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CHAPTER 18

WAVES IN HOT ISOTROPIC PLASMAS

1. INTRODUCTION

We consider in this chapter the propagation of small
amplitude waves in unbounded hot plasmas which are close to equilibrium
conditions, from the kinetic theory point of view. The problem is
examined using the Viasov equation and only electron motion is
considered. The ions, in view of their greater inertia, are assumed to
stay immobile. A major point of this chapter will be to emphasize those
effects which arise when the Vlasov equation 1is used, and which were
missing when the problem was treated using the cold and warm piasma

models (Chapters 16 and 17).

The treatment presented in this chapter is restricted to
isotropic plasmas, in the absence of an externally applied magnetic
field. It is shown that the plasma waves can be separated into three
groups, the first group being the longitudinal plasma wave, and the
second and third groups being the two different polarizations of the
transverse electromagnetic wave. The chapter ends with a brief
discussion of plasma instabilities which arise from the interaction of
the plasma particles with the wave electric field. To illustrate the
wave-particle interaction phenomenon we describe just one important

example, the two-stream instability.



2. BASIC EQUATIONS

The relevant equations for the kinetic theory treatment
of small amplitude waves in an electron gas of infinite extent are the
Vlasov and Maxwell equations. The Vlasov equation, satisfied by the

electron distribution function f([,y,t), can be written as

F
+ V. Vf(r:!at) + - - [E(E:t) + ! X ﬁ(r:t)] + ._EXt } *

" va(rszst) =0 (2-1)

where Eext denotes any force externazlly applied to the plasma, and
E(r,t) and B(r,t) are the internal smoothed, self-consistent,
macroscopic electric and magnetic induction fields associated with the
distributions of charge density and charge current density inside the

plasma. The fields E(r,t) and B(r,t) satisfy Maxwell equations

Y'E(Est) = pc(r’t)/ED (2-2)
veB(r,t) = 0 (2.3)
aB(r,t)
v x E(r,t) = - -~ (2.4)
ot
1 3E(r,t)
Y X E(Cst) = UOQ(E:t) + — e (2-5)
ce at

where the charge and current densities are given, respectively, by

plrst) = L an (r.t) =7 q [ f (r.v,t) d*v (2.6)
o o

v



J(r,t) =} qana(g,t)gu(g,t) =14q, v fu(g,!,t) d3y (2.7)
o o
v

Eqs. (2.1) to (2.7) form a complete self-consistent set of equations,
which were first introduced in section 7 of Chapter 5. 1t is worth
noting that even though there is no explicit collision term in the
Vlasov equation (2.1), an important contribution to the charged
particle interactions is included through the internal self-consistent

electromagnetic fields.

3. GENERAL RESULTS FOR A PLANE PLASMA WAVE IN A HOT ISOTROPIC PLASMA

Consider an unbounded uniform electron plasma with a
fixed neutralizing ion background and without any external field
present. This is obviously an equilibrium arrangement. Suppose that
some electrons are slightly dispiaced from their equilibrium position.
As a result of this small space-dependent perturbation in the electron
gas, some sort of oscillatory or wave phenomenon can be expected to
arise as a consequence of the electric fields produced by charge
separation. The ions, because of their much larger mass, can be
assumed to remain nearly stationary during the process, since the
frequencies of interest are sufficiently high. Since we are dealing
with small deviations from equilibrium, the equations can be
linearized, that is, the products of two nonequilibrium quantities,

which are considered to be of second order, can be neglected.

3.1 - Perturbation charge density and current density

To describe small deviations from equilibrium we express

the electron distribution function in the form



Flr,v,t) = Tolv) + fulr,v,t) (|fF1] << fo) (3.1)

where fo(v) is the equilibrium distribution function, considered to be
homogeneous and isotropic, and filr,v,t) is a perturbation in the
distribution function, always small compared to fy,(v). Before the
application of the perturbation the plasma is in equilibrium, so that
the macroscopic self-consistent electric and magnetic fields as well as
the charge and current densities vanish throughout the plasma. The
gquilibrium number density of the electrons is everywhere the same as

that of the jons, and is given by

ne = { folv) d3v (3.2)

v

Since fi(r,v,t) is a first order quantity, the internal electric and
magnetic fields that arise due to the perturbation are also first
order quantities. From (2.6} the perturbation charge density is given

by

p(r,t) = eng -eJ flr,v,t) d°v (3.3)

v

Using (3.1) and (3.2), we obtain

Oc

(r,t) =-e J filr,v,t) d3v (3.4)

v
The perturbation current density is obtained from (2.7}, noting that

the ions are assumed to stay immobile,

J(r,t} =-e [ vf(r,v,t) d*v (3.5)

v




Substituting (3.1) into (3.5), and considering that the current

density in the equilibrium state vanishes, that is,

- e J yfolv) d®v = 0 (3.6)
v
we find
J(r,t) = - e J vii(r,v,t) d®v (3.7)
v

3.2 - Solution of the linearized VYlasov equation

Substituting (3.1) into the Vlasov equation (2.1),

without any external fields present, we obtain

afl(rsvat)
T T e vevfi(r,v,t) - S [E(r.t) + v ox B(r,t)1-7,folv) -
at - m. R ~
e
- S [E(r,t) + v x B(r,t))- 7,Fa(r,v,t) = 0 (3.8)
m
e

Since gff,t), B(r,t) and f,(r,v,t) are first order quantities, the
last term in the left-hand side of (3.8) involves the product of two
first order quantities and therefore it is of second order and can be
neglected as compared to the remaining terms. Thus, the Zinearized
Vliasov equation becomes

af (r,v,t)

