
Copyright © IFAC 12th Triennial World Congress.
Sydney. Australia. 1993

A NEW ARCHITECTURE FOR THE SIMULATION
AND TESTING OF SATELLITE ATTITUDE AND
ORBIT CONTROL SYSTEMS. HARDWARE AND

SOFTWARE DESCRIPTION

P.G. Milani

Space Mechanics and Control Division, National Institute for Space Research -/NPE. P.D. Box 515.

/2201-270. Brazil

Abstract. Brazil has just launched its first artificial satellite. As part of that
effort i; the development of a laboratory that enables one to perform simulations in
real time, with hardware in the loop, with the critical phases of the mission being
matched as closely as possible. This article describes the architecture that was
planned for this lab, its implementation and the improvements that were made based on
the team experience since its conception. The hardware is based on a three axis dynamic
simulator, a supermini computer, Sun and Earth simulators and auxiliary equipment. The
general architecture of the system is presented and its relationship to the software
explained. The software is being developed in two different ways. Both the approaches
are operational in real time and they are explained in more detail in the text. An
interface between Matlab and the simulation hardware is being developed as well and it
helps the tasks of testing and simulating in non-real time.

Keywords. real time computer systems, simulation, attitude control.

1. INTRODUCTION

Brazil has just launched it's first satellite. It
will be a series of four: two for environmental
data collection and two for remote sensing
applications. The last two of them due to the
nature of the mission have more restrictive
specifications on the attitude control system then
the first ones. It is necessary to control rate to
8 x 10-3 deg/s and a pointing accuracy of 1 deg.
These last two satellites will be injected in a 98
deg. inclination low altitude tranfer orbit and
then transferred to a Sun synchronous orbit at 640
km altitude with zero eccentricity. Attitude
control will be provided by a 4 Nms momentum wheel,
a set of 3 magnetic torque coils and monopropelant
thrusters. A digital Sun sensor, an infrared Earth
sensor and a 3 axes magnetometer will be used for
attitude determination.

2. DEGREES OF REALISM

There are many levels of realism to which a
satellite Attitude and Orbit Control System must be
tested for (Rios Neto and Fleury, 1984). The first
and possibly the most used (and simple) approach is
the non-real time, software only simulation, in
which all the system is coded in software and is
executed in a computer with no interfacing to
external hardware. The second level is software
simulation in real time, i.e.,it is executed at
least as fast as the real system producing
results at the same rate 1• This imposes
restrictions on the control laws that can be used
and mainly restrictions on the integrator for the
Dynamics of the satellite (fig. 1).

The next level is the real time static simulation
with hardware in the loop. At this level of realism
only the Control Law block of Fig. 1 is implemented
in hardware and "taken out" of the simulation
computer. The rest of the system remains as before.
This requires the development of special interfaces
in order to communicate with the Control Law
computer.

929

Other degrees of realism require the use of dynamic
simulators that are used to move (or
stimulate) phisically the real sensors that are
going to be used in the AOCS, where the output of
the Dynamics module commands the dynamic simulators
via appropriate hardware interfaces. The
simulators then stimulate the Sensors which
feedback to the Control Law which in its turn
closes the loop. This approach enables the gradual
substitution of Sensors Modules by their respective
hardware counterparts as soon as they become
available either from own development or acquired
from the market.

DYNAMICS'---------I (SATELLITE)~ ...J

Fig. 1. The control loop of the simulation system

It is not necessary (but it is possible) to
substitute the actuators modules by their hardware
counterparts but just to monitor their behavior
during the simulation through the use of dedicated
hardwares that represent them. In the case of a Gas
Jet system, for example, each thruster is
represented by a led in a pannel. When a maneuver
is executed the corresponding leds blink
accordingly. It isn't practical (if feasible) to
feedback the torques and forces of such an
actuator. The same reasoning applies to magnetic
actuators.

I-Due to the discrete nature of digital simulation
this means that the computer must be able of
computing the complete cycle of Fig. 1 in a
discretization period of the simulated system.



