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CHAPTER 9

MACROSCOPIC EQUATIONS FOR A CONDUCTING FLUID

1. MACROSCOPIC VARIABLES FOR A PLASMA AS A CONDUCTING FLUID

A plasma can also be considered as a conducting fluid,
without specifying its various individual species.
The macroscopic transport equations, derived in the previous
chapter, describe the macroscopic behavior of each individual species
in the plasma (electrons, ions, neutral particles). We will determine
now the set of transport equations which describe the behavior of the
plasma as a whole. Each macroscopic variable is combined, by adding
the contributions of the various particle species in the plasma. This
procedure yields the total macroscopic parameters of interest, such
as the total mass and charge density, the total mass and.charge current

density (ou flux}, the total kinetic pressure dyad and the total heat

flux vector.

The mass densgity is the mass per unit volume of fluid

and is given by
p:ip =in m (1-1)
[+ o

The electric charge density represents the electric charge per unit

volume of fluid,



oc = g n, 9, (1.2)

The mean fluid velocity, u, is defined such that the
momentum density is the same as if each particle wasmoving at the mean

fluid velocity, according to

o o (1.3)

The mean velocity of the plasma, u, is therefore a weighted mean value,
where each species is weighted proportionally to its mass density. The
mean velocity . of each particle species, when considered in a reference
system moving with the g16ba1 mean velocity u of the plasma, is

called the diffusion veloecity W

1
Yo T YT g P (1.4)

The mass current density, or mass flux 1is given

(1.5)

and the electric current density, Or charge fluxz is expressed as



(1.6)

Note that in Eq. (1.5) we have ) 0, ¥, = 0, in virtue of Eq. (1.4),
o
which defines the diffusion velocity W -

The kinetic pressure dyad for each species of

particles in the plasma is defined in Eq. {6.6.2) as

By = Py < G

K]
£

> (1.7)

where ¢ = v - is the peculiar or random velocity of the particles

S X
of type c. Note that the pressure is defined as the time rate in which
momentum is transported by the particles of type o through a surface
element moving with the mean velocity of the particles of type a. For
the plasma as a whole it is necessary to define a peculiar
velocity Coo * for the particles of type a, relative to the global

mean ve1ocify of the plasma, u, that is

Cup = YU (1.8)

Thus, the total pressure is defined as the time rate of transfer of
momentum, due to all particles in the plasma, through a surface
element moving with the global mean velocity U. The total kinetic

pressure dyad, P, is, therefore, given by



gﬁ%<%zm> (1.9)

To relate p, given in (1.9), with Py given in (1.7) ,we substitute

u by U, = ¥, and v by Y, in (1.8), which gives

Coo T Sa T W (1.10)
Consequently,

E:épa<(ga+§a)(cﬂ:_a+wa)> (1.117)

and expanding this expression,

= <¢c ¢ >+<c >+ < >4 < > 1.12
B =L el gy G > ¥ €gy >t <y <y ) (1.12)
From the definition of w we see that < W >=w, since it
~C ~C ~O
is a macroscopic variable, and,therefore, < ¢ w >=<c > w_ = 0.
-0 ~Q, -0 ~0

Thus , Eq.(1.72) becomes

(1.13)

o
]
&~
zé'c
+
Q1
Q‘o
éi
S

Note that Py is a pressure relative to U, whereas p is relative to

the global mean velocity u .
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The total scalar pressure, p, is defined as one third

the trace of p, that is,

] 1

—_3_2 —;gpa<cam. Ca0i

= _.I_E pa< C20> (]']4)
3 a *

Using Eg. (1,13) we can write

- 1 2
Pt T R (-

Finally, we define the total heat Fflux vector, g, as

c > (1.16)

and the thermal energy density of the plasma as a whole as

2

Z—]z— L < clo (1.17)
o

S

It is useful to relate g, defined in (1.16), with the
heat flux vector 9y for the particles of type a,

%

o 2
= _E_ P, < CHC, > (1.18)



