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.Summary/Notes

This is the twelfth chapter, in a series of twenty two,
written as an introduction to the fundamentals of plasma physics.
Initially, <t is presented a derivation of the Parker modified
momentum equation, and of the CGL double adiabatic energy equations.
Some special cases of the double adiabatic equations are analysed. The
concepts of magnetic viscosity and magnetic Reynolds number are
introduced, and an analysis is given for the phenomena of diffusion of
the magnetic field lines through a plasma, and of freezing of the
magnetic field lines to the plasma. The concept of magnetic pressure is
also introduced and the subject of plasma confinement in a magnetic
field is investigated.
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CHAPTER 12

SIMPLE APPLICATIONS OF MAGNETOHYDRODYNAMICS

1. FUNDAMENTAL EQUATIONS OF MAGNETOHYDRODYNAMICS

The basic equations governing the behavior of a
conducting fluid have been presented and discussed in Chapter 9. For
convenience, we reproduce here the simplified form of the
magnetohydrodynamic equations. They include the equation of continuity

for the whole conducting fluid

and the adiabatic equationof conservationof energy

vp=VIve (1.3)

where o denotes the total mass density, uis the average fluid

velocity, J is the electric current density, B is the magnetic flux



density, p is the total scalar pressure, and V¢ is the adiabatic sound speed,
given by ( yp/e )/?, where v is the ratio of the specific heats at
constant pressure and at constant volume. To these equations we must

add Maxwell curl equations, in the following reduced form,

YXxB= uy (1.4)
aB

VxE=- - (ihe%)
- ot

J=o (E+uxB) (1.6)

where o, denotes the electric  conductivity of the fluid, and E is the

electric field.

In this set of simplified MHD equations, it has been
assumed that macroscopic electrical neutrality is maintained to a
high degree of approximation, so that the electric charge, and the
force due to the electric field, are negligible. The neglect of the
term 3E/3t, in Maxwell equation(1.4), is justified for wvery Zow
frequency phenomena and highly conducting fluids, as discussed in

section 6, of Chapter 9. As far as the generalized Ohm's law (1.6)



is concerned, it is assumed that the time derivatives and pressure
gradients are negligible, even though these terms are retained in
the other MHD equations. Also, viscosity and thermal conductivity

are neglected and the pressure dyad degrades to a scalar pressure.

The advantage of this approximate set of equations is
that they reduce substantially the complexity of the more general
equations for a conducting fluid and, therefore, facilitate the
understanding of the physical processes that take place 1in a

highly conducting fluid at very low frequencies.

1.1 - Parker modified momentum equation

In the presence of a strong magnetic field the
pressure tensor of an inviscid conducting fluid is anisotropic.
When the cyclotron frequency is much larger than the collision
frequency, a charged particle gyrates many times around a line of
magnetic force during the time between collisions, implying that
there is equipartition between the kinetic energies of the particles
in the two independent directions in the plane perpendicular to B
but not, in general, in the direction along B. If we denote by p,

and p, the scalar pressures in the plane normal to B and along
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B, respectively, and consider a Zocal coordinate system in which the
third axis is in the direction of B,we can write the pressure tensor

of an inviscid fluid as

When the magnetic field is not constant, the orientation of the axes
of the local coordinate system changes from point to point and this
change in direction must be taken into account in evaluating the
divergence of the pressure tensor. Thus,we can express P> in Eq.
(1.7),as the sum of a hydrostatic scalar pressure py and another

tensor referred to the Tocal coordinate system, as

p.1 +(p,-p. )BB (1.8)

No
1

where 1 is the unit dyad
(1 0 0
1 =10 1 0 (1.9)
0 0 1
and E E = B B/ B? is the dyad formed from the unit vector %,

parallel to §,



(0 0 0 )
BB =|0 0 0 (1.10)
L0 0 1

The momentum equation (1.2) must be modified to include

the anisotropy of the pressure dyad. Thus, we write

Du

0 = JxB -vV.p (1.11)
Dt T T=

To evaluate V . p , with p as given by Eq. (1.8), we note that

nNo

|

Ve ( py ) =V p, (1.12)

~ ~ ~

and using the following identity

[(pn-pl) } [(pn-pl)}
Ve BB | =(B.V) B +
B2 = ~ ~ Bz et

4 (V-B) (1.13)

where the second term in the right-hand side vanishes, in virtue of

Y . § = 0, we obtain



g
0o
1}
<l
=)
[
+
los]
<
S~—

. B 1.14
BN 1 (1.14)

Furthermore, using Maxwell equation (1.4) we

can write the magnetic force per unit volume as

(1.15)

JxB= —— (VxB)xB

The term in the right-hand side can be expanded, using a vector

identity, with the result that

_ 1 .
QXEE‘T{;[(B'Y)EE . y(B)J (1.16)

Substituting expressions (1.14) and (1.16) 1into the

momentum equation (1.11), we obtain, finally,

Du 2 r (Pu - py)
o—~=-Y(pl+—B—)+(§-Y){L] - ]E} (1.17)

u B?