+ v 7fa(r,y,t) -2 [E(n,t) + vx B(r,t)1-7,fo(v) = 0 (3.9)

at me

A convenient way to solve this equation is to use the

method of integral transforms. For an initial-value problem the



equation is simplified by taking its Laplace transform in the time
domain and the Fourier transform with respect to the space variables.
This method reduces the differential equation to an algebraic equation
which can then be solved for the desired transform variables. Next, 1in
order to regain the original variables, we have to invert the Laplace
and Fourier transforms of the dependent variables. This mathematical
treatment, however, involves the calculation of some complicated
contour integrals in the complex plane, which is out of the scope of
this text. Therefore, in order to simplify the mathematical analysis of
the problem, without Tosing the essentials of the plasma behavior under
consideration, we shall look for periodic harmonic solutions of

fl(r,!,t) in the space and time variables, according to
filr,v,t) = f1{v) exp (ik « r - iut) (3.10)

where the vectors involved are referred to a Cartesian coordinate

system. With this special choice for fi{r,v,t), (3.4) and (3.7} become

pc(f,t) = p. &Xp (ik - r - dwt) (3.11)
J(r,t) =Jexp (ik-r - iut) (3.12)
where
Pe =~ e [ fl(!) d3v (3.13)
v
J=-¢8 [ v falv) dv (3.14)
v

Consequently, the macrescopic self-consistent electric and magnetic

fields have the same harmonic time and space dependence,



E(r,t) = E exp (iker- iwt) (3.15)

103
——
-
-
=
st
1
lws)

B exp (ik-r- iwt) (3.16)

Furthermore, sice we are assuming that the equilibrium distribution
function, fo(v), is a function of only the magnitude of v, we have the

very useful identity

(3.17)

so that, for the term involving the magnetic force in (3.9), we have

[v x B(r,t)1. 7 folv) = [v x B(r,t)]. 2 dflv) (3.18)
v ody

Substituting {3.10), (3.15), (3.16) and (3.18) into the linearized

Vlasov equation (3.9), we get

- dufi(v) + k. vFi(y) - = E. 7 folv) = 0 (3.19)
me
whose solution 1is
ie E . YV'FQ(V)
filv) = — ———— (3.20)
me (o - E !)

For definiteness we shall consider the direction of
propagation of the plane waves as being the x direction, that is,

k = k X. Therefore, k.v = kv, and (3.20) becomes

(3.21)

je E. v fo(v)
fi(v) = ETav
my

w-kv)

With this orientation chosen for the coordinate system, the longitudinal

component of the wave electric field is Eg = Exg, whereas the



transverse component is E, = Eyg + Ezg, as illustrated in Fig. 1.

Fig. 1- I1Tustrating the relative orientations of the wave propagation
vector k and the wave electric field E in a Cartesian
coordinate system.

3.3 - Expression for the current density

Next we derive expressions for the Cartesian components
of the charge current density, J. Substituting (3.21) into (3.14), we

obtain

o, [ v [E.9 folv)]
J - - le J - e v T sy (3.22)

(w- kVX)

Note that the x component of this equation is given by

d3y (3.23)

m
e
v

J jer [ Yy [E- Tyfolv)]
(w - ka)



where the triple integral with respect to the three variables Vos vy

and v, range from -« to +=. Using the identity (3.17), we note that

J d*v = 0 (for j=y,z) (3.24)
(w - kvx) v dv

v

since the integrand is an odd function of Vj’ for j=y,z. Consequently,
the only contribution from E - gvfo(v) to the x-component of J comes

from the term Exafo(v)/avx, so that {3.23) can be written as

] .. e c [ Vx B'FQ(V)

.=
) {w- kvx) av

d3y (3.25)

m

e X

Similarly, the y and z components of (3.22) are found to be given by

. v ofy (v)
3y = - ie? Ey S S d3v (3.26)
Mg (w - kv, ) avy
u(V)
JZ = E d3v {(3.27)
(w- kV BVZ

v

Note that Jx, Jy and JZ are linearly related to Ex’ Ey and Ez’
respectively, a feature which is a consequence of the plasma isotropy,

as expected in the absence of an external magnetic field.

3.4 - Separation into the various modes

To complete the specification of the problem we use the
two Maxwell curl equations (2.4) and (2.5), which for the fields given
y (3.15) and (3.16) reduce to



ik X x

m
n

ik X X

g
1

In Cartesian coordinates, X x E = E

of the vector equations (3.28) and

1wB

i
ugd - =E
C2

me =0
mBy = - kEZ
mBZ = kEy
and
0 = pod, - 9
Hovy o2 X
. iw
- - L
Tk BZ UDJY 2 Y
'IkBy—ngL]Z- EZ

CZ

- 10 -

(3.28)

(3.29)

1M}

y Z- E, ¥, so that the components
(3.29) become, respectively,

(3.30)
(3.31)

(3.32)

(3.33)
(3.34)

(3.35)

where the components of J are given by (3.25) to (3.27).

An examination of these equations shows that the

electromagnetic fields can be separated into four independent groups,

each one of them involving the following variables:

(a) 9., E, [Eq. (3.33)1
(b) B, [Eq. {3.30)]
(c) Jy, Ey

(d) 9, E,,

, B, [Egs. (3.32) and (3.34)}]

By [Eqs. {3.31) and (3.35)]
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The first group contains an electric field and a current
density in the direction of the propagation coefficient k, that is,
parallel to the wave normal of the initial plane wave disturbance
produced in the plasma, but contains no magnetic field. This group
gives the longitudinal plasma wave mode, since the average particle
velocity is also in the direction of k. The second group does not
constitute a natural wave mode, since it has no current associated with
it and therefore is not influenced by the collective electron motion.
It only indicates that there is no magnetic field associated with the
Tongitudinal plasma wave so that these waves are electrostatic in
character. The third and fourth groups invelve electric and magnetic
fields which are perpendicular to k. The electric current density and
therefore the average particle velocity are also perpendicular to the
wave normal direction. Note that E, B and k form a mutually
perpendicular triad. These two groups constitute the two different
polarizations of the transverse electromagnetic wave mode, In the next
section we discuss the characteristics of the Tongitudinal plasma wave.
The characteristics of the transverse electromagnetic wave are

discussed in section 5.

