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The rotational motion of a satellite with a magnetic stabilization system is discussed. The motion is
described by a nonautonomous differential equation, with the magnetic moment of the satellite as a
parameter. The global phase portrait of the problem is investigated in a wide range of
magnetic-parameter values, using a numerical realization of the method of Pgiutarenaps.

New periodic solutions of the problem are found, and an analysis is carried out of the evolution of
the phase portrait and the bifurcation of periodic solutions with varying magnetic-parameter values.
The values of the magnetic parameter that must be avoided in the design of the satellite magnetic
stabilization system are discussed. 1©99 American Institute of Physics.
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The rotation of a satellite with a magnetic stabilization  analysis of the global structure of the phase space of the
system is discussed in many publications because of its above problem, using the method of Poincpoéint maps.
importance in space research. These publications are

largely confined to the analysis of periodic motions. It || PERIODIC OSCILLATIONS

turns out that the problem is also of interest from the

standpoint of the global phase portrait, the resulting bi- The equation of motion for the problem takes the form
furcations of periodic solutions, and the investigation of d2 6 sin 2u
chaotic motion. These questions are also discussed inthe gz taV1+3 siffusing= A+3sifu)?’ 1)

present paper.
whereg is the angle between the magnetic moment velgtor

of the satellite and the geomagnetic fiddd u is the angle
I. INTRODUCTION between the plane of the Earth’s equator and the radius vec-
tor of the satellite, andr is a dimensionless constant that

The rotational motion of an artificial Earth satellite is depends on the magnetic moment of the satellite and the
examined in the plane of a polar circular Kepler orbit. Themoment of inertia of the satellite relative to the principal axis
satellite is assumed to carry a permanent magnet, used feftat is perpendicular to the plane of the ortsiee Fig. L
the stabilization of the spacecraft along the Earth’s magnetic  Numerous authors have investigated the above equation
lines of force. The magnet axis points along the central prinsince it was originally formulated in Refs. 1 and 2. The basic
cipal axis of inertia of the satellite and lies in the plane of theresults concerned with the analysis of periodic oscillations
orbit. Only the magnetic moment is taken into account in thewere obtained in Refs. 2—8, which were largely confined to
analysis of the motion of the satellite center of mass. the m-periodic solutions of the forme(0)= ¢(7/2)=0.

The equation of motion for this problem was obtainedSome solutions have been folrahalytically, but the global
independently by Fishélland Beletsky. It has been the sub- analysis of the existence and stability of periodic solutions
ject of numerous investigations, because despite the abowan only be performed by numerical methods. An asymptotic
simplifying assumptions, it describes the essential features afvestigation of the problem is performed in Refs. 9 and 10
the motion and is important in the investigation of the rota-for large values ofx.
tional motion of a satellite with a magnetic stabilization sys-  Our aim was to extend these results to valuea op to
tem. 100 (since the magnetic parameter of real satellites is of the

Most publications concerned with the above problemorder 70—10Dand to investigate the stability of the resulting
deal with regular motions. This is justified by the fact that 7-periodic oscillations in this wider range of parameter val-
periodic and quasiperiodic motion are of interest in connecues.
tion with the design of magnetically stabilized satellites. On  The entire analysis was performed numerically, using
the other hand, it is well known that the regular motions of amATLAB . The initial velocity ¢’ (0) was specified for each
mechanical system are in general confined to a portion ofalue ofa on the interval0,100 in steps 0.05. This velocity
phase space and are local among chaotic motions. The ris the zero of the functioi= (¢())%+ (¢’ (7) — ¢'(0))2.
search reported here is largely confined to the numericdhitially, ¢(0)=0. This means that we investigated a some-
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FIG. 1. Description of motion.
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FIG. 2. Amplitude curves.
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FIG. 3. Fragment of amplitude curves.
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what expanded class of possihteperiodic oscillations. The
oscillation amplitude was computed in this way for each pe-
riodic solution. Figures 2 and 3 show the amplitudiesra-
diang of all the 7-periodic solutions as functions of the di-
mensionless parameter. The thicker portions of these
curves correspond to stable solutions. For example,afor
=80 there are niner-periodic oscillations of the satellite
about a magnetic line of force. Three of them are stable. All
branches of the amplitude curves approach asymptotically
the straight line that corresponds to the oscillation amplitude
equal tomr, at a— . Portions of these curves that approach
this line are not shown in Figs. 2 and 3.

The stability of all solutions was investigated by the
method of Poincargoint maps and the results are discussed
in Sec. lll.

It is clear from Fig. 3 that the amplitude curves display
small gaps near=0.6 and 6. These points correspond to
period doubling bifurcation: ther-periodic oscillations lose
their stability and zr-periodic stable solutions arise. These
bifurcations are examined next.

Ill. GLOBAL STRUCTURE OF PHASE SPACE AND
STABILITY OF PERIODIC SOLUTIONS

The investigation reported here is a continuation of the
study of regular and chaotic motions in the systéimthat
began in Refs. 11-13.

We used a numerical implementation of the method of
Poincarepoint maps, i.e., Eq.1) was integrated numerically
for different initial valueq ¢(0),¢'(0)] and maps were con-
structed for the point§o(nw),¢’'(nw)), Nn=1,2.... Fig-
ures 4-25 show the Poincamoint maps of(1) on the
¢’ (rad/s) p(rad) plane for different values of the parameter
Qa.

In accordance with the method of Poinca@int maps,
fixed points of the map correspond to periodic solutions,
regular curves correspond to quasiperiodic solutions, and ir-
regularly distributed points correspond to chaos.