This equation differs from the usual momentum equation (1.2), for

a highly conducting inviscid fluid, only through the term (pu-p, )/B2.
It was derived, although in a quite different way, by E.N. Parker

in 1957 and, for this reason, it is usually referred to as Parker

modified momentum equation.



1.2 - The double adiabatic equations of Chew, Goldberger and Low (CGL)

To complement the momentum equation(1.17), we need equa-
tions for the time rate of change of p, and p, . These equations
will take the place of the familiar adiabatic energy equation (1.3)
which applies for the isotropic case. From the general energy
equation (9.4.14) for a conducting fluid, if we do not take into

account heat conduction, and Joule heating, we have

l(_p)+_pv.u+(g.v).9=o (1.18)

with the pressure dyad p as given by Eq. (1.8), and where the

scalar pressure p is one third the trace of p, that is,

p=%(2pl + pu ) (1.19)

Note that 3p/2 is the total thermal energy density. By direct

expansion, using Eq. (1.8) for p , we find that

1 CO)
<
~
<

(-0 . u=|p T+ (p -p) (B (1.20)



and taking this expression, together with (1.19), into Eq. (1.18),

we obtain

D - -
—D—t—(2p1+pl.)+(p..+4pl)Y-9+2(p--—pl)(§§.y)-g=0

(1.21)

A strong magnetic field constrains the motion of the
charged particles only in the direction transverse to B, but they
are still free to move Targe distances along B . Thus, it is
reasonable to suppose that the contribution to the total thermal
energy, arising from the motion of the particles parallel to the
field, also satisfy an equationofconservation of energy similar to

(1.18). This leads to the following equation for the part of the total
thermal energy due to the random motions of the particles along the

magnetic field,

Dp.

+PuV.u+2p(BB.YV).u=0 (1.22)

Dt

Eqs. (1.21) and (1.22) can also be obtained from an
energy equation of higher order than (9.4.14), involving the total
time rate of change of the pressure dyad p . When this equation,
involvingD p / D t, is contracted with the unit dyad l we obtain

Eq. (1.21), and when contracted with the dyad E E results inEq.

(1.22). From these two equations, we obtain



+2p,V.u-p, (BB.V). u= 0 (1.23)

Egs. (1.22) and (1.23) enable p, and p, to be
calculated. They can be written in a more succinct form, as follows.

First we note that,using Maxwell curl equation

VXE=-—21 (1.24)
T ot

and considering a perfectly conducting fluid for which

E+uxB=0 (1.25)
we have,
9B
—— = Vx (uxB) (1.26)
ot - - -

Expanding the right-hand side using the vector identity

vV x (ux B)=(B . V) u-B(V.u)-(u. V )B + u(V . B),and noting

~ ~ ~ ~ ~ ~

that V . B =0, we obtain

~

——=(B.V)u-B (V. u) (1.27)

If we now take the scalar product of Eq (1.27) with B/B? we obtain



-10 -

DB g B u-v.u (1.28)
2B2 Dt - T
which may be written as
1 DB (BBE.v) u-v.u (1.29)
B Dt R o

Furthermore, from the equation of continuity (1.1), we get

V.u=- _l_A_QB_ (1.30)
p

Dt

and using Eqs. (1.29) and (1.30), to eliminate (BB . v).uand v . u
in Eqs.(1.22) and (1.23), we obtain
Dp.,
‘ .3 D . 2 DB _, (1.31)
Pu Dt 0 Dt Dt
Dp.
1 1 Do 1 DB -0 (1.32)

p. Dt o Dt B Dt

These two equations can be written in compact form as

p. B2

-0 (1.33)
Dt o3
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D p‘L

Dt oB

) =0 (1.34)