The Sensors and Actuators can be stimulated not
only physically but also electrically. This will be
seen in more detail later on.

3. HARDWARE DESCRIPTION

The structure of the complete hardware can be seen
in Fig. 2. It is composed of a VAX It/780, an Array
Processor FPS 5410, a Dynamic Simulator 53M2-30H, a
Vaxlab workstation, 5 workstations, an Horizon
Simulator with interface electronics and a Sun
Simulator with Sensor interface electronics. The
Multi-Standards & the FPS/C Interfaces aren't
shown. Also available for some specific kind of
simulation there are: a one axis and a three axis
air bearing tables and a one axis servo table.

ONE AXIS SERVO
TABLE

SUN SIMULATOR

GO
THREE AXIS SIMU

LATOR

Fig. 2. Description of the Simulation.

In order to cope with the caracteristics of
different degrees of realism, the hardware must be
connected properly for each situation. In the
software kind of simulation, in non real time, it
is possible to execute the whole software in any
one of the CPUs of the structure or in many of them
(distributed system). In this last case each
separated module of the complete software executes
concurrently in a different CPU and communicates
and synchronizes to the other modules of the
network via special software resources.

In the static simulation case with hardware in the
loop, it becomes necessary to include the Multi
Standards Interface (MSI) and a Control Unit that
will execute the software of the Control Law in the
control loop, as in Fig. 1 or 2. The MSI has been
designed to be able to convert from any kind of
sensor interface to the Digital's DRII-W interface.
Up to the moment it has been implemented interfaces
that comply to the ESA standard, a serial
synchronous data interface for satellite use. The
MSI may be easily adapted to other serial/parallel
interfaces due to the existence of an internal
multplexed bus that is shared by all the different
sensors/actuators circuits. At this level of
simulation the Control Law Unit, usually the AOCS
computer, "sees" the AOCS components through the
lines that connect it to the simulation computer.
At this level of simulation the AOCS components are

930

only software modules. This is enough to test the
Control Law Unit with respect to quantization
errors of the data words, delays in the
transmission of2the words, noise, and the Control
Law itself among other things.

It has been considered that a Vaxstation configured
with a number of data acquisition interfaces
(Vaxlab) was an appropiate choice for the needs of
the tasks involved. Ethernet was required for all
the works tat ions of the network in order to cope
with the distributed processing requirement. These
stations have been chosen because VMS is an
operating system that the working group is used to
and it provides a set of tools that can be used for
comunications and synchronism for real time
simulation.

When in dynamic simulation with hardware in the
loop another degree of realism can be added to the
system through the use of physical stimulation of
the sensors by environmental simulators. This
approach is somewhat questionable today and it can
be considered valid depending on many factors like
team experience, resources available and realism of
simulation required for any particular attitude or
orbit manuver.

There are 3 simulators that can be used at the
laboratory of the Division of Space Mechanics and
Control (DMe) of INPE. There are a static Sun
simulator, a three axis dynamic simulator
(Contraves 53M2-30H) and a dynamic Horizon (or
Earth) simulator that is under development.

It can be seen from Fig. 2 that the output of the
Dynamics module provides control information to the
dynamic simulators. This control occurs according
to the satellite attitude and orbit that is being
propagated (integrated) inside the computer. This
way it has been developed in house an interface
that is able to control the three axis dynamic
simulator. This interface connects the array
processor FPS 5410 to the Contraves control pannel.
The array processor is a remainder of the original
simulation system as well as the Vax 11/780 and
they are about to be replaced.

This FPS/C interface is basically a protocol
converter between two general purpose interfaces
provided by the array processor and the three axis
simulator manufaturers. It converts from negative
to positive logic, assures that data strobe and
data-ready/ready-for-data pulses are timed
according to specifications and guarantees perfect
line matching at the I/O connectors (Milani,1990).
There is a special software to drive this interface
(Diehl,1990).