4. ELECTROSTATIC LONGITUDINAL WAVE IN A HOT ISOTROPIC PLASMA

4.1 - Development of the dispersion relation

The intrinsic behavior of the longitudinal plasma wave is
contained in the dispersion relation. This equation, which relates the
variables k and w», determines the natural wave modes of the system. To
obtain the dispersion relation for the longitudinal plasma wave we use

(3.33) with J, as given by (3.25),
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Dividing this equation by EX =z 0, yields the dispersion relation for

the longitudinal plasma wave

v Efg(V)

o

d3v (4.2)

It is convenient to simplify Eq. (4.2} by noting that

vy afqe(v) 1 afp(v) w w Bfg(V)/an
d3v = — +] Jd®Y = — | ———— 23y
(kvx—m) Vv k BV, kvx—m k (kvx-w)
v Y v
(4.3)
since
+co oo V)( = 4
IM &y = J dv J dv_[fy(v)] 0 (4.4)
y z
v
X -0 - Vv = =0
v X
because fo(v) vanishes at both 1imits. Therefore, the dispersion
relation {4.2) becomes
(J.)2 afg(\/)/av
1 = pe A d3V (4'5)
ngkz (VX-LL!/k)
v

A useful alternative form of this dispersion relation
can be obtained by an integration by parts in the vy variable. Thus,

using the relation
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for the integration with respect to v, in Eq. (4.5), where

_ N -1 _ . _ -2

U= (VX w/k) dl = (Vx w/k) dVX

(4.7)
Vo= fo(v) dv = 3fov) dv,
BVX
the triple integral in (4.5) becomes
+oo +oo o - te
afo(v)/ov, £ () Vy = F
— dv, dvy dv, = dvy dv, — +
) (VX - w/k) ) T (Vx— w/k) v = e
.'-OD
+J _falv) dv,
2
) (Vx' w/k)
S I 1477 IIE (4.8)
(v, - w/k)?
X
v
Therefore, the dispersion relation (4.5) can also be written as
2
1 = wpe folv) d3v
nok? (vx--w/k)2
v
(4.9)

W

2
kEe Tl - w/k)72>,

where the average value with the subscript 0 is calculated using the

equilibrium distribution function f,.



- 14 -

4,2 - Limiting case of a cold plasma

Before proceeding further with the analysis of the
dispersion relation (4.9), it is instructive to examine the results for
the Timiting case of a cold plasma, for which the electron velocity

distribution, under equilibrium conditions and at rest, is given by

folv) = ng 5(Vx) a(vy) a(vz) (4.10)

where §(x) is the Dirac delta function, defined by

._}.CD
6{x) =0 for x =0; f §(x) dx = 1 (4.11)

- 0D

Substituting (4.10) into the dispersion relation (4.9) and using the

following property of the Dirac delta function

+ w

[ fx) 8(x - xp) dx = f(xq) (4.12)
we obtain
2
1 = wge ( Sty slvy) stvy) d3v (4.13)
k v (VX - w/k)?
or
w? = w? (4.14)

in agreement with the cold plasma result (section 4 of Chapter 16).
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4.3 - High phase velocity limit

Another important result can be immediately obtained from
the dispersion relation (4.9}, for the 1imiting case in which the wave
phase velocity, w/k, is very large compared to the velocity of almost
all of the electrons, In this high phase velocity limit it is
reasonable to expand (1 - kvx/m)'2 into a binomial series and retain
only the first few terms, since kvx/m << 1. Thus, recalling that for

any |e| < 1 we have

1

z—————;;— =1 + 2c + 3e? + 4% 4+ ... (4.15)
1 -¢

the dispersion relation (4.9) becomes (for |Vx| << |w/k|},

w kv -2

1=_pe_ < ___....)..(. >
UJZ w 0
2
[it) 2

L S . S SO (4.16)
2 b4 2 X

i) 1] [

Since the plasma is considered to be stationary, we have Vo = Uy =0,

so that the second term in the right-hand side of (4.16) vanishes. To a
first deqree of aproximation we obtain w? = w;e, which is again the
cold plasma result given in (4.14). For a small correction to the cold
plasma result, we consider the next non-zero term in the expansion
(4.16). Assuming that the equilibrium distribution function is

isotropic and using the definition of absolute temperature,

k, T
€ (4.17)

2 2
< 3 = < > =
VX 0 CX 0

w|—
A
g
Y
o
]
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where Te is the temperature of the electron gas at equilibrium and kB

is Boltzmann's constant, the dispersion relation (4.16) becomes
kB T

2
B ek,
2

w? = 2 1T + 3

v (4.18)
mew

Since the second term in the right-hand side of (4.18) is very small
in the high phase velocity 1imit, we can replace w, in just this small
term, by ©pe (which is the value of w when this term is zero) and
write (4.18) as

w2 = w? + 3| B8 g2 (4.19)

This results is knowh as the Bokm—Gross dispersion relation. Note that
it is identical to the result obtained using the warm plasma model
when collisions are heglected and when the ratio of snecific heats, v,
is taken equal ﬁo 3. Since vy 1is related to the number of degrees of

freedom, N, by the relation
v = (2 + N)/N (4.20)

we see that y=3 corresponds to the case when the electron gas has one
degree of freedom (N = 1), so that the electrons move only in the

direction of wave propagation.

[f additional terms are retained in the binomial series
expansion (4.16), additional aproximations can be obtained for the
dispersion relation w(k). In all these approximations we find that w

remains real, so that the longitudinal plasma wave has a constant
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amplitude in time. There is neither temporal growth nor decay. It is
usual to terminate the approximations to w(k) at the stage given by
(4.19). Using the definition of the Debye length, Aps the Bohm-Gross

dispersion relation can be rewritten as

w? = m;eﬁ + 3 kzxé) (4.21)

4.4 - Dispersion relation for Maxwellian distribution function

The longitudinal wave dispersion relation (4.5) is now
evaluated for the important case when fy{v) is the Maxwellian
distribution function for a stationary equilibrium plasma (g = 0),

m 3/2 m_v?
folv) = ng | —=— exp | - — (4.22)

2 kBTe ZkBTe

In this case, a careful analysis of (4.5) shows that « has a negative
imaginary part, causing a temporal damping of the electron plasma

wave. This temporal damping, which arises in the absence of collisions,
is known as Landau damping and will be discussed in the next

sub-section.