They are known as the double adiabatic equations for a conducting
fluid in a strong magnetic field, and are due to G.F. Chew, M.L.
Goldberger and F.E. Low (1956). They are also known as the CGL

equations. They take the place of the adiabatic energy equation

D o(poeYy-0 (1.35)
Dt

1.3 - Special cases of the double adiabatic equations

As a simple application of the double adiabatic
equations, consider the case 1in which the only variations are
parallel to the magnetic field as, for example, in sound waves
travelling along the field Tines. This situation is usually referred
to as linear compression parallel to the B field or one-dimensional

compression. The magnetic field is assumed to be straight and

uniform, and directed along the z axis. Thus, BX = By =0 and
B = Bz z, as well as 3/ox = 3/3y = 0. In this case, we find
au,,
(BB.V).u-= =V .U (1.36)
5z

and from Eq.(1.29), we see that B stays constant. Egs.(1.31) and
(1.32), with DB/Dt = 0, then yields



= ]2 -

Pu
O ) =0 (1.37)
Dt o3
Do Py (1.38)
Dt 0

If we compare these results with Eq. (1.35), we find that y may be
assigned the value 3 along the field Tines (one-dimensional

compression), and the value 1 across the field lines.

It is useful to introduce a parallel and a perpendicular

temperature through the relations

pu =N k TII (].39)

p, =n kT, (1.40)

Therefore, for the case of one - dimensional compression parallel to

the magnetic field,

T, « n2 (1.41)

T, = constant (1.42)

which shows that this type of compression is isothermal with respect
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to the perpendicular temperature T, . The changes in p, are,
therefore, entirely due to the changes in the number density n,

whereas those of p, are due to changes in both n and T,.

Another special case of interest is the two-dimensional
compression perpendicular to the B field, in which all motion is
transverse to the field lines. This situation can be pictured as the
motion of magnetic flux tubes, identified by the particles contained
in them. Assuming straight field Tines along the z axis (B, = B =0,

X Y

B = BZ E) and variations only in the transverse direction (3 /5z=0)

we find that

BB.V).u= (Z —2—).u=0 (1.43)
AL : T, o
and Eqs. (1.22) and (1.23) yield
Dpu Pu
. Do _ (1.44)

Dt 0 Dt

D

b, Pt L (1.45)
Dt ¢ Dt

Therefore, inthe the case of cylindrical compression perpendicular

to B the adiabatic equations reduce to

D Py (1.46)
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) =0 (1.47)

Comparing with (1.35), y takes the value 1 parallel to the magnetic
field, and 2 transverse to it. Using Eqs.(1.39) and (1.40) it is seen
that for a two-dimensional(cylindrically symmetric)compression perpendi-
cular to the magnetic field,

T, = constant (1.48)

T.|. o« n (].49)
so that this type of compression is isothermal with respect to the
parallel temperature.The changes in p, are due entirely to variations

in the number density n, whereas those of p, result from variations in

n as well as in T,.

In the case of three - dimensional spherically

symmetric compression, we have

P, = Pu =P (1.50)

and Eq. (1.21) reduces to

D 3pyesp (- Be oy (1.51)
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Thus, we obtain

l( p ) =0 (1.52)

which is the familiar adiabatic equation (1.35) of gas dynamics, with
vy = 5/3 . In any of the cases of adiabatic compression, the fluid has
to be subjected to a certain system of forces in order to achieve the
desired type of adiabatic compression. The required system of forces
has to be determined from the momentum equation in conjunction with

the conditions appropriate to the particular problem under analysis.

1.4 - Energy integral

As a final consideration in this section, we will
show that the system of hydromagnetic equations (1.1) to (1.6)
possesses an energy integral. Using Maxwell equation (1.4),

to substitute J in the equation of motion (1.2), yields

Du

0 = —L—(V X §) xB-Vp (1.53)
oo h

Dt N

Now, take the dot product of this equation with u

- u. (VxB)xB-u.Vp (1.54)
u
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The term on the left-hand side can be expanded as

Du au
pU.——=pu . +(u.vV)u
Dt -

— o(u.v) u? (1.55)

Using the continuity equation (1.1), to eliminate 3p/8t in Eq.(1.55),

yields
Du 2
pu.—=2( Loy W v puy+Lp (uv)
Dt ot 2 2 =~ S
-2 (L ooy sv (- outu) (1.56)
ot 2 - 2 B

In order to transform the term u.Vp, we write the adiabatic energy

equation (1.35) as

D _
oV P -y pp(Y+T) Do _, (1.57)

Dt Dt

and use the continuity equation in the form

e (V. u) (1.58)
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Combining these two equations, we obtain

- VptypVeu=0 (1.59)

which may also be written as

P oy (T-y)u.VptyV. (pu)=0 (1.60)

ot - - N

from which we get

u.vp=—1 5p , 1 v (pu) (1.61)

- (y - 1) ot (y-1) ~ ~

Finally, for the u.(VvxB)x B term in Eq (1.54), considering a

perfectly conducting fluid for which E=-u xB, and using a

vector identity, we can write

=B . (VxE)-V.(ExB) (1.62)