The Horizon simulator is being developed in
house.lt will be able to dynamically simulate the
Earth horizon with a positioning precision of at
least 10E-2 deg. Due to the nature of it's control
system low transfer rates of command words are to
be used and a simple RS-232c interface is going to
be used to connect it to the computer. The Horizon
sensor is fixed to an appropriate suport at the
Horizon simulator.

The Solar simulator is a fixed one and it provides
a collimated beam of 20 cm diameter light that is
directed to the solar sensors. These last ones will
be mounted on special fixtures fixed to the inner
axis of the 3 axes dynamic simulator. The solar
simulator is positioned according to critical
phases of the mission so that the AOCS can be
tested for these cases.

The last degree of realism may be obtained when all
(or almost a11 2 ) of the Sensors software modules
are replaced by their respective hardware and are

7There are some sensors that are not practical to
replace. For example: Earth magnetic field sensor.



connected to the Control Unit via their original
interfaces and the commanded signals are sent via
the MSI to the Actuator software modules. As
mentioned before it is not practical to simulate
actuators but in some cases it may be necessary to
integrate a Reaction Wheel or another actuator in
the loop. This can be done by using an Air Bearing
Table (ABT) for one or more axis, being the
dynamics of this ABT replaced in the software part
of the Dynamics module.

Many times it may not be feasible (physically or
economically) to utilize physical simulation. This
can be overcome by using electrical stimulation of
the AOCS components. The disadvantage of this
procedure is that the physical part of the
component is not tested and as is known from
practice this may hide problems. Again, the
decision criteria to which kind of stimulation
should be used must be based on the team experience
and knowledge of the AOCS components.

The previous hardware structure can be implemented
in many ways. The use of a modular concurrent
software permits each module, if desired, to run on
a different computer or workstation. This way the
works tat ions can be anywhere in the facility with a
different group working on each one of them. Each
group can use then the same idea of different
degrees of realism for the development of its own
module according to the project needs. In case it
is necessary a special hardware to simulate a
special condition, like a thermal or vacuum
chamber, it may be easily integrated to the
simulation environment. A central computer would
make this impossible.

4. SOFTWARE DESCRIPTION

There are two basic approaches for the simulation
software: a concurrent and a sequential one. A
third possibility may be used in order to test
individually the AOCS components in a manual way.
The sequential type of simulation software is
possibly the most used one. Many times it is coded
in Fortran without the use of special software
tools. A description of an implementation of this
approach would be a large program composed of a
serial sequence of code that would perform the same
functions of the modules of Fig. 1 (Rios Neto et
al., 1987, 1987, 1988). The advantages of this
approach are ease of development, no need for
special software resources, easy interchange of
data between the internal modules and no need to
manage the simulation, all these being a direct
result of the way the program is coded.

There are also many disadvantages: each module of
the AOCS is simulated at a time and it becomes more
difficult to replace the code by the corresponding
hardware due to timing considerations. The program
is more difficult to test because it is much larger
than single modules. There is no great advantage in
the division into parts of this kind of program and
distributing it on many computers, actually there
will be an extra delay (communication between the
computers) that will have to be accounted for.

The distributed type of simulation software can be
coded in a variety of languages including Fortran.
Since distributed software is more natural to
personel with computer science background there are
a number of languages other than Fortran that would
make this kind of simulation easier to handle. This
is not a limitation, though, as long as the
operating system can provide some basic
communication and synchronization tools. Not all
the available commercial operating systems provide
you with a comprehensive set of primitives that
enables one to program a real time distributed
system. The basic needs in order to permit this
kind of simulation are:

1) the possibility to create a number of concurrent

931

processes where each of the processes is a program
developed in the usual way,
2) the availability of a mechanism of transference
of data between3the processes,
3) the availability of a mechanism for the control
and synchronism of the processes.

It would be interesting also that the use of these
just mentioned software tools were as transparent
as possible to the control engineer.