As in the case of the pendulum, all the phase portraits
are bounded by regular curves that correspond to the rotation
of the satellite about the magnetic line of force. The angular
velocities of these rotations range from 0.2 rad/sde¥0.1
(Fig. 4) to 25 rad/s fora~100 (Fig. 24). Periodic oscilla-
tions are confined to this range, which means that the Poin-
caremap gives the boundaries of the range of initial-velocity
values in which the periodic oscillations may be found.

The relative dimensions of the chaotic region attain a
minimum for very low and very high values ef(Figs. 4 and
24, respectively Chaotic motions predominate far~0.8.

On the other hand, very low and maximum valuesxafor-
respond to the maximum relative size of the region of regular
motion. The center of this region has zet@oordinate. The
centers of the regions of regular motion with the
x-coordinate equal ter correspond to stable-periodic ro-
tation about the magnetic line of force. Bearing in mind pos-
sible applications to magnetic stabilization of artificial Earth
satellites, we were above all interested in the analysis of
mr-periodic oscillations. Islands in the chaotic sea correspond
to long-period solutions. For example, Fig. 5 shows- 3
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FIG. 19. a=15. FIG. 24. a=95.55.
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6 , T " ' " ity was investigated rigorously, and may be useful when rig-
] orous methods are employed.

S e N We also note that our numerical investigation was con-

2! Iy *Y:f \ N cerned with a special class afperiodic oscillations of the

j \J satellite, namelyp(0)=0. These and only these solutions

ok s were found on the Poincapoint maps. However, there is no
Q‘/’j v certainty as to the existence of otheperiodic oscillations.

-6 . e e
-0.6 -0.4 -0.2 O 0.2 0.4 0.6 IV. COMPARISON OF THE CHAOTIC REGION WITH

ITS THEORETICAL BOUNDARY IN THE
FIG. 25. «=95.55(fragment. ADIABATIC APPROXIMATION

o ri

Equation(1) describes the motion of a satellite about its
center of mass in the coordinate frame attached to the mag-
netic field vector. We shall now use another form of this

periodic solutions around the-periodic solution, while Fig. . ) ) :
equation. In particular, we shall consider the motion of a

7 shows the l#-periodic solution around the72periodic L ) . :
solution. satellite in a uniformly rotating coordinate fram@XY

Figures 6-8 show period-doubling bifurcatichsiear whose originO coincides with the position of the satellite on

a=0.6. In accordance with the period-doubling scenario for2" orbit corresponding to the angle the X-a>.<|s Is at an
Hamiltonian system§the system described ki) takes the angle to_the plane of'the equator aqd tifeaxis makes an
Hamiltonian form when expressed in terms of certain vari-angle ZJ with .the Earth's aX'S,Of rqtatlon. ,

abled, the w-periodic trajectory loses its stability and a Itis fe"?‘d"y shown that, n this coordmate. frame, the
stable 2r-periodic trajectory splits from it. Figures 12 and 13 geomagnetic field \{ector osfcnlat.es. about texis, where
show this type of bifurcation near=6. the angle of deflection of this axis is

It is clear from Figs. 2 and 3 that there are valuesmof v=arcsin — sin(u)cog u)/y1+ 3 sirf(u)).
that are the points of creation of a new branch of the ampli- L be th e b h is of th llite al
tude curve, i.e., points of creation of a new pairmperiodic et 4 be the angle between the axis of the satellite along

solutions: a stable solution and an unstable one. The ampl\’yrf"Ch thefmagne;r:s moun_ted afnd thr_eaX|sf O; the altla_oveh
tude of stable oscillations of the satellite can rise near thesge erence frame. The equation of rotation of the satellite then

values of @, and such values should be avoided when théakes the form
magnetic stabilization system of a satellite is designed. These d?y

resonance values af were found analytically in Ref. 3. g2 Favl+s SirF(u) sin(¢+ »(u)) =0. @
They are: 2.5, 10, 22.5, 40, 62.5, 90, and so on. _

Figure 25 illustrates the creation of a pair fperiodic When a>1, and if we putu=zya, Eq. (2) reduces to
oscillations neaw= 95. the equation of a pendulum with slowly varying frequency

The center of the smallest closed curve in Fig.( and a phase shift. This means that the results reported in
y-coordinate is 1.41). corresponds to a new stable Refs. 15 and 16 are valid for E(R). The theoretical bound-
m-periodic solution. The point with the/-coordinate of aries of the chaotic region can be constructed for 2gin
2.19... corresponds to a new unstabiperiodic solution. the following manner. The boundary between the chaotic

To analyze the stability of ther-periodic solutions that egion and the region of regular rotation in the forward di-
we have found, we used a nonrigorous approach based on thection is the rotational trajectory of a pendulum of fre-
method of Poincar@oint maps. It is well known that stable
and unstable solutions correspond to fixed points on the map.
However, a small uncertainty in the initial conditions for
stable motion leads to a small regular curve around a fixed
point. On the other hand, the uncertainty in the initial condi-
tions for unstable motion leads either to a regular curve
around another stable periodic solution or to chaos.

In other words, if in the course of a substantial number
of mappings the phase point remains in a “small”’ neighbor-
hood of the initial point, it is reasonable to assume that the ©
initial point corresponds to a stable periodic solution; other-
wise the solution is unstable.

This nonrigorous approach was used to examine the sta-
bility of all our m-periodic oscillationsa e (0,100). The
thick portions of the curves in Figs. 2 and 3 correspond to
stable oscillations.

Our results agree with rigorous determinations in the

{psi)/du

psi

limited range of magnetic-parameter values in which stabil- FIG. 26. Comparison of chaotic region with its theoretical boundary.
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