Using Maxwell equation (1.5) we arrive at
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J . (vxB) xB=-- (B )y v(exs (1.63)
uy T - ot 2u Hy, o

Substituting Egs. (1.56), (1.61) and (1.63), into

Eq. (1.54), yields the following energy conservation equation

+Ex|j-]=0 (1.64)
-

The first three terms of this equation represent the kinetic energy
density associated with the macroscopic motion of the fluid, the
thermal energy density, and the energy density stored in the

magnetic field, respectively, whereas the last three terms denote the
flux of macroscopic kinetic energy, the flux of thermal energy
trasported at the macroscopic mean velocity u, and the flux of

electromagnetic energy (Poynting vector E x H), respectively.

If we integrate Eq. (1.64) over the
entire fluid-plus-vacuum volume and, use Gauss' divergence theorem
to transform the divergence term into a surface integral, we find that the
first two terms in the surface integral vanish, since p, p and u are zero
outside the fluid. The remaining surface term is the surface integral
of the Poynting vector which, for an isolated system, also vanishes.

Therefore, we obtain the energy conservation integral
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( 2

J{}l— pu? + 2 ;B J dV = constant (1.65)
2 (y = 1) 2

)

The first integral represents the macroscopic kinetic energy of the
fluid, the second term is the thermal free energy, and the last one
represents the total energy of the magnetic field. It is usually

useful to separate Eq.(1.65) into a kinetic energy part

K = [L ou? dv (1.66)
]2
v

and a potential energy part

2
P, _8B Jdv (1.67)

with the energy conservation law K + U = constant. In these equations

the integration extends over the entire fluid - plus - vacuum volume.

2. MAGNETIC VISCOSITY AND REYNOLDS NUMBER

The behavior of the magnetic field is of great

importance in many MHD problems. To obtain a simple equation for B

we start by taking the curl of the generalized Ohm's law (1.6),
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Replacing J and V x E , using Maxwell curl equations (1.4) and (1.5),

we obtain

Making use of the following identity ( with v . B=0)

Vx(VxB)=-v>B ( 2.3)

~ ~

equation (2.2) reduces to

oB
—— = VYx (uxB)+ N V?B (2.4)
ot - - - -
where
no= — (2.5)
Ho%

is called the magnetic viscosity.

The first term in the right-hand side of Eq.(2.4) is
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called the flow term, while the second term is called the diffusion
term. To compare the relative magnitude of these two terms, we can use

dimensional analysis and take, approximately,

where L denotes some characteristic length for the variation of the
parameters. The ratio of the flow term to the diffusion term is

called the niagnetic Reynolds number and is, therefore, given by

ulL

n
m

In most MHD problems one or the other of these two terms is of
predominant importance and Rm is either very large, or very small

compared to unity.

It is instructive to compare the magnetic viscosity,
L and the magnetic Reynolds number, Rm , with the ordinary
hydrodynamic viscosity, N2 and Reynolds number, R. For this purpose,

consider the Navier-Stokes equation of hydrodynamics

Du

= f - _l_.v P+, [%2 u + ~l—-v (V.u) } (2.9)
- 0 - 2 3 ~ o~ =

Dt



N0

where f denotes the average force per unit mass of the fluid, and

N is the kinematic viscosity (viscosity divided by density).
Comparing this equation with Eq.(2.4), we see that the role played

by N 2 in the rate of change of B , is completely analogous to the
role played by M s in the rate of change of the mean fluid velocity

u . The ordinary Reynolds number is defined as the ratio of the inertia

term (u . V) u to the viscosity term N v? u. Using dimensional

analysis, we have

[(u.V)ul= u (2.10)
T L
2 u

nl ViUl = n N (2.11)

which gives the following expression, completely analogous to Rm s

for the ordinary Reynolds number

(2.12)

3 . DIFFUSION OF MAGNETIC FIELD LINES

When Rm <<1, that is, when the diffusion term

dominates, Eq. (2.4) becomes approximately,



= 93 =

—— =p_V2B (Rm<< 1) (3.1)

This is the equation of diffusion of a magnetic field in a stationary
conductor, resulting in the decay of the magnetic field. It is
analogous to the particle diffusion equation studied in Chapter 10.
The characteristic time of decay of the magnetic field can be obtained
by dimensional analysis, taking
Iﬁ' 1 (3.2)

ot Ty

n B

In. V7B = "‘L2 (3.3)

where Tp represents a characteristic time for variation of the plasma
parameters. Thus, according to Eq. (3.1), the magnetic field diffuses
away with a characteristic time of decay of the order of

LZ

- _ 2

Ty = T =L H, 9 (3.4)
m

For ordinary conductors the time of decay isvery small.
If we consider, for example, a copper sphere of radius 1 meter, we find
that T is less than 10 seconds. For a celestial body,however, because of
the Targe dimensions, the time of decay can be very large. For the

Earth's core, considering it tobemolten iron, the time of free



Y .

decay is approximately 10* years, while for the general magnetic

field of the Sun it is found to be of the order of 10%° years.