As an implementation example one can look at the
software as is described by Nunes (1991). The
general idea behind the simulator is to map each of
the blocks (as in Fig. 1) to processes in the
computer and utilize the communication mechanisms
to represent the arrows. In each process a
different program is executed even if written in
different programming languages. Only the
convention of the message exchanged must be
respected. In this system "mailboxes" were used for
this communication and a Monitor program was used
to control them. The VMS, the operating system of
the Vax computer family provided these tools which
were accessed by the Fortran written modules of the
simulator from the Real Time Lybrary (RTL) of the
computer. Nunes also says that the modularity of
the software enables one to program it and test it
individually and that they may be written in
Fortran by control specialists which may not be
familiar with the sofisticated techniques of real
time programming.

There are two other processes that participate of
this programming environment: the first one is the
Monitor which creates the mailboxes, inialize the
execution of the processes and receives alarm
messages during simulation. A Post-Processor is the
other and is used for exhibiting the results.

In order to create this concurrent software one may
use two teams that participate of the development
phase at two different points in time. The first
team implements a general skeleton for the whole
system where each module is dumb. The general
architecture would be respected though and any
satellite with the characteristics of Fig. l could
be considered for implementation. This group would
also develop the Monitor and the Post-Processor
modules, which create and communicate to the
special software environment. This should be done
by the computational background group. The other
team must be composed of control engineers that
fills in the skeleton with the code for the
sensors, actuators, etc.

As mentioned previously the modules may be
distributed in different computers and the messages
between them can be sent via the network. It does
not matter to the simulation itself if all the
modules are resident in only one computer or if
they are distributed in many other ones. In case
there is one module that requires massive
processing or special I/O for any particular reason
(e.g. the Dynamics Module) then this module may be
separated in a dedicated computer (or workstation).

Also, in the case of replacing the software by
hardware, all that is necessary is to call from a
dumb module the driver for the corresponding
hardware interface. This is equivalent to filling
in the module with a description of the AOCS
component but putting real hardware in the
simulation loop. On the other hand, when making
static simulation with hardware in the loop, that
is, only the Control Electronics module (and all of
its interfaces to the sensors and actuators) is in
hardware, then there must be drivers to handle all
the interfaces. This driver calls the software
modules and connects them to the interface lines.
Care must be taken though because some components
cannot be simulated in software as fast as the
hardware interface requires. (This is particularly
true with the ESA standard). This can be
compensated for by an over-simulation technique in



which many intermediate results are prepared
beforehand and the right one is chosen only at the
time that the hardware interface interrupts the
corresponding software module. The driver software
for this particular case is under development at
the moment at INPE's laboratory.

The distributed approach has its disadvantages
also. It is more difficult to mannage it's
operation. It depends on a close interaction of two
groups with different backgrounds and the
interfaces between these two groups must be clearly
stated and this depends on the hardware for that
simulation, also. The main advantages are its'
modularity, testability and ease of adaptation to
different missions.

fu~ting it all together

The diagram of Fig.3 shows a general case in which
there are two Sensors (Se2 & Se3) phisically
stimulated by two simulators (Sm2 & Sm1) which are
commanded by their respective interfaces (FPS/C &
HSI) that in their turn are driven by their
respective drivers in software. The other sensor
(Se1) is only simulated in software and is only
connected to the Control Law Unit (like the other
two sensors) via it's Esa Standard serial
synchronous line. In this last case though, the
stimulation of the sensor is done in software,
directly from the Dynamics module. The connection
of the Sensor (Se1) to the Control Law Unit is done
via the MSI and it's driver. Figure 3 also shows
two paths from the Control Law to the two Actuators
(Act1 & Act2) also via the MSI. The modules
Dynamics, Actuators 1 & 2 and Sensor 1 compose the
distributed software environment and may be in any
computer of the network. The same may happen to the
interfaces (FPS/C, HSI, MSI). The logical structure
of the whole is maintained and controlled by the
Monitor module.

W f-
a:: Oz

~
WW W
a::~ ::;;

f- <lID Z... ~ 0: 1E
~ LL.~ :;:

Z o~ z
0

(/)0 W

i=
~~<l

-'
::> OW
::;; a::~
iii ~l5

,--a::(/)
WW
f-O
~~

W ..a:: -'(/)
~ ::Ja::
0 !o
a:: (/)f-
<l v;---
:t: 21
Z (/)

0 Z

~
W
(/)

-' :::;--
::> 0
::;; a::
iii ~~t::

o<lZ
0-'::>

Fig. 3. Software and hardware simulation diagram.

