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The rotational motion of a satellite with a magnetic stabilization system is discussed. The motion is
described by a nonautonomous differential equation, with the magnetic moment of the satellite as a
parameter. The global phase portrait of the problem is investigated in a wide range of
magnetic-parameter values, using a numerical realization of the method of Poincare´ point maps.
New periodic solutions of the problem are found, and an analysis is carried out of the evolution of
the phase portrait and the bifurcation of periodic solutions with varying magnetic-parameter values.
The values of the magnetic parameter that must be avoided in the design of the satellite magnetic
stabilization system are discussed. ©1999 American Institute of Physics.
@S1054-1500~99!01402-0#

The rotation of a satellite with a magnetic stabilization
system is discussed in many publications because of its
importance in space research. These publications are
largely confined to the analysis of periodic motions. It
turns out that the problem is also of interest from the
standpoint of the global phase portrait, the resulting bi-
furcations of periodic solutions, and the investigation of
chaotic motion. These questions are also discussed in the
present paper.

I. INTRODUCTION

The rotational motion of an artificial Earth satellite is
examined in the plane of a polar circular Kepler orbit. The
satellite is assumed to carry a permanent magnet, used for
the stabilization of the spacecraft along the Earth’s magnetic
lines of force. The magnet axis points along the central prin-
cipal axis of inertia of the satellite and lies in the plane of the
orbit. Only the magnetic moment is taken into account in the
analysis of the motion of the satellite center of mass.

The equation of motion for this problem was obtained
independently by Fishell1 and Beletsky.2 It has been the sub-
ject of numerous investigations, because despite the above
simplifying assumptions, it describes the essential features of
the motion and is important in the investigation of the rota-
tional motion of a satellite with a magnetic stabilization sys-
tem.

Most publications concerned with the above problem
deal with regular motions. This is justified by the fact that
periodic and quasiperiodic motion are of interest in connec-
tion with the design of magnetically stabilized satellites. On
the other hand, it is well known that the regular motions of a
mechanical system are in general confined to a portion of
phase space and are local among chaotic motions. The re-
search reported here is largely confined to the numerical

analysis of the global structure of the phase space of the
above problem, using the method of Poincare´ point maps.

II. PERIODIC OSCILLATIONS

The equation of motion for the problem takes the form2

d2w

du2 1aA113 sin2 u sinw5
6 sin 2u

~113 sin2 u!2 , ~1!

wherew is the angle between the magnetic moment vectorM
of the satellite and the geomagnetic fieldB, u is the angle
between the plane of the Earth’s equator and the radius vec-
tor of the satellite, anda is a dimensionless constant that
depends on the magnetic moment of the satellite and the
moment of inertia of the satellite relative to the principal axis
that is perpendicular to the plane of the orbit~see Fig. 1!.

Numerous authors have investigated the above equation
since it was originally formulated in Refs. 1 and 2. The basic
results concerned with the analysis of periodic oscillations
were obtained in Refs. 2–8, which were largely confined to
the p-periodic solutions of the formw(0)5w(p/2)50.
Some solutions have been found6 analytically, but the global
analysis of the existence and stability of periodic solutions
can only be performed by numerical methods. An asymptotic
investigation of the problem is performed in Refs. 9 and 10
for large values ofa.

Our aim was to extend these results to values ofa up to
100 ~since the magnetic parameter of real satellites is of the
order 70–100! and to investigate the stability of the resulting
p-periodic oscillations in this wider range of parameter val-
ues.

The entire analysis was performed numerically, using
MATLAB . The initial velocity w8(0) was specified for each
value ofa on the interval~0,100! in steps 0.05. This velocity
is the zero of the functionf 5(w(p))21(w8(p)2w8(0))2.
Initially, w(0)50. This means that we investigated a some-
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what expanded class of possiblep-periodic oscillations. The
oscillation amplitude was computed in this way for each pe-
riodic solution. Figures 2 and 3 show the amplitudes~in ra-
dians! of all the p-periodic solutions as functions of the di-
mensionless parametera. The thicker portions of these
curves correspond to stable solutions. For example, fora
580 there are ninep-periodic oscillations of the satellite
about a magnetic line of force. Three of them are stable. All
branches of the amplitude curves approach asymptotically
the straight line that corresponds to the oscillation amplitude
equal top, at a→`. Portions of these curves that approach
this line are not shown in Figs. 2 and 3.

The stability of all solutions was investigated by the
method of Poincare´ point maps and the results are discussed
in Sec. III.

It is clear from Fig. 3 that the amplitude curves display
small gaps neara50.6 and 6. These points correspond to
period doubling bifurcation: thep-periodic oscillations lose
their stability and 2p-periodic stable solutions arise. These
bifurcations are examined next.

III. GLOBAL STRUCTURE OF PHASE SPACE AND
STABILITY OF PERIODIC SOLUTIONS

The investigation reported here is a continuation of the
study of regular and chaotic motions in the system~1! that
began in Refs. 11–13.