For this purpose, we substitute Cyo® in (1.16), by C, + W and

expand the resulting expression, obtaining

=y —l— <c2c> +w<c >+2<{w.c )c >+
2 G o -~ [+ ~0 ~0 -~ ~ 0%
o

+<C2 > W +wW w +2(<c>.w)wJ (1.19)
ol -0 o -0 ~0 -~ ~Q

The second and sixth terms in the right-hand side of this equation are

equal to zero, since < C, > = 0. Therefore,

=Y —l* <2 ¢ >+2W.<C C >+<c2>w +w w [{1.20)
59 P o~ a ~o <o o -~ o ~Q

Using (1.18), (1.7) and the relation p =p < c2>/3,

we can write (1.20) as

. p +ipw+Lp w2 W) (1.21)

o o - o 2 o ~0 2 oo ~0



In particular, for the isotropic case in which

T
n
=)
N

» we have w . p=w p, so that (1.21) becomes
= ~0 ~Q o)

Ha +——p w +— o ww ) (1.22)
o

2 OLEU, 2 o o ~d

Ly
1]

2. CONTINUITY EQUATION

To obtain the continuity equation for the plasma as a
whole, we add the continuity equation (8.3.2) over all species of

particles in the plasma,

. op
) +3v .0 u)=T7s (2.1)
o at a o ~o 0 &
which gives
ey, v.{eu}=0 (2.2)

ot

with e and u given by Eqs. (1.1) and (1.3), respectively. The
collision term Su, when summed over all particle species must
certainly vanish, as a consequence of the conservation of the total
mass of the system. It is of interest to note that, using the total

time derivate



= + u.v (2.3)

the continuity equation (2.2) can also be written in the form

Do L ovu=o0 (2.4)
Dt ~

3. EQUATION OF MOTION

Similarly, adding the equation of conservation of

momentum (8.4.9) over all particie species in the plasma, yields

au 7
~0 - -
5%[& w%@wq—ywﬁ+pm%w+yw

-] T +IA -Tu s, (3.1)
¢ o o

Since the total momentum of the particles in the plasma is conserved,
the collision term for momentum transfer vanishes when summed over all
species. Using the definitions (1.1), (1.2) and (1.6}, and the relation

(1.13), we can write Eq. (3.1) as

au
~L + (
ot

o

Zoa[

Ba.v ) EG.J = 0. E + g X § +pg- Y.B +



L0 (W ) - U S, (3.2)
o a

The term involving Su can be eliminated using the equation of

conservation of mass, that is,

E%sa=z&1[ T (o uy) | (3.3)

Combining this expression with the terms in the left-hand side of

(3.2),results in the expression

E[JL(%ga+y.wu%gg} (3.4)

We can now substitute the mean velocity u, by W, tu and expand the

result. Noting that

Lo Wy =Lp, (U -u=pu-pu=0 (3.5)
o



where we have used the continuity equation (2.2) and the total time
derivative (2.3). Taking this result back into the equation of
motion (3.2), we obtain the following momentum eguation for the

plasma as a whole,

p =pcE+dxB+rpg-v.p (3.7)
This equation is an expression of Newton's second law.

4. ENERGY EQUATION

To obtain the equation of conservation of energy, for
the plasma as a conducting fluid, we start from the energy equation
(8.5.4) for the particles of type o, and add this equation over all

species in the plasma,

P (L eves YaTre |l ey |-
Bt 2 o o Oﬁ~ 2 o - o

a

-¥n <F.v> =0 (4.1)
o ]
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where the collision term Ma vanishes when summed over all species of
particles. We substitute now, v by Coo T Y1 and expand each term of

(4.1). For the first term we have

9 1 ) 1
_tz_a!.!3)=‘_[Z_pa(<céo>+u2+2@a.g)]
o 2 2

=2 (2.___ PyS Coo> ) S I B )
9t o 2 ot 2

=0 3y el (4.2)
at 2 at 2

where we have used the definition (1.17) and the fact that

3 Oy W, = 0. For the second term we note initially that
o

n

A
—

(]

il
A
[m)

2 2
+<C > U+ Uty o+ 2 (w u)u (4.3)

1]

. _ . . .
since an Ea w, and c 0. Therefore,

- 2 - - —_-I 2 \ L] L
Y{(g PV y_>u) v (é > oS Cao Ea0>)+g! (épu<c Co” u)+

1
2
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pauzg) (4.4)

1 1
Ve() — < >u) + V(] —
S Ca wo "~ T =TT

Using the definitions of the total heat flux vector, g, and of the

total kinetic pressure dyad, p, we can write (4.4) as

v . Z‘%‘ V2!>a) =V .gq+V.(p.u) +V. (=pu)~+
‘ %

+ Ve R (4.5)
2

For the t#ird term of (4.1) we have

+m<g.v>a] (4.6)

where we have considered external forces due to electromagnetic and
gravitational fields. Since < v >, = Uy and since, for any vector

v,we have (v xB ). B=0,we obtain

where we have used the definitions (1.5) and (1.6), and where E
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and g are smoothed macroscopic fields.

Combining the results contained in Eqs. (4.2), (4.5)

and (4.7), the energy equation becomes

———-(Ji-p) + V. (Ji-p u) + —E—-(—l—-p uz) + v . (—l—p Uz u) + V. q+
3t 2 2 at 2 - ? - -

.g=20 (4.8)

This equation can be further simplified as follows. The third and

fourth terms of (4.8) can be combined as

L(—-]—-—pua)+v.(Lpu2u)E—l—u2[ap +V.(pu)]+
at 2 - 2 - 2 at - -
Du
+u. (o ) (4.9)
Dt

and using the continuity equation (2.2) and the equation of motion

(3.7), we can express (4.9) as

P U . E+u. (g x B) + gm -g-u. (9. p) (4.10)

Taking this result back into the energy equation (4.8), yields
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where we have used the total time derivative (2.3).

The first term in the left-hand side of (4.11),
represents the time rate of change of the total thermal energy
density of the plasma, 3 p/2, 4n a frame of reference moving with
the global mean velocity u. The second term contributes to this rate
of change through the thermal energy transfered to this volume element,
as a consequence of the particle nmotions, The third term
represents the heat flux, and the fourth term the work done on the
volume element by the pressure forces(normal and tangential). The terms
in the right-hand side of (4.11) represent the work done on the volume
element by the electric field existing in the frame of reference
moving with the global mean velocity u. These Tast terms can be
combined as follows. We note, initially, that the charge current

density consists of two parts

]
<,
+_
o

(4.12)

where Pc YU is the comvection charge current density, which represents
the flux of the space charge with velocity u, and J' is the conduction
charge current density, which represents the charge current density in

the frame of reference moving with the global mean velocity u. On the
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other hand, we can write
u.{(JdxB)=- J.(uxB)=-J".( ux B ) (4.13)

substituting Eqs. (4.13) and (4.12) 1into the energy equation (4.11),

we obtain, finally,

D ,3 3
(Zp)+—pv.u+v.q+(p.9) .u=2J".FE
Dt 2 p v =T AT =Tl (4.14)

where E' = E + U x B is the electric field existing in the reference

system moving with the global mean velocityu. The term J' B!
represents, therefore, the rate of change in the energy density due

to Joule heating.

5. ELECTRODYNAMIC EQUATIONS FOR A CONDUCTING FLUID

In the previous sections we have derived the macroscopic
transport equations for conservation of mass, momentum and energy in
a conducting fluid. As mentioned before, this set of equations does
not constitute a complete system, and it is necessary to truncate the
hierarchy of macroscopic equations at some stage and to make some
simplifying assumptions. The continuity equation relates the mass
density, p, with the global mean velocity us the equation of motion,
which specifies the variation of u, involves also the total kinetic

pressure dyad, ps; the energy equation, which specifies the rate of
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change of the total thermal energy density (3 p/2), includes also the
o heat flux vector, g (a more general energy equation would give as the
variation of the total kinetic pressure dyad p, which would include
the total heat flow triad Q ). We can continue taking moments of higher
order and obtain, for exam;1e, the transport equation governing the
variation of the heat flow triad Q. To obtain a complete system it s
_ essential, therefore, to truncate~the hierarchy of transport equations
at some point. However, even after this truncation, the remaining
equations include the following electrodynamic variables: electric
field E, magnetic induction B, charge current density J, and charge
density 0. Besides the hydrodynamic transport equations, we need,
therefore, ten electrodynamic equations which must relate the

variations in E, B, J and e These equations are considered next.

5.1 - Maxwell curl equations

The following Maxwell equations

<3
X
m
il

- 3B / ot (5.1)

v x E=“0(9+€0

3E/at ) (5.2)
provide six component equations, which can be considered as the
equations governing the variations of the electromagnetic fields

E and B.



- 17 -

5.2 - Conservation of electric charge

The equation of conservation of charge can be
obtained bymultiplying the equation of conservation of mass (8.3.2)

by q, /ma, and adding over all species,

2 (Angqy) +y-(Yn,q,u,) =1 (g/m)s, (5.3)

ot o

Using the definitions of Pe and J, and noting that the total electric
charge does not change as a result of collisions, we obtain

3
pC

ot

It is worth noting here that Eq. (5.4) can also be
derived, in a independent way, considering Maxwell curl equation

(5.2) and the Maxwell divergence equation

Vedse, (V. E) at=0 (5.6)
since the divergence of the curl of a vector field vanishes
jdentically. This last equation, combined with Eq. (5.5), yields the

equation of conservation of charge (5.4). Eqs. (5.4) and (5.5)
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cannot, therefore, be considered as independent. As we
have just shown, Maxwell equations (5.2) and (5.5) imply in conserva-

tion of electric charge.

Another interesting aspect of Maxwell equations can

be seen by taking the divergence of (5.1), which gives

2 (v.8)=0 (5.7)
ot

or
Vv . B = constant (5.8)

Therefore, the Maxwell equation

can be considered as an <nitial condition for Eq. (5.1), since if
we take V . B =0 initially, Eq. (5.1) implies that this condition

will remain satisfied for all subsequent times.

5.3 - Generalized Ohm's law

To obtain a differential equation governing the

variation of the charge current density J , we proceed in a way
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analogous to the derivation of Eq (5.4). To this end, we multiply
the equation of conservation of momentum (8.4.9) by q, /M » and add

over all particle species. This procedure leads to

au q q
Z naqa * Z na Y (ga Y )Ecxz z na —= < E >u —Y (Z'JE_ Eu) *
o at o o m., am, -
q q
+ 7 Aa—Z—ﬂ—ua S,
a m, " am. "
2.1 [»
(5.10)
We define now the electrokinetic pressure dyad, Ei R
for the particles of type a, by
E _ e _
gu - m gcx "Ny Y% < 5y Sa (5.11)
o
Consequently, for the plasma as a conducting fluid, we have the
following relation analogous to {1.13)
E E
p =L P ot Y N, 9 Yy Yo (5.12)
~ o o~ o

The second term in the right-hand side of (5.10)

becomes, therefore,
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E

)==T.p +9.(In ) (5.13)
~ o

Q¥

Ho ¥

o - Ol

Using the continuity equation (8.3.2), and substituting U, by

W, ot U, the last term in the right-hand side of (5.10) can be

written
) fo u S=-)w —3——( n )= w | V.(n a w }| —
o m ~ Ol o Ol.~0£ 3t G.q()f. a'vCI o o ~a
(o4

(5.14)

Similarly, the first and second terms in the left-hand side of (5.10)

can be combined in the form

d W
~ 0
Znuqu ) muquwa'z)ﬂu + ] maqag v) o ¥
ot o o
au
tope— + (d.V)u (5.15)
at -7 -

We can now substitute expressions(5.13), (5.14) and (5.15) into
Eq (5.10) and simplify the result. Making use of the following

identity for two vectors a and b,
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v.{(ab) =b{(vV.a)+(a.v )b {5.16)

34d £ q
“— +V.{(ud'+Juy+V.p = }n @ < F> 3
9t - - - o ¢ m -G
q
+] —— A, (5.17)
o m -

Equations (5.1), (5.2), (5.4) and (5.17) constitute
ten component equations which complement the equations
of conservation of mass, momentum and energy for a conducting fluid.
Eq.(5.17) , however, is still in a very general form of 1ittle
practical value. A very useful and simple expression exists for the
case of a completely ionized plasma consisting of electrons and only
one type of ions. In what follows, we simplify Eq. (5.17) for this

case,

The electric charge current density, J, and the
electric charge density, Pes for a completely ionized plasma
containing only electrons and one type of ions of charge e are

given, respectively, by

Q=g“mqak‘,a =e (nguy -ong Uy (5.18)
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where p = p. + p

e i
pu J
b B H { — + — )
Py Mo €
pu J
ve = —— - =)
Pe m. e

where y = m, m. / (me + mi) denotes the reduced mass.