For the moment, we evaluate the dispersion relation for
the longitudinal electron wave using the Maxwell-Boltzmann equilibrium

distribution function. Substituting (4.22) into (4.5) yields

2
. e af s (v)/avX o
No k2 (vX - w/k)
v
2
__ Vpe { (m,/kp To) vy folv) d3v
nok® (vy = w/k)

v



2k T X

(4.23)

The second and third integrals are each equal to (ZkaTe/me)l/z. It is

convenient to introduce the following dimensionless parameters

C - (w/k}
- 1/2
(2kBTe/me)
Vv

X
(2kBTe/me)1/2

so that the dispersion relation (4.23) reduces to

2 +
1= - “ne | Me 1 [ qexp(- q%) dq
K2 | kg Tl 7 J (q - C)
Using the notation
+ o ,
1) - 1 q exp(-g9?) da
Vo (q - C)

-0

. - 2. 2
and substituting (kBTe/me)/mpe by Aps (4.26) becomes

k2 AE +I1(C) =0

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

The evaluation of the integral I{C) is not straightforward

because of the singularity at q = C, since for real w(k) the denominator
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vanishes on the real v, axis. For complex w(k), which corresponds to
damped [Im(w) < 03 or unstable [Im («) > 0] waves, the singularity Ties off
the path of integration along the real Vo axis, However, this

simplified derivation of the dispersion relation gives no indication

of the proper integration contour to be chosen in the complex Vo plane.
Possibie contours of integration are shown in Fig. 2 for the cases:

(a} unstable wave, with Im{w) > 0; (b) real w(k); and (c) damped wave,
with Im(w) < 0. Landau was the first to treat this problem properly

as an initial-value problem. If we are interested in the evalution of
the plasma after an initial perturbation, then the causality principle
demands that there should be no fields before the starting of the source.
According to the well known theorem of residues in complex variables,

the value of an integral in the complex domain with a closed contour

of integration, such as in Fig. 2, 1is equal to 2wi times the sum of
the residues within the closed path. The integral vanishes if there

are no singularities enclosed by the integration path. Thus, the nature
of the singularities of the integrand determines the behavior of the
fields after the initial pertubation, The correct contour prescribed

by Landau is aiong the real Vy axis, indented such as to pass below

the singularities, and closed by an infinite semicircular path in the

upper half of the complex Ve plane, as shown in Fig. 2.

This technique of integration around a contour closed
by an infinite semicircle in the upper half plane works if the
contribution to the integral from the semicircular path vanishes as its
radius goes to infinity. The integral I(C) given in (4.27), the way it

stands, cannot be handled by the usual method of residues, since the



- 20 -

integrand diverges for q = + i =, To put this integral in a form
suitable for evaluation by the method of residues, or by any other

method, note first that we can write

q

9 i (4.29)
(q - C) (g - C)
so that we have
4+
I(C) =-:%F- 1T+ ; f - exp (-q*) dq (4.30)
Im(qg) Im(g)
h )
&/
Re (g)
(2) elg (5) Re(q)
Im(q)
() Re(
(c) g=C ea)

Fig. 2 - Contour of integration in the complex vy plane for

(a) Im{w) > 0, (b) Im{w) = 0 and (c¢) Im{w) < 0.
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The first integral in the right-hand side of this equation is equal
to unity. Therefore,
+ o
1(C) = 1 + - { exp(- a7) 4 (4.31)
v (q - C)

- 00

For purposes of integration it is convenient to introduce a parameter s

in the integral of Eq. (4.31), by defining
+ oo

6(C,s) = 1 [ exp(-5q?) dq (4.32)
v {q - C)

Hence, we identify the integral I(C) as

I{C) = 1 + C G(C,1) (4.33)
so that the dispersion relation (4.28) becomes

k2 AB +1+CG(C,M) =0 (4.34)

The purpose of defining 6(C,s), as in (4.32), is that this relation
allows us to evaluate G(C,1) through a transformation of the integral
into a differential equation. Initially, note that the integral in

(4,32) can also be written as
oo

1 (q + C)

/T (g> - C%)

- GO

G(C,s) = exp{-sq®) dq (4.35)

The first integral in the right-hand side of this equation vanishes,
since the integrand is an odd function of g. Therefore, an alternative

expression for G(C,s) is
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+DG

6(C,s) = — { expl-sa°) 44 (4.36)
v (g% - C*)

-

Taking the derivate of (4.36) with respect to s, yields

+ o

( .
d G(C,s) _ _ _C i 92 exp(-sq”)

dg
ds Ve (9> - C*)

(vl

+ o=

c? 2

‘ { 1 4 ———— | exp(-sqa®) dq (4.37)
(q* - C%)

Evaluating the first integral we obtain -C/¥s so that

daC,s) _ . _C _¢2g(c,s) (4.38)
ds Vs

Next, multiply this differential equation by exp{ s C*) and note that

4 -G(C,s) exp( s Cz)i\ = exp(s C?) [M + C? G(C,s)} (4,39)
ds | ds

Thus, it is possible to write Eq. (4.38) in the form

d | G(C,s) exp{sC?) ] oL exp( s C*) (4.40)

ds - s

Upon integrating both sides of this equation froms = 0 to s = 1, gives

1

a(c,1) exp(c?) - 6(C,0) = -C { expls C*) ds (4.41)
'

0

or, rearranging,
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6(C,1) = G(C,0) exp(-C?) - C exp(-C?) E’ip-ff-f—) ds  (4.42)
S

The integral G(C,0) is easily evaluated for the case of weak damping
(large phase velocity). In this case, the pole at Ve s w/k Ties near

the real Vo axis, and G{C,0) can be evaluated as an improper integral

as follows:
+ 0
6(C,0) = —— [ dg
d . (g -0)
+X
= Lim 1 dq
X > e V”F‘ (q = C)
- =X
= gim 1 i lo- X-C
K > o VT X+ C
=_..1._ gn (-1) =__1_ jz,n(eiﬂ)
v e
=i V7 {4.43)

The integral C(C,0) can also be evaluated by the method of residues,
using an appropriate contour of integration in the complex g-plane
[as shown in Fig.2(b)], which gives the same result (4.43) for the

Cauchy principal value of the integral. Therefore, (4.42) becomes

1

G(C,1) = i V1 exp(-C?*)- C exp(-C?) exp(s €%) ds (4.,44)
Vs
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The remaining integral in the right-hand side of (4.44) can be rewritten
in a different form by changing the variable s to W*/C*. Consequently,

ds/vs = 2 dW/C and

G(C,1) = 1 /7 exp{- C?) -2 exp(W? - C*) dW (4.45)

f=]

Although this integral cannot be evaluated explicitly, it is now in a

more convenient form for numerical calculation.