4. FREEZING OF THE MAGNETIC FIELD LINES TO THE PLASMA

A completely different type of behavior appears when
Rm >>1. In this case the flow term dominates over the diffusion

term and Eq. (2.4) reduces to

_—=YX(EXE) (Rm>> 1) (4.1)

This equation implies that, in a highly conducting fluid, the magnetic
field lines move along exactly with the fluid, rather than simply
diffusing out. Alfven has expressed this type of behavior by saying
that the magnetic field Tines are "frozen" in the conducting fluid.

In effect, the fluid can flow freely along the magnetic field lines,
but any motion of the conducting fluid, perpendicular to the field

lines, carries them with the fluid.

In order to show this implication of Eq (4.1), it is
convenient to consider, initially, the concept of magnetic tubes of
force, which are used to visually describe the direction and magnitude
of B at various points in space. One can think of the space
pervaded by a magnetic field as divided into a large number of

elementary magnetic tubes of force, all of them enclosing the same
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magnetic flux A g If AS is the local cross sectional area of an
elementary magnetic tube of force (Fig.1), then the magnitude of B,

at the local point P, is equal to A @B/AS. According to this definition,
the magnitude of B is everywhere inversely proportional to the cross

sectional area of the elementary tubes of force.

Let us now consider a closed Tine whose points move
with velocity u in a space pervaded by a magnetic field. Assume, for
the moment, that u is an arbitrary function of position and time (not
necessarily equal to the fluid velocity), with the result that the
closed curve may change in shape, as well as undergo translational and

rotational motion. Let C] denote the closed curve at time t, bounding

Fig. 1 - Elementary magnetic tube of force. The magnitude of
B ,at the noint P,is equal to A g / AS.
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the open surface S(t) = 81. At a time At later, let C2 and S(t+At)=S

2
denote the corresponding closed curve and open surface (Fig. 2).

The flux of the magnetic field through an open surface S, at time t,

Magnetic Flux

d$ ==-(uAt) xdE

Fig.2 - A closed line bounding an open surface moving in
a magnetic field with velocity u (r , t), viewed
at the instants of time t and t + At. The shaded
area is the part of the cylindrical surface
described by an element d % of the contour curve.
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is given by

The rate of change of the magnetic flux through an open

surface S can be written as

dit“ss([,t). d§} =lzm+0tu2§(g,t+m) .dS -
-Jg(g,t). d§J (4.3)
S

B(r,t + At) = B(

=S
-
‘—f-
S—
+
t
l
>
-+
+
—~
S
S
SN—

so that, in the Timit as At ~ 0 , Eq. (4.3) reduces to
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To evaluate the term within brackets 1in the right-hand side of
this equation, we can use the fact that for any closed surface at

time t we have, from Gauss' divergence theorem,

é B.dS-= j V.BdV=20 (4.6)

since V . B =0. Thus, if we apply this result to the closed surface
consisting of §] " §2 and the sides of the cylindrical surface of

length u A t shown in Fig. 2, we obtain

?(E,t).[(gAt) X dg} =0 (4.7)

1
S—
1o
—
s
+
S~
a
1§ %]
-+
— -
1o
—
e |
—+
S~
(oN
t»n
1
O e

where the minus sign 1in the first term on the left-hand side is
due to the fact that the outwardly drawn unit normal to the surface
S] is in a direction opposite to that of the surface 52’ and

- (uAt) x dg is the element of area(pointing outwards) covered by the
vector element df of the closed curve in the time interval At. If
Eq.(4.7) is substituted into Eq.(4.5) and the limit At - 0 is

evaluated, noting that in this Timit 82 = S]= S(t), we obtain
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d ( _( 3§(Eat)
;[Jﬁ‘f’t)-d§]‘J T
S S
+ § B ([,E) . (uxd2g) (4.8)
C

The last term in the right-hand side of this equation can be

transformed using the vector identity

1 @

(7% ) I (g x d &) = - [u x B(r, t)] .d 2 (4.9)

and from Stokes' theorem we can write

é)(g x B(r,t) } de = J vV X [u X% B(r,t)] .ds (4.10)

This result is quite general.

Suppose now that the space is filled with a highly
conducting fluid, so that Eq. (4.1), valid for Rm >> 1, applies.
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If the velocity u in Eqg. (4.11) is taken as the fluidvelocity, we

conclude, from Eqs.(4.1) and (4.11) , that
— [ J B(r,t).dsS ] =3 (4.12)

which is a mathematical statement of the fact that the magnetic flux
linked by a closed line (bounding the open surface S) moving with
the fluid velocity u is constant. Note that this conclusion requires
that only the component of the velocity of the closed Tine perdendicu-
Tar to B be the same as the component of the fluid velocity perpen-
dicular to B, since the velocity component parallel to B gives no
contribution to the term u x B . Thus, Eq.(4.1) implies that the
lines of magnetic flux are frozen into the highly conducting fluid and
are carried by any motion of the fluid perpendicular to the magnetic
field Tines. There is no restriction, however , on the motion along
the field 1lines and, therefore, the conducting fluid can flow freely

in the direction parallel to B .

This result is expected on physical grounds since, as
the conducting fluid moves across the magnetic field, it induces an
electric field which is proportional to the component of the fluid
velocity perpendicular to B. However, if the
conductivity of the fluid is infinite, this perpendicular component
of velocity must be infinitesimally small if the flow of electric

current is to remain finite.
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In a fluid of finite conductivity the result (4.12) is

no longer true. Using Eq. (2.4) in the general result (4.11), yields

N Jvzg.ds (4.13)
o

where the right-hand side of this equation gives rise to a slipping of

magnetic flux through a closed material line.

5. MAGNETIC PRESSURE

5.1 - Concept of magnetic pressure

The concept of magnetic pressure is very useful in the
study of the confinement of high temperature plasmas. Under steady
state conditions the MHD equations reduce to the following closed set

of magnetohydrostatic equations

1]
x
1o
1}
=
1C
—
ol
[AS]
~
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[f we eliminate J from these equations, we obtain the equivalent set

of magnetohydrostatic equations involving only p and B ,

Vp = ( v x B)xB (5.4)

V . ?:0 (5'5)
The term in the right-hand side of Eq. (5.4) can be
written as the divergence of the magnetic part of the electromagnetic

stress dyad. Using the vector identity

(VxB)xB =(B.V)B -—Lv(Bz)
L2 LA ) ~

1
<
.
o

B)-——7. (18 (5.6)
9 = =

where 1 is the unit dyad, and using the following definition of the

magnetic stress dyad

which written out in matrix form (in a Cartesian coordinate

system) s



Sag s

)
2 _ p2
(B2 - B2/2) B, B, B, B,
2 _ Rp2
I(m) i T}“ B, B, (8; - 8%/2) B, B, (5.8)
- (0]
B, B B, B, (B2 - B2/2)

v. f 1p- 1M ] - 0 (5.10)

The stress is considered to be positive if it is tensile, and
negative 1if it is compressive. Thus, we see that - I(m) may be
defined as the magnetic pressure dyad, playing the same role as the

fluid pressure dyad.

It is instructive to consider a Zocal magnetic coordi-
nate system in which the third axis points along the local direction

of B , as shown in Fig. 3. For this Tocal coordinate system, the
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Fig. 3 - Local magnetic coordinate system with the z axis pointing

along the local direction of B.

off-diagonal elements of the magnetic stress dyad vanish, since

B = (0,0,B), so that

- B2/2u_ 0 0
im) . 0 - B2/2u_ 0
0 0 B2/2u_

(5.11)

Therefore, the principal stresses are equivalent to a tension BZ/ZUO

along the magnetic field lines, and a pressure 82/2uO perpendicular

to the magnetic field lines, similar to a mutual repulsion of the field

Tines. Alternatively, we can express Eq. (5.11) in the form

0 0 0 - B2/2y
T _ 1o 0 0 + 0
00 B/u 0

- B#/2u_

0

0

- BZ/ZUO

)

(5.12)
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so that the stress caused by the magnetic flux can also be thought of
as an zsotropic magnetic pressure BZ/ZUO and a tens7on Bz/uo along

the magnetic flux lines as if they were elastic cords (Fig. 4).

‘B%/ M,

B%/ K1,

Fig. 4 - The stress caused by the magnetic flux can be decomposed into
an isotropic magnetic pressure Bz/ZuO and a magnetic tension
Bz/uO along the field Tines.

This latter representation is very useful, since the isotropic pressure
BZ/ZUO can always be incorporated with the fluid pressure, resulting
in a decrease in the pressure exerted by the fluid, while the tension

Bz/uO along the magnetic flux lines gives the effect of the magnetic

forces.

5.2 - Isobaric surfaces

It is convenient to consider in the plasma hypothetical
surfaces over which the kinetic pressure is constant, called Zsobaric
surfaces. At any point, the vector vp is normal to the isobaric surface
passing through the point considered. From Eq. (5.1), we see that vp

is normal to the plane containing J and B, that is
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J.Vp=0 (5.13)

B.Vp =0 (5.14)

Therefore, both J and B lie on isobaric surfaces. To illustrate this
fact, consider the particular case in which the isobaric surfaces

are closed concentric cylindrical surfaces, with the kinetic pressure
increasing in the direction towards the central axis of the concentric
cylindrical surfaces. Thus,Vp is along a radial Tine directed toward
the axis. From Egs. (5.13) and (5.14) we see that neither B, nor J,
pass through the isobaric surfaces and, therefore, it follows that

the cylindrical isobaric surfaces are formed by a network of magnetic
field lines and electric currents. Further, in view of Eq.(5.1), the
magnetic field lines and electric currents, lying on the isobaric
surfaces, must cross each other in such a way that J x B is equal to
Vp. This situation is shown in Fig. 5. The maximum kinetic pressure
occurs along the central axis, which also coincides with a magnetic
field Tine. For this reason, this axis is usually called the

magnetic axis of the magnetoplasma configuration.

6. PLASMA CONFINEMENT IN A MAGNETIC FIELD

The subject of plasma confinement in a magnetic field
is of considerable interest in the theory of controlled thermonuclear
fusion. Consider, for simplicity, the special case in which

the magnetic field is along the z-axis, that is B = B Z.
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Ve

Magnetic
Axis

Isobaric Surfaces

Fig.5 - Isobaric concentric cylindrical surfaces, with Vop
along a radial directed towards the magnetic axis.
The lines of B and J 1ie on the isobaric surfaces
and cross each oth;r in such a manner that J x B
is equal to v p.

In this case, Eq. (5.10) simplifies to

( (p + B2/2u ) 0 0
w
I
v ] 0 (p + B*/2u) 0 =0
i 0 0 (p = B*/2u_
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2 (p+ ) =0 (6.3)
oy 2uo
2 o(p- B )0 (6.4)
9z ZUO

Also, fromV . B =0 , we have

9B
0z

since, in the Tocal coordinate system , B = (0,0,B). This last
equation, together with (6.4), implies that both p and B do not vary
in the direction of B. The solutions of Eqs. (6.2) and (6.3),

combined with this result, give

BZ
2u

(0]

(p+ ) = constant (6.6)

Therefore, in the presence of an externally applied magnetic field,

if the plasma is bounded, the kinetic pressure of the plasma decreases
from the axis radially outwards, whereas the magnetic pressure
increases in the same direction in such a manner that their sum is
constant, according to Eq. (6.6). The plasma kinetic pressure can be
forced to vanish on an outer surface 1if the applied magnetic field

is sufficiently strong, with the result that the plasma is confined

within this outer surface by the magnetic field.
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Let @O be the value of the magnetic induction
external to the plasma (which is the value at the boundary of the
plasma). Since the kinetic pressure at the plasma boundary is zero
(ideally), we can evaluate the constant in Eq.(6.6) by calculating it

at the boundary of the plasma. Therefore,

2 B
p + — = —— (6.7)
2110 Zuo

The maximum fluid pressure that can be confined for a given applied
field §0 is, consequently,
2
Bo

Pnax - - (6.8)
LlO

A device that can be used to confine a magnetoplasma
by straight parallel field 1lines is shown in Fig. 6, called a
theta (6) - pinch, since the effect responsible for the confinement
is due to electric currents flowing in the plasma in the azimuthal 6-
direction. The plasma 1is initially confined inside a hollow
cylindrical metal tube, whose side is split in the longitudinal
direction in such a way as to form a capacitor. When a high voltage
is discharged through the capacitor, the large azimuthal (8) current
produced in the metal tube produces a magnetic field in the
Tongitudinal (axial) direction inside the plasma. The electric
current, <nduced in the plasma, is also in the azimuthal direction,

but ina sense opposite to that on the metal tube.
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PLASMA

ENERGY
"~ STORAGE
CAPAGITOR

SWITGH

Fig. 6. Magnetoplasma confined by straight

parallel field lines ina theta-pinch device.
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The resulting J x B force acting on the plasma pushes it inwards,
towards the axis, until a balance is reached between the kinetic
pressure due to the random thermal motions of the plasma narticles,

and the magnetic pressure which acts to constrict or pinck the

plasma.

A parameter B, defined as the ratio of the kinetic
pressure at a point inside the nlasma, to the confining magnetic pressure
at the plasma boundary, is usually introduced as a measure of the
relative magnitudes of the kinetic and the magnetic pressures. It is

given by

6. D (6.9)
B%/2u
0 (0]

Note that B ranges between 0 and 1, since the field inside the plasma

is Tess than BO . From Eq. (6.7),we can also express the parameter

B as
B=1-=-( B/Bo )? (6.10)

Two special cases of plasma confinement schemes are the so called
low B and high B devices. In the Tow B devices, the kinetic
pressure is small in comparison with the magnetic pressure at the

plasma boundary , whereas in the high g devices  they are

of an equal order of magnitude ( B = 1)
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An important property of a plasma is its diamagnetic
character. Eq (6.7) implies that the magnetic field inside the plasma
is less than its value at the plasma boundary. As the kinetic pressure
increases inside the plasma, the magnetic field decreases. Under the
action of the externally aplied B field,the motions of the plasma
particles give rise to internal electric currents which produce a
magnetic field in a direction opposite to the externally aplied field.
Consequently, the resultant magnetic field inside the plasma is
reduced to a value less than the plasma boundary value. The electric
current, induced in the plasma, depends on the number density of the
charged particles and their velocity. Therefore, as the plasma
kinetic pressure increases, the induced electric current and the
induced magnetic field also increase, thus enhancing the diamagnetic

effect.
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PROBLEMS

Consider the energy equation involving the time rate of change
of the total pressure dyad p, derived in Problem 9.6. Show
that, when this equation is contracted with the unit dyad l

results in Eq. (1.21), whereas when contracted with the dyad

B B yields Eq. (1.22).

Derive an energy conservation equation, similar to Eq. (1.64),
but considering the Parker modified momentum equation and the

CGL energy equations, instead of Egs. (1.2) and (1.3).

Calculate the minimum intensity of the magnetic induction (B )

necessary to confine a plasma at:

(a) an internal pressure of 100 atm.

(b) a temperature of 10 keV and density of 8x 1015 cm™3.

A plasma is confined by a unidirectional magnetic induction B

of magnitude 5 Weber/m?. Considering that the plasma temperature

'15 10 keV and g = 0.4, calculate the number density of the

particles. If the temperature increases to 50 keV, what is the
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value of the B field necessary to confine the plasma,

assuming that g stays the same?

Calculate the diffusion time, s and the magnetic Reynolds
number, Rm, for a typical MHD generator, with L = 0.1 m,

u = 103 m/sec and o, = 100 mho/m. Verify that, in this case, D

is very short, so that inhomogeneities in the magnetic field

are smoothed out rapidly.

Consider a plasma in the form of a straight circular cylinder

with a helical magnetic field given by

Show that the force per unit volume, associated with the

inward magnetic pressure for this configuration, is

t1-s)

2
—vl[_B__}:—
S
Zuo ar

9 ( B2(r) ]
2u )

0]

and the force per unit volume, associated with the magnetic

tension due to the curvature of magnetic field lines, is

BZ
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12.7 - Use Eq. (4.1), for a perfectly conducting fluid, and the
nonlinear equation of continuity (1.1), to show that the change
of B with time in a fluid element is related to changes of

density according to

B B \
D {._:_ 1 = [._:_ v |l u
Dt 0 ) 0 - ) -
where
___g_i_+u.v
Dt ot o

Use this relation to establish that, in a perfectly conducting
fluid, the fluid elements which 1ieinitially on a magnetic

flux Tine, continue to 1ie on a flux line.

12.8 - The boundary of the Earth's magnetosphere, in the direction of
the Earth-Sun Tine, occurs at a distance where the kinetic
pressure of the solar wind particles is equal to the (modified)
Earth's magnetic field pressure. Show that the distance of the
magnetopause from the center of the Earth, along the Earth-Sun

line, is given approximately by

2 Y1/e
R_[ZBO /R

2
\Y
UODS s
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E
solar wind, Vs is its undisturbed speed, and B, is the surface

where R_ is the Earth's radius, P is the mass density of the

value of the undisturbed Earth's magnetic field.

Consider a cylindrically symmetric plasma column(s/5z = 0;
3/36 = 0), under equilibrium conditions, confined by a magnetic
field. Verify that, in cylindrical coordinates, the radial

component of Eq. (5.1) becomes

Therefore, obtain the following basic equation for the

equilibrium of a plasma column with cylindrical symmetry
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Give a physical interpretation for the various terms in this

equation.
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