We used a numerical implementation of the method of
Poincare´ point maps, i.e., Eq.~1! was integrated numerically
for different initial values@w(0),w8(0)# and maps were con-
structed for the points@w(np),w8(np)), n51,2 . . . . Fig-
ures 4–25 show the Poincare´ point maps of ~1! on the
w8(rad/s),w(rad) plane for different values of the parameter
a.

In accordance with the method of Poincare´ point maps,
fixed points of the map correspond to periodic solutions,
regular curves correspond to quasiperiodic solutions, and ir-
regularly distributed points correspond to chaos.

As in the case of the pendulum, all the phase portraits
are bounded by regular curves that correspond to the rotation
of the satellite about the magnetic line of force. The angular
velocities of these rotations range from 0.2 rad/s fora'0.1
~Fig. 4! to 25 rad/s fora'100 ~Fig. 24!. Periodic oscilla-
tions are confined to this range, which means that the Poin-
carémap gives the boundaries of the range of initial-velocity
values in which the periodic oscillations may be found.

The relative dimensions of the chaotic region attain a
minimum for very low and very high values ofa ~Figs. 4 and
24, respectively!. Chaotic motions predominate fora'0.8.
On the other hand, very low and maximum values ofa cor-
respond to the maximum relative size of the region of regular
motion. The center of this region has zerox-coordinate. The
centers of the regions of regular motion with the
x-coordinate equal top correspond to stablep-periodic ro-
tation about the magnetic line of force. Bearing in mind pos-
sible applications to magnetic stabilization of artificial Earth
satellites, we were above all interested in the analysis of
p-periodic oscillations. Islands in the chaotic sea correspond
to long-period solutions. For example, Fig. 5 shows 3p-

FIG. 1. Description of motion.

FIG. 2. Amplitude curves.

FIG. 3. Fragment of amplitude curves.

FIG. 4. a50.1.
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FIG. 5. a50.3.

FIG. 6. a50.5.

FIG. 7. a50.6.

FIG. 8. a50.66.

FIG. 9. a50.7.

FIG. 10. a50.8.

FIG. 11. a51.

FIG. 12. a55.5.

FIG. 13. a56.

FIG. 14. a57.
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FIG. 15. a58.

FIG. 16. a59.

FIG. 17. a510.

FIG. 18. a511.

FIG. 19. a515.

FIG. 20. a522.5.

FIG. 21. a530.

FIG. 22. a566.

FIG. 23. a590.

FIG. 24. a595.55.
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periodic solutions around thep-periodic solution, while Fig.
7 shows the 11p-periodic solution around the 2p-periodic
solution.

Figures 6–8 show period-doubling bifurcations14 near
a50.6. In accordance with the period-doubling scenario for
Hamiltonian systems@the system described by~1! takes the
Hamiltonian form when expressed in terms of certain vari-
ables#, the p-periodic trajectory loses its stability and a
stable 2p-periodic trajectory splits from it. Figures 12 and 13
show this type of bifurcation neara56.

It is clear from Figs. 2 and 3 that there are values ofp
that are the points of creation of a new branch of the ampli-
tude curve, i.e., points of creation of a new pair ofp-periodic
solutions: a stable solution and an unstable one. The ampli-
tude of stable oscillations of the satellite can rise near these
values ofa, and such values should be avoided when the
magnetic stabilization system of a satellite is designed. These
resonance values ofa were found analytically in Ref. 3.
They are: 2.5, 10, 22.5, 40, 62.5, 90, and so on.

Figure 25 illustrates the creation of a pair ofp-periodic
oscillations neara595.

The center of the smallest closed curve in Fig. 25~its
y-coordinate is 1.41...! corresponds to a new stable
p-periodic solution. The point with they-coordinate of
2.19... corresponds to a new unstablep-periodic solution.

To analyze the stability of thep-periodic solutions that
we have found, we used a nonrigorous approach based on the
method of Poincare´ point maps. It is well known that stable
and unstable solutions correspond to fixed points on the map.
However, a small uncertainty in the initial conditions for
stable motion leads to a small regular curve around a fixed
point. On the other hand, the uncertainty in the initial condi-
tions for unstable motion leads either to a regular curve
around another stable periodic solution or to chaos.

In other words, if in the course of a substantial number
of mappings the phase point remains in a ‘‘small’’ neighbor-
hood of the initial point, it is reasonable to assume that the
initial point corresponds to a stable periodic solution; other-
wise the solution is unstable.

This nonrigorous approach was used to examine the sta-
bility of all our p-periodic oscillationsaP(0,100). The
thick portions of the curves in Figs. 2 and 3 correspond to
stable oscillations.

Our results agree with rigorous determinations in the
limited range of magnetic-parameter values in which stabil-

ity was investigated rigorously, and may be useful when rig-
orous methods are employed.

We also note that our numerical investigation was con-
cerned with a special class ofp-periodic oscillations of the
satellite, namelyw(0)50. These and only these solutions
were found on the Poincare´ point maps. However, there is no
certainty as to the existