred to here as the B method) was designed
primarily for speed. An introduction to both
schemes is presented to facilitate our discussion
when the trade-offs between accuracy and speed
are analyzed.

2. Methodological approach

In order to solve the stochastic collection growth
equation numerically we first have to transform the
continuous mass space into a quantized space. In
general, the mass x is related to an integer J by

x(J) = x,a* v, (D

The relation between two adjacent mass categories,
J and J + 1, using Eq. (1) is x(J + 1) = x(J)a’.
This defines a convenient logarithmic scale in which
the total mass can be distributed. If we choose a
= 2 and b = 1, we will define the mass resolution
encountered in the most efficient form of Bleck’s
method; the mass doubling scheme. If we choose
a =2 and b = V2, we will define the resolution
commonly used in the Berry/Reinhardt method.
Note that these choices of @ and b are not arbitrary.
Theoretically, other combinations can be used, such
as a =2 and b = 1, as long as the expression
In2/blna is an integer (Berry, 1967). Once the
mass space has been quantized, the redistribution
of mass among the defined categories (established
by the physics of the problem) will depend on the
method. '
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3. Berry/Reinhardt solutions

Basically the Berry/Reinhardt method uses in-
terpolation and integration schemes adapted to the
problem of realistic collection kernels to obtain the
best possible accuracy. One could view this
approach as a straightforward numerical integra-
tion scheme for the stochastic collection growth
equation. In order to achieve the best possibie
result, several interpolation schemes were tried
(Reinhardt, 1972) in combination with improved

“integration schemes as compared with Berry’'s

(1967) original solutions, This pursuit of accuracy
rendered the process slower computationally. As
opposed to the Bleck method, where speed was
the defining factor, here accuracy predominated.
For more details on the method see Berry and
Reinhardt (1974).

4. Bleck’s solution

With this method (Bleck, 1970) which may be
characterized as a finite element method, the actual
mass distribution within each category is replaced
by a set of approximation functions that are chosen
to substantially simplify the mechanics of the solu-
tion. In general, the method trades solution speed
for accuracy; however, with judicious choice of the
approximation functions (see Bleck, 1970) accept-
able accuracy can be obtained without sacrificing
solution speed.

The basis of the method as mentioned above,
is-to divide the total drop mass range into logarith-
mically related intervals or categories. Within each
category, the actual distribution function is replaced
by an approximation function. The replacement of
the unknown “‘actual’’ distribution function with a
“‘known’’ approximation function together with the
logarithmic relationship of the categories allow
much of the required calculation to be done once,
beforehand, which substantially reduces the compu-
tation time per time-step solution. These approxi-
mations are also responsible for the increased
numerical diffusion found in this approach.

For a detailed theoretical derivation see Bleck
(1970). Also a manuscript report on the method,

- including a complete user oriented Fortran computer
program is available (Dennett, 1979).

5. Solution conditions

The initial droplet distribution is characterized
by a gamma-type function as used by Scott (1968).
Since our comparison is made on the basis of
accuracy and speed of the numerical solutions, an
actively growing spectrum was chosen for the com-
parison. This choice not only guarantees: many
category interactions, but also redistribution of the
total mass over a wide range of mass categories.
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Although many combinations of initial distributions
and kernel functions can be used that satisfy the
criteria above (Almeida, 1979b), the results shown
are for an initial droplet distribution with the
mean mass radius R, = 12 um and the ¢ =1
cm?® s~ turbulent collision efficiency of Almeida

(1979a). The comparisons were made using a cate- °

gory spacing of 4® = 2, as proposed by Bleck
(1970) and powers of the a® = V2 as published by
Reinhardt (1972). While it would have been desirable
to match the category spacing exactly, the BR

‘scheme became unstable using a® = 2 and the Bleck

method would have had te be recoded so exten-
sively that the revision was not feasible.

6. Results: Computational speed

As will be made clear later in this section, the B
scheme has a very large overhead time for initializa-
tion, This contrasts with the very short set-up time
required by the BR scheme. So, in order to make a
meaningful comparison of computational speeds, we
introduce the function

:M
-N

T ' )

where T represents the overall (average} computa-
tional time step for N time steps, S is the set-up
time or time necessary to initialize the scheme (a
constant for a given method), and ¢ is the computa-
tional time per solution time step. Note that as
N—-sw T—¢t and as N—= 0, T — §; ie., the
function clearly indicates the set-up and the time-
step computational times of the methods compared.
To evaluate §, the same clock function was used
in both program routines. The same computer sys-
tem, the NCAR CDC 7600, was used for the com-
parisons. To evaluate f, the same clock function
timed both the total computational time required per
time step and the total computation time required
for 1440 s of cloud life, i.e., ¢ = (CPU time)
X AT/1440, where AT is the time step used in
seconds.

Note that at each time step, r has a different
value, the reason being that as the droplet popula-
tion develops, more and more categories enter in the
interactive solution, therefore increasing ¢. This is
true for the BR method, and it can be true for the
B method, although most often it uses all categories
at every time step regardless of the evolution of the
droplet population. More about this will be said

later. Because the factors deciding the mode of

growth (Almeida, 1979b) are the same in both
schemes, the calculated values of ¢ represent the
actual performance for each scheme. For the CDC
7600 NCAR operational system, the T functions
[Eq. (2)], in seconds, for each method are given by
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Fic. 1. Comparison of the computational speed for Bleck and Berry/Reinhardt
methods. Conditions are as indicated. See text.

Berry/Reinhardt method — T

_ 023 +48.98 x 10 N
N

, 3)

Bleck method — T

_ 20635 +2.29 X 107°N
N .

Observing Fig. 1, decisions can be made regarding
the use of either method, as far as computational
speed is concerned. For applications such as com-
parison studies where the system of equations has
to be initialized several times and the number of
solutions N does not exceed 104, clearly the BR
method should be used. It is faster and more ac-
curate. On the other hand, for applications where
the initial conditions do not change during a set of
calculations (such as in a cloud model application
in which N is generally much larger than 10%) the
B method is much faster. For comparison purposes,
the total computational time required for N number
of time steps (N x T) is indicated at the top of Fig.
1. Note that while the B method would require ~1 h
for an application involving around a million time-
step solutions, the BR method would require on the
order of ~13 h of CDC 7600 time. This speed
comparison may vary depending on the circum-
stances involved, but it would not change the
main conclusions reached above.

It was brought to our attention at a later stage
that Ochs and Yao {(1978) had timed the modified
Egan and Mahoney (1972) mass conserving tech-
nique and found that for a number of categories
equal to 38, the CPU time for the CDC 7600 NCAR

O]

system (what it should be our ¢) was equal to 28.8
ms. Comparing this result with Egs. (3) and (4), the
modified Egan and Mahoney (1972) scheme, for the
same number of categories, i1s somewhat faster than
the BR scheme but still much slower than the B
scheme. -
QOchs and Yao (1978) did not clock the set-up time
§ defined in Eq. (2) for neither the Egan and
" Mahoney (1972) nor the Kovetz and Olund (1969)
schemes. Therefore, we could not access the over-
all computational time step T, a quantity that can
really show the total time a method takes to solve
the stochastic growth equation for a number of N
time steps.

7. Accuracy

Since no analytic solutions exist for realistic
kernels, our comparison is limited to a plot of the
result of each scheme. Independent tests of accuracy
for each scheme have been done by Bleck (1970)
and Reinhardt (1972). Because the liquid water con-
tent (LWC) of the distribution does not change with
time in the collection drop growth process, the
LWC could be used as a test of accuracy for the

numerical solution of the stochastic collection equa-

tion. This is true for the BR method. Indeed, the
variation in the LWC was within 0.04% for a total
of 30 min of the drop population development,
attesting to the accuracy of the method. For the
B method, conservation of LWC is inherent and
therefore cannot be independently checked. Fig. 2
compares the results from the two schemes, As
mentioned before, because of the approximation
functions used, the B method has a larger diffusion
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Fic. 2. Comparison of the computational accuracy for Bleck and
Berry/Reinhardt methods. See text.

for large-radius categories, although this numeri-
cal diffusion is generally within the errors present
in most cloud models applications.

8. Comments

Since the BR method calculates a mass distribu-
tion function in a category and the Bleck method
calculates only the total mass in a category, it was
necessary to transform the BR results to the Bleck
equivalent. For our comparison a parabolic in-
terpolation was used.

For either method, one way to cut the computa-
tional time without appreciable change in accuracy
is to limit the number of categories interacting
during each time step. To achieve this time savings,
we varied the value of the smallest amount of
mass being considered in each category, or Gjim.
Trials for the BR scheme showed that with 10-7°
=< Gum <= 107% g cm~¥InR, the deviations in the
LWC were within 0.09%. For values of .Gy,
> 1075 g em~¥InR, this deviation starts to be
noticeable, changing the growth behavior of the
droplet population (a numerical error). When Giim
was increased from 1077 to 10* g cm~%InR (the
maximum advisable), the computational times per
time-step solution r decreased from 48.98 to 37.65
ms, a 23% savings in time. In our comparison we
used a value of 107" for Gy,. For the Bleck
method, using a gravitational kernel (Almeida,

1979a) and R, = 12 pm, ¢ varied from 1.20 to 2.38

ms when the LWC threshold was varied from 10-%¢
to 1072°° ¢ cm~%/InR. The difference is due to very
small amounts of mass in the larger categories. For
the comparisons, a value of 107* was used.

Another possibility for saving time in the BR
scheme would be to transfer some of the computa-
tions, in the sense of Bleck's scheme, from ¢ to §
[Eq. (2)]. In essence, this attempt would be the
same as transforming the BR code into a B code
equivalent, what the authors did not do.

Note that no attempt was made to optimize the
Fortran code of the BR method. Our purpose was
to run in this comparison study the same program
as that published by Reinhardt (1972),

As mentioned before, the value of t varies depend-
ing on the initial distribution used and the kernel
function chosen for the computations. For gravita-
tional kernels (Davis and Sartor, 1967; Almeida,
1979a) and for droplet distributions with8 < R, < 14
pm, we found, taking the BR method as an example,
that 23.26 =t = 50.45 ms. For turbulent cases
(Almeida, 1979a), due to the active particiption of
more mass categories in each time step, ¢ now
varies from 27.88 ms, corresponding to Ry = 8 pum,
up to 55.83 ms, corresponding to Ry = 14 pm.

These results serve to illustrate the fact that the
more categories a numerical scheme has to take into
account, the more attractive a faster method be-
comes, even though some accuracy is lost. Note that
for the comparisons illustrated in Figs. 1 and 2, as
mentioned in Section 5, the same initial distribu-
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tion and the same kernel function were used in
both model computations.

9. Conclusions

Our recommendation is that the Berry/Reinhardt
method be used where parameter investigations
such as kernel comparisons are being made (N
< 10¢ solutions) and that the Bleck method be
used where large numbers of similar solutions are
required, as in a cloud model with detailed micro-
physics. The Berry/Reinhardt solutions can also be
useful in tuning the Bleck method for best ac-
curacy. Thus, a judgement can be made (Figs. 1
and 2) for each application, and the importance of
speed, accuracy, or a combination of both will
dictate the choice. In other words, both methods,
each with a different philosophy of design, have
their place and should be used in conjunction rather
than competition, until a combination Bleck-Berry/
Reinhardt code is developed or an entire new
approach is devised.
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