Substittuting (4.45) into (4.34), results in the following

expression for the dispersion relation

'S AE =1+ 1 /7 Cexp(-C*) -2C exp(W? - C*) dW  (4.46)
J
0
The integral remaining here can be evaluated numerically and its values
have been extensively tabulated*, while the imaginary term is known as
the Landau demping term. The formal procedure to evaluate k as a

function of w (or vice versa) from this dispersion relation, consists

in choosing a given value of C i.e. of (w/k)/(2 k, Te/me) 1/2 and find

* Remark. See, for ewample B.D. Fried and S.D. Conte, "The Plasma
Dispersion Function", Acad. Press, N.Y., 1981. The function G(c,1),

defined here, is the same as the plasma dispersion function defined

by Fried & Conte as

+CD
2
2(r) = —— expl= 27) 4,
yro (x - gJ

with £ = C and x = gq.
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the (tabulated) corresponding value of the dispersion function from the
tables. Eq. (4.46) can then be used to evaluate the propagation

coefficient k.

4.5 - Landau damping

In order to show that (4.46) predicts the temporal
damping of the longitudinal plasma wave, it is convenient to perform an
approximate evaluation of the dispersion relation. The special case of
high phase velocity and weak damping can be obtained in a straightforward
way and, at the same time, provides a partial check on the accuracy of
the Bohm-Gross dispersion relation obtained earlier. Furthermore, an
explicit expression is obtained for the imaginary part of w. Thus, for
the limiting case of C >> 1, lets us find an approximate expression

for the dispersion function integral

C
I, = 2C { exp{W? - C2) dW (4.47)

0

As the first step, Eq. (4.47) can be rewritten by transforming the

variable of integration to £ = C* - W*, which gives

c2 ( -1/2
I, = I - exp (- &) dg (4.48)
C?_

0

Since £ is less than C® over the entire range of integration, we can
expand (1 - £/C%)"Y%2 4in a binomial series,

-1/2

£

- — =1 + +

c? 2¢* 8c*

+ 4. +
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n
+1x3x...x(2n-1)[ 2 ‘ .. (4.49)
CZ

If this expansion is substituted into Eq. {4,48), and each term is

integrated by noting that

CZ
[ [—5—1" exp (-¢) de =
CZ

0

(4.50)

__n -exp(-Cz)‘—1+n+n(n_1)+...+ n!]

(c2)m c2 cH (c2)"
we find
I, =1 +—1—+i+ vee + 1x3x...nx(2n-1) + ... + 0Texp(-C*)]
2C%  4ct (2C%}

(4.51)

where O exp(-C2) ] denotes terms of order exp (-C?). Although this

is an asymptotic expansion, and actually diverges when n > =, a good
estimate of I, can be obtained by retaining only the first few terms,
provided C is large. Therefore, on retaining only the first three terms
of (4.51), the dispersion relation (4.46) in the high phase velocity

1imit becomes
kK2 Ay ==+ —— - 1 vr C exp (- C?) (4.52)

With the help of Eq. (4.24), which defines C, and the definition of the
Debye length 1y, Eq. (4.52) can be written as

w? [ “pe
L= 1+ 3K A pe
UJ2 W

pe
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3 2
- An2 [ | exp | - — = (4.53)
k® A L “pe 2k 25 “pe

In the high phase velocity limit the second term in the right-hand side
of (4.53) is small as compared to the first one, and the third term is
exponentially small as compared to the first one, so that in this

limit the plasma oscillates very close to the plasma frequency wpe'
Note that this Timit corresponds also to a long-wavelength limit. Thus,

(4.53) can be further approximated as

w? = 02+ 3k* EE—IE -
pe
Ma

IVr/2 W - w2
- pe ex -— pe .3 (4.54)

3 372

k (kB Te/me) / ] 2k (kB Te/me) 2
where in the right-hand side of (4.53)we have replaced w by Vg except

in the exponetial term where w® has been replaced by the Bohm-Gross
result (4.19). Note that the first two terms in (4,54) correspond to
the Bohm-Gross result, whereas the imaginary term is new. Separating w

in its real and imaginary parts, according to w = W, + 1wi, and noting

_ (.2 . . _
that w; = (w )i/(zmr)’ we obtain ({taking o = mpe)
/8 Wt w2 3
Wy = - Pe T exp | - — PE - (4.55)
3
k (kB Te/me) 2k (kB Te/me) 2

This negative imaginary term in w leads to tempcral decay, since for a

standing wave problem (where k is real) the waves are proportional to
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exp (ikx - iwt) = exp (ikx ~ iw t) exp {w.t) (4.56)
r 1

This damping of the longitudinal plasma wave with time was first pointed
out by L.D. Landau and, for this reason, the expression (4.55) is

usually called the Landau damping factor.

This temporal decay of the longitudinal plasma wave
amplitude arises in the absence of dissipative mechanisms, such as
collisions of the electrons with heavy particles. The physical mechanism
responsible for collisionless Landau damping is the wave - particle
interaction i.e. the interaction of the electrons with the electric
field EX cos(kx - wt) of the wave. The electrons that initially have
velocities quite close to the phase velocity of the wave are trapped
inside the moving potential wells of the wave and this trapping results
in a net {nterchange of energy between the electrons and the wave. For
the Maxwell - Boltzmann velocity distribution function we find that, for
small k, the phase velocity lies far out on the tail and the damping is
negligible, but for values of k cleose to 1/AD the phase velocity lies
within the tail, as shown in Fig. 3, so that there is a velocity band,
Av, around v = w/k, where there are more electrons in av moving initially
slower than w/k, than moving faster than w/k. Consequently, the trapping
of the electrons in the potential troughs of the wave will cause a net
increase in the electron energy at the expense of the wave energy.

This happens in the region where afu/avx is negative, like the one
shown in Fig. 3. In some cases, the initial velocity distribution of
the electrons may be appropriately chosen in such a way that w; becomes
positive. This would indicate an unstable situatidn, with the wave
amplitude growing with time. This happens when Bfn/BVX is positive at

vy = w/ K.
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[t is important to note that the Landau damping factor,
wi, 15 essentially due to the pole of the integrand in (4.31), which
occurs at the value of the electron velocity component vx(paraTlel to k)

equal to the phase velocity of the wave (w/k). This property is a

ig(v)

0 (wsk)

Fig. 3 - Equilibrium distribution function of the electrons
showing a velocity band, Av, around the phase velocity
(w/k), in which there are more electrons moving slower
than (w/k), than moving faster than (w/k).

mathematical manifestation of the fact that the wave-particle interaction
is effective only when the velocity of the electrons are very close to

the phase velocity of the wave.

5. TRANSVERSE WAVE IN A HOT ISOTROPIC PLASMA

5.1 - Development of the dispersion relation

The third and fourth independent groups of fields,

consisting of d Ey’ BZ and JZ, Ez, By, respectively, constitute the

y!
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two different polarizations of the transverse wave mode. In order to
deduce the dispersion relation for the transverse electromagnetic wave,
let us consider initially Egs. (3.26), (3.32) and (3.34). Substituting
B, form (3.32) into (3.34), yields

iw
E, = J (5.1)
Y €0 (k2c2 - 0?) Y

Combining this equation with (3.26), to eliminate Jy, we obtain

w2 wE i afy(v)
F =P8 Y y d?v (5.2)
Y nplw? - k%c?) (kv. = w) 93v
v X y

In a similar way, combining (3.27), (3.31) and (3.35) we find that the
equation for E, is identical to (5.2). The integral with respect to
v, in (5.2) can be simplified by an integration by parts

+ V, = 4+ 4

3fg{v) 4
dv = vy'Fo(v) - folv) dvy (5.3)

Yy, ¥
Yy v = e lw

Vv

The first term in the right-hand side of this equation vanishes, since
fo{v) vanishes at vy = e Thus, we obtain from (5.2) the following

dispersion relation for the transverse electromagnetic wave

w2 W
kzcz-wz = pe fo(V) dav (5.4)
nok (v, - w/k)
v X

5.2 - Cold plasma result

Again, we examine first the limiting case of a cold

plasma characterized by the distribution function (4.10). Substituting
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(4.10) into (5.4) and using the property (4.12) of the Dirac delta

function, we find

k2¢? = w* - w? (5.5)

This result is identical to the one obtained in Chapter 16 using the

cold plasma approximation [see Eq. (16.4.12)].

5.3 - Dispersion relation for Maxwellian distribution function

Considering fq(v), in (5.4), as the Maxwell-Boltzmann

distribution function, we find, after integrating over vy and v,

+ o

2
e e e c|  em(-a?) dg (5.6)
T {(q - C)

where, as before, we have introduced the dimensionless parameters C
and q, defined in (4.24) and (4.25), respectively. The integral
appearing in (5.6) is the same as the integral G(C,s), for s = 1,

defined in (4.32), so that we can write the dispersion relation (5.6) as

kc? - w? = w;e ¢ G(C, 1) {(5.7)

For weak damping we can use (4.45), obtaining
€

kc? - w? = w;e [idm C exp (=C?)-2C | exp(W® - C*) dW} (5.8)

0

5.4 - Landau damping of the transverse wave

In contrast with the Landau damping of the longitudinal

plasma wave, the Landau damping of the transverse electromagnetic
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wave, which is due to the small negative imaginary part of w in (5.8),
is negligibly small. For the purpose of establishing this result, it
is convenient to evaluate approximately the dispersion relation (5.8)
in the high phase velocity limit. In the Timit when C is very large we
can use (4.51). To obtain a first approximation to the real part of w,
it is sufficient to retain only the first term in (4.51), so that in

the high phase velocity 1imit (5.8) reduces to
2.2 _ 2 _ 2 ; 2 _r2
k*c® = w wpe+1/r mpeCeXp( %) (5.9)

This result is identical to the dispersion relation obtained using the

cold plasma model without collisions, except for the Landau damping term.

In the high phase velocity limit (C >> 1) the Landau
damping factor is very small and can be omitted in a first approximation,
with the result that (5.12) reduces to the cold plasma result (5.5).
From (5.5) we see that for w > ©5e the phase velocity w/k is greater
than ¢ (the velocity of electromagnetic waves in free space). Thus,

C is of the order of c/(2kB Te/me)lfz, and is therefore a very large
number. Since C is very large, the Landau damping of the transverse
electromagnetic wave is negligible. As a matter of fact it can be argued
that, for this case, the Landau damping term is really zero, since the
integration over Vy should really extend only from -c¢ to +c, while the
phase velocity is always gerater than c. This implies that the pole at
v, = {w/k), or equivalently at g = C, Ties outside the path of
integration along the real axis. Therefore, the conditions for efficient
wave-particle interaction are not met for the transverse electromagnetic

wave throughout the freguency range of propagation (since w/k is greater
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than ¢), resulting in no wave damping. On the other hand, for the
longitudinal plasma wave there are fréquencies for which the wave phase
velocity is of the order of the electron thermal velocities, so that
wave-particle interaction can take place efficiently, with the result
that the Landau damping factor becomes important for the Tower phase

velocity Tongitudinal waves.

6. THE TWO-STREAM INSTABILITY

As an example of a situation in which wave-particle
interaction leads to a growing wave amplitude, at the expense of the
kinetic energy of the plasma particles, we consider in this section
the two-stream instability. Although the instability arises under a
wide range of beam conditions, we shall consider only the simple case
of two contrastreaming uniform beams of electrons with the same number
density ny/2. The first stream travels in the x-direction with drift
velocity vp = ng, and the second stream in the opposite direction
with drift velocity vy = -vX. We shall assume that each particle, in
each stream, has exactly the stream velocity i.e. the particles are
assumed to be cold, so that the electron distribution function can be

written in terms of the Dirac delta function as

- '
folv) = —Em Ny [a(vx- vD) + 6(vx4-vD)] s(vy) a(vz) (6.1)
This distribution function is illustrated in Fig., 4 for the v,

component only.

For Tongitudinal plasma waves propagating in the x

direction (k = kx) in an electron gas, described by the Viasov
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equation, the dispersion relation is, from (4.9),

2 falv)
| - _pe [ v (6.2)
e k2| (v, - w/k)?
v X

Substituting (6.1) into (6.2), yields

I fO( Vx) :
i A i
DIRAG'S
DELTA
FUNGTION
-
-V 0 S Vy

Fig. 4 - I1lustrating the Vy component of the distribution
function (6.1).

s (T Eslv, - vo) sl + vp) " ("
w Calv, = vp)+8(v. +vy) ]

1 = _PE [ X D X D dv, ( a(vy) dv { a(vz)dvZ

2 (kVX - E.L\)z ) y

(6.3)
and integrating over each of the & functions, we obtain
w -
y - _be 1 + 1 (6.4)
2 (kVD - w)* (ka + w)?

This is the dispersion relation for longitudinal waves (with the wave
normal in the direction of the first electron stream) in a

constrastreaming electron plasma characterized by the distribution
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function (6.1). We assume that the propagation coefficient, k, of the
Tongitudinal plasma wave is real (standing waves), and investigate the

existence of temporal growth or damping of the wave amplitude.

Eq. (6.4) can be rearranged in the following polynomial

form
w' - B +C=10 (6.5)
where
B = m;e + Zkzvé (6.6)
C =z k% vi (k*vp - “Ee) (6.7)

Note that B is always positive, whereas C can be either positive or

2

s : 2 2 24,2 2 s
negative, depending on whether k v Wne or k vp < mpe,respect1ve1y.

The polynomial equation (6.5) has two roots for o, which are

- 2 ~1/2
o .. B . Bl ¢ {6.8)
2 2
L
o 2 ‘1/2
Bt S| B} ¢ (6.9)
2 2

In what follows it will be shown that an instability can
: 2,,2 2 : 2.,,2 2
arise only when k vp < Wpe* First we note that for k vp ? Wne we have
C>0, so that both «® and w} are positive real quantities and therefore
there can be no temporal growth or damping of the wave amplitude. On the

other hand, for kzvg < w;e we have C < 0, so that «} is still a positive
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real quantity, whereas w> is a negative real quantity. Therefore, w,

has two imaginary values (one positive and one negative). The positive
imaginary value of w, corresponds to an unstable mode, since for
wy = Twg, (with w,; real, positive) we have exp( -fuwt) = exp(wzit).

Hence, the growth rate is given by

- 2 1/2 1/2
by = - | | 2] - 5C < 0 (6.10)
2 2
- J
or, using (6.6) and (6.7)
( mze mze 3
wys =4 - | B ¢ K22 | 4 PE€ 4 k%2
29 [ 5 D ] [ 9 D l
(6.11)
1/2
/2
- k*v2 ( k2v2 - 2 ] }1 2.2 2
D D pe s k vp < Yoe

The maximum value of the growth rate (6.11) corresponds

to the minimum value of wl in (6.9), since mii = - w?. Examining the
2
2

2

derivate of w? with respect to k, we find that the minimum value of w;

occurs when kzvé = (3/8) w;e, and the corresponding value of w? is

- w;e/S. Consequently, the maximum value of the growth rate is

_
max - = mpe (6.12)

(mzi)

7. SUMMARY

7.1 - Longitudinal mode

The dispersion relation is (for k = kx)



N v afy (v)
{ - _Pe [ - X L ddy (4.2)
kv

Alternative forms for this dispersion relation are

w? afp (v)/av
1 = —E& i X gy (4.5)
ny k* (Vx- w/k)
v
Nz fo(V)
1 = it d%y (4.9)
Ny k2 { (VX - m/k)2
v

For fo(v) as the Maxwell-Boltzmann distribution function,

£

- kzxa =1+ 14 /7 Cexp(-€2) -2C | exp(W?-C?) du (4.46)

The cold plasma 1imit gives stationary electrostatic oscillations at

the plasma frequency,
W2 = ol (4.14)
The high phase velocity limit gives the warm plasma model result

(Bohm-Gross dispersion relation) for the electron plasma wave,

2 kB Te
2 e —— 2
W = wpe + 3 m k (4.19)

The Landau (temporal) damping factor is (with w = w. + iwi)

- — - (4.55)
2K (kg Te/me) 2

Ws = =

YW;B mh mz
i 3 > 7 P [ = >
k (kB Te/me)
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7.2 - Transverse mode

The dispersion relation is (for k = kg)

U.\2 w [ 'Fq(\f)

d3v (5.4)
ok ) (v - w/k)

For fy(v) as the Maxwell-Boltzmann distribution function,

C
k2¢? - ? = m;e [i /i C exp(-C*)- 2C exp(W? - ¢2)dW]  (5.8)

The coild and warm plasma 1imits give

k2c? = w? - w? (5.5)

The high phase velocity Timit gives

k?c? - w? = wze +1 VT m;e C exp(-C?) (5.9)

The Landau damping term is negligible, since Vph = C.
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PROBLEMS

Since the Tongitudinal plasma wave is an electrostatic

oscillation, it is possible to derive its dispersion relation
using Poisson equation, satisfied by the electrostatic

potential ¢(r, t}, instead of Maxwell equations. Consider the
problem of small amplitude Tongitudinal waves propagating in
the x direction in an electron gas (only electrons move in a
background of stationary ions), in the absence of a magnetic

field. Assume that

£(r, vy t) = folv) + faly) exp (ikx - fut)
E(r, t) = X E exp (ikx - fot)

where |f1] << f,, with fo(!) the nonperturbed equilibrium
distribution function, and where E(T, t) is the internal
electric field due to the small amplitude perturbation in the
electron gas. Using the Tinearized Viasov eguation (neglecting
second-order terms) determine the expression for f1(v) in terms
of £ = - V¢ and Yy f,. Using this result in Poisson equation,
obtain the following dispersion relation for longitudinal waves

propagating in the x-direction:

2
] ) (.Upe I (BfO/BVX) gv
nok? (vx - w/k)

v

Show that

(C ® n c2n
2¢ [exp(i? - €)W = 267 | (1) e
) n=0 1.3.5...(n-1 (@n+1)
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by making a series expansion of the integrand. For C << 1, that

. 1/2
is, for (w/k) << (2kg Te/me) / , show that the dipersion

retation for the Jongitudinal plasma wave reduces to

k? a2 = -

D 1

or
2 12 _ _ 2
k (kB Te/me) = - w

This result is the low-frequency limit of the result obtained
from the macroscopic warm plasma model, using the isothermal

- 1/2
sound speed of the electron gas V_, = (kg TE/me) /2,

(a) Show that the dispersion relation for the longitudinal
plasma wave {with k = k X), for the case of an unbounded
homogeneous plasma in which the motion of the electrons and

the ions is taken into account, can be written as

2 2
. mpe afee(v)/avx - wpi J afoi(v)/avx 4y
2
nok g (v, - w/k) ngk g (v, = w/k)

Show that this dispersion relation can be recast into the form

- _1_ 2 -2 2 _ -
1 = " _‘”pe < (vX - w/k) >0e* 9pi < (vX w/ k) >

where {with o = e, i)

f (v)

v (VX--m/k)2

e,
<

vy - oK) = L
n
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(b) For the cold plasma model, for which
foa(v) =n, a(vx) a(vy) 6(vz)

show that the dispersion relation reduces to

where p = memi/(me + mi) is the reduced mass of an electron

and an ion.

(c) In the high-phase velocity limit, show, by making a

binomial expansion, that the dispersion relation becomes

2
w sz
-2 1yl Bel ]
w t M J
2
w_ - sz- 3
+ 21 [ 1.3 B 1, J
w w? m

.i

Show that this equation can be written as

] s ko T
- —pe” "pi L1+3i"-— B h}
w? U

where T, is a "hibrid" temperature given by
2 2
- m Te +my T1
h 2
(me 5 mi)
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Under what conditions does this relation reduce to the Bohm-

-Gross dispersion relation for a warm electron plasma?

(d) Show that the dispersion relation of part {a) can be

expressed as

1

Ce
- 3 %y - 2 _r? -
1= s [ T+ivm? Ceexp( c3)-2C, [ exp(H Ce)dw J
De ~ 0
1T “ )
- ‘ 1+i/7" C, exp(-C%) -2C, J exp{W? - C2)dW ‘
2 Aﬁi _ i i 1 ) 1 -

where (with o = e, i)

{ £q kTu }1/2 - (w/k)
% (2K Tu/ma)l/z

For weakly damped oscillations (m1 << wr) and in the low
frequency and low phase velociy range specified by the

condition
C'i > | »> Ce

show that the dispersion relation reduces to

1ot ( 1+ VT €, - T ]

k? AB 2m. C?
e i e

Consequently, verify that the frequency of oscillation and the

Landau damping constant are given by
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=4
1

2 2 =-1/2
k(1 + k hDe) /

R CR
m. m

Note that the condition Ci >> ] >> Ce is fulfilled

A s 2 . . . .
only if T /T, >> (1 + k* a5 .), which implies in a strongly
nonisothermal plasma, with hot electrons and cold ions. Show

that in the long-wave range we find

2
kB Te ]1/

-

ms

which are essentially the same as the low frequency ion
acoustic waves that propagate at a sound speed determined by

the jon mass and the electron temperature,

A longitudinal plasma wave is set up propagating in the x
direction (k = k X) in a plasma whose equilibrium state is
characterized by the following so-called resonance distribution
of velocities in the direction of the wave normal of the

longitudinal plasma wave

fl) =g A —L— 5(v) stv,)

T (V; + AZ)
where A is a constant.

(a) Using this expression for fq(g) in the dispersion relation

for the longitudinal plasma wave [Eq. (4.9}], obtain the result
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2
. wpe _& J+°° dVX
(v, - w/k)*® (v; + A?)

- CQ

(b) Evaluate the integral of part (a) by closing the contour in
the upper half plane (note that there is a double pole at
v, = w/k and a simple pole at vy = i A), to obtain the
dispersion relation
1 - NSe 1

k2 (w/k + iA2)

(c) Analyse this dispersion relation (w = w. + i“i) to show
that the longitudinal wave in this plasma is not unstable and
determine the frequency of oscillation (mr) and the Landau
damping constant (mi). Compare this Landau damping constant
with the corresponding value for a Maxwellian distribution of

velocities, for the cases when k A << 1 and k AD = 1.

D

18.5 - Solve the linearized Vlasov equation (3.9) by the method of
integral transforms, taking its Laplace transform in the time
domain and the Fourier transform with respect to the space
variables. Then, determine the dispersion relation for the

modes of wave propagation in a hot isotropic plasma.

18.6 - Evaluate the integral G(C, 0), defined in Eq (4.32) with s = 0,
by the method of residues using the contours of integration in

the complex plane shown in Fig, 2.
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18.7 - Consider a longitudinal wave propagating along the x direction
in a plasma, whose electric field is given by

Ex(x, t) = E, sin (kx - ut)

(a) Show that, for small displacements, the electrons which
are moving with a velocity approximately equal to the phase

velocity of the wave will oscillate with a frequency given by

, [ ek, k ]1/2

Me

(b) Estabilish the necessary conditions for trapping of the

electrons by the wave.

18.8 - Consider the two-stream problem using the macroscopic cold
plasma equations for two beams of electrons having number

densities given by

Ni,2 = i% np + ny,2 exp [ i(kx - wt)]

and average velocities given by

Up,a= tUg + U o €XP [ 1(kx - wt}]

Consider that the electric field is given by

E, = Eo exp [ i(kx - wt)]

Determine the dispersion relation for this two-stream problem and

verify if the oscillations with real k are stable or unstable.
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