5. MATLAB INTERFACE

Once there is a hardware interface (FPS/C) and the
driving software, it has been built an additional
software interface that enables the connection of
MATLAB to the three axis dynamic simulator. The
initial objective was to bring real time data of
the simulation to the interactive environment of
MATLAB. All the commands that are available through
the driver interface (that is: reads and writes,

932

rates and positions, inhibit settings, etc.) can be
directly accessed via the keyboard (or an M-file)
during a session of MATLAB. This enables the
commands of pos'tion, rate and acceleration as well
as reads without the need of writing a program,
compiling it, linking it and only then being able
to interact with the simulator.

MATSIM proved to be too slow for real time
simulations. In the Vax 11/780 in which it is
resident up to the moment, it presented a command
transfer rate of 2 to 3 Hz only. This is probably
due to the interpretive nature of MATLAB. If it
were possible to compile M-files into executable
code, it would probably be much faster and the
advantages of Fortran programs could be brought to
this environment (Milani, 1992).

It is also under consideration the development of
MATLAB software interfaces to other simulation
equipment. Even in non real time simulation this
kind of operation proved to work quite well for
manual testing with automatic logging of the
results and with the availability of a number of
graphics resources.

6. CONCLUDING REMARKS

It has been presented a hardware and software
architecture for real time dynamic simulation
applications. From the beggining of its operation
the system is being used with the classical
sequential type of software. Nowadays due to the
low cost of works tat ions it has become more
interesting to decentralize the simulation system
and distribute the tasks between the computers and
working groups. Characteristics of the system were
described and their advantages/disadvantages
examined.

The software was presented following two different
lines: a sequential and a distributed approach. For
both cases the architecture of the system was
detailed to the level of the driving interfaces.
The MATLAB/simulator software proved to be slow but
very practical for manual use.

7. BIBLIOGRAPHY

Diehl, J .B. (1990). "Utiliza<;ao das Rotinas para
Controle do Simulador Contraves 53M2-30H
Atraves da Interface GPIOP do Processador
Matricial FPS 5410". INPE-5153-RPI/234,
Internal Report, DMC.

Fleury, A-:T; -Rios Neto, A. (1984). "Control
Systems Dynamic Verifications: First Progress
Report". ~ Iec.h.Ilical __.::.R;.:e",p--,o;.:rc.=.t
RML/009/84/24. February, 9 •

Milani, P.G. (1990). "FPS/C. Uma Interface de
Comunica<;ao Entre 0 Processador Matricial FPS
5410 e 0 Simulador Dinamico Contraves 53M2
30H". Internal Report. INPE/DMC.

Milani, P.G. (1992). --"MATSIM: Urn Software de
Interface Entre 0 MATLAB e 0 Simulador
Contraves". Internal Rep~i. INPE/DMC.

Nunes, D. (1990). "Urn Simulador Distribu!do de
Sistemas de Controle de Atitude e Orbita em
Tempo Real" • 10. Simposio Brasileiro de
Tecnologia ~spacial. InstitlitO
Tecnologico de Aeronautica - ITA, Sao Jose
dos Campos, SP, Brasil, 27 to 31 of August.

Rios Neto, A. et al. (1987). "Requisitos de
Usuario do 'Software' de Simula<;ao de Atitude
em Tempo Real". INPE, Internal Report, DMC,
June. -- ---

Rios Neto, A. et al. (1987). "Documento de
Requisitos de 'Software' de Simula<;ao de
Atitude em Tempo Real". INPE. Internal
Report, DMC, June.

Rios Neto, A. et al. (1988). "Documento de Projeto
Preliminar do Software de Simula<;ao de
Atitude em Tempo Real". INPE. Internal
~ort, DMC, April.