(5.19)

(5.20)

(5.21)

(5.22)

We assume now that the mean velocity of the electrons

and jons, relative to the global mean velocity u, ( that is, the

diffusion velocities Wo and W ) are small comnared with the

thermal velocities. This condition being satisfied, Eq.(5.12)

becomes

IR
]
L

1
m. 54
—_ me

(5.23)
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Considering the conducting fluid immersed in an
electromagnetic field, the term containing the external force in

Eq. (5.17) becomes

t~1
e §
o
3

A
i
v
]

|
1
-
o
| L
m~
i)
2
o
'm
+
=
52

=
t o
o
-

n n
+ e2( —— U+ me ge) x B (5.24)
e

Substituting the relations (5.21) and (5.22) in this last egquation

and simplifying, yields

q n, n
¥on ® <F> =e( 1+ & YEser(—s—_E)uxB+
o m ~ m. m = m. -~ 2
o o i e e i
} 1
+ e (—ﬁr— - -ﬁ]—“—) J x § (5.25)
i e

It is convenient at this moment to simplify this equation by making
one additional approximation. Since the ion mass m. is much larger
than the electron mass My (for protons and electrons, for example,
mi/me = 1836) and assuming macroscopic charge neutrality, that is,

ne = n; =N, we can take
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m. m - m
1 e e
n. n

1 ¥ e ~ n

m. m m

1 e e
n. n

n

1 + e -
m m. m
e 1 e

Consequently, from (5.23) we have pE

-—

%,

mn
o

LN,
o

(5.26)

(5.27)

(5.28)

It

— ep, /me » and from (5.25)

(5.29)

For the collision term in Eq. (5.17), we make use

of expression (8.4.11), that is

~e e ‘ei ~e ~i)
Ap == 0y Ve (Y5~ Ug )
From Eq. (8.4.13) we have p. v, =
qOL
L m Ao = € Pe Vei (ug = uy
a o
= - v ‘1

(5.30)
(5.31)
Po Vai ,50 that
1 ]
) {— + —)
mi me
5.32)
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where we have used Eq. (5.18) for J, and the approximations my >> M,

and ne = ni = n.

We can now substitute the results contained in Egs.

(5.23), (5.29) and (5.32), into Eq. (5.17), to obtain

aJ .
7 (g ) - T Be =
3t e
_ ne? _ e -
== (E+uxB) = J x B Vi Y {5.33)
e e
Note that, since we assumed Ng = Nis We must have P, = 0 and g' = J.

In some situations in which J and u can be considered as small
perturbations, the nonlinear terms involving their product may be

neglected compared to the other terms. With this simplifying

approximation and using the notation

2
o = —1= (5.34)
e ‘ej

which represents the longitudinal electrical conductivity, we get for

(5.33)
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(5.35)

This equation is known as the generalized Ohm's law. The terms is
the right - hand side are the ones normally retained in
magnetohydrodynamics while all the others are neglected. The
omission of the terms in the left-hand side of (5.35) is, generally,

not always justifiable.

For cases in which J does not vary with time, that is,
under steady state conditions, we have 3J / 3t = 0. If we consider

also that the pressure term in Eq. (5.35) is negligible, that is,

VP = 0, then Eg. (5.35) simplifies to
g
J = o (E+uxB)-—= JxB (5.36)

The last term in this equation is related to a phenomenon called
the Hall effect in magnetohydrodynamic flow problems, and, for this
reason, it is normally called the Hall effect term. This term is

small when ( o [B[/ne ) << 1, that is, when w , <<v..



- 27 -

Thus, when the collision frequency is much larger than the magnetic
gyrofrequency, the Hall effect term can be neglected and (5.36)
reduces to

J=o (E+uxB) (5.37)

In the absence of an external magnetic field, Eq. (5.37) reduces

further to

J=o E {5.38)

which is the expression commonly known as Ofm's law.

6. SIMPLIFIED MAGNETOHYDRODYNAMIC EQUATIONS

In the last two sections we have shown that the set of
macroscopic transport equations for each individual species in the
plasma can be substituted by transport equations for the whole plasma
as a conducting fluid, compiemented by the electrodynamic equations.
These total macroscopic equations for a conducting fluid are known as

the magnetohydrodynamic (MHD) equations. In their most general form
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they are essentially equivalent to the set of equations for each
individual particle species. In practice, however, the MHD equations
are seldom used in their general form. Several simplifying
approximations are normally considered, based on physical arguments
which permit the elimination of some of the terms in the equations.
For steady state situations, or slowly varying problems, the MHD
equations are very convenient and, in many cases, lead to results
which would not be easily obtained from the individual equations

for each species of particles.

One of the approximations normally used in MHD
consists in neglecting the term €, oE / 5t in the Maxwell equation
{5.2). To analyse the validity of this approximation it is
convenient to use dimensional analysis, as follows. We can express,
in  general, the charge current density as J = o . E, so that,

dimensionally, we have

T
It

Q

m

(6.1)

o, | E /3t | =¢ E/x (6.2)
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where T represents a characteristic time for changes in the electric
field and o represents a characteristic conductivity. The ratio

of the two terms 1in the right-hand side of (5.2) becomes, therefore,

€, | 3E / 3t | €

[

o (6.3)
J oT

For most of the fluids normally used in MHD problems, o is typically
greater thanl mho/m, whereas e, s of the order of 107" Farad/m.

Consequently,

£ | 3E / ot | -11
= . (6.4)

dJ T

with T in seconds, which shows that this approximation is not valid

only when we are considering extremely small characteristic times.

It is also assumed that the macroscopic electric
neutrality is maintained with a high degree of accuracy and,

therefore, the electric charge density, Pe is set equal to zero.

A questionable approximation 1in the set of MHD
equations is the generalized Ohm's Taw, in the form given in Eq.
(5.36). In this form, the terms containing the time derivatives and
pressure gradient (or divergence of the pressure dyad) are omitted,even

though these terms are considered in other equations of the set. This
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approximation is not therefore justifiable in a direct manner.
It is common to simply assume that all time derivatives are
negligibly small and that the plasma is almost a cold plasma,
so that the generalized Ohm's law reduces to the form given in

(5.36).

For convenience, we collect here the following set

of simplified magnetochydrodynamic equations

3p /3t + v.(pu)=0 (6.5)
pDu/Dt=JxB-vp (6.6)
wp = VZ p (6.7)
vxE=-23B/at (6.8)
TxB=u (6.9)
J=o (E+uxB)-(o /ne)JxB (6.10)

In this set of equations, viscosity and thermal conductivity are

neglected. The pressure dyad reduces, therefore, to a scalar pressure.
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Note that Eq. (6.9) implies in

(6.11)

which is the equation of conservation of electric charge in the
absence of changes in the total macroscopic charge density, P

It is for this reason that the equation of conservationof electric
charge is notexplicitly considered in the set of MHD equations
(6.5) to (6.10). Except in some special circunstances, it is also

commen to neglect the Hall effect term (co /en) J x B in Eq. (6.10).



PROBLEMS

9.1 - Show that the total kinetic energy density of all species in a
fluid can be written as the sum of the thermal energy density

of the whole fluid, plus the kinetic energy of the mass

motion, that is

3
¥ 1 p < v2 > =—p +7§ 1 o Uu?
0:2 91 6 ] 2 (12 3 o
where
3. ¢l 2
PR < G
v 1 2 1 >
_gzpa<ca>+§2pa Wa

9.2 - Show that when there is no heat flow (q=0), no Joule heating
(3" . E' =0) and when the pressure tensor is isotropic given by

p=p 1, the energy equation (4.14) reduces to the following

adiabatic egquation

p p~5/3 = constant

9.3 - From the momentum conservation equation with the MHD

approximation [ see Eq. (6.6) ], and the generalized Ohm's law
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in the simplified form (6.10), but without considering the Hall

effect term, derive the following equation:

(ExB) + o, (uxB)xB-7p

Solve this egquation, considering that E = 0 and p = constant,

to show that the fluid velocity perpendicular to B is given by

u, (t) =u, (0) exp (- t/7)

where r is a characteristic time for diffusion of the fluid

across the field lines, given by

In Egs. (1.5) and (1.6), explain the reason why the mass flux gm
is given by pu, whereas the electric charge flux J is not given

by pY-

Obtain an expression for the heat flux triad Q, for the plasma as

a whole, defined as

it P

= < C C C >
g pa ~qd ~a0 -~ab
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where Cao = ca W in terms of a summation over the heat flux

triad for each species ga; and of terms involving the diffusion

velocity W, Then, simplify this expression for the isotropic

case,

Derive an energy equation [of higher order than Eq. (4.14)]
involving the total time rate of change of the total pressure

dyad, that is, Dp/Dt.

For a perfectly conducting fluid characterized by a scalar
pressure, under steady state conditions, use the eguation of
motion (6.6) and the generalized Ohm's law (6.10), to derive
the following equation for the fluid velocity component

perpendicular to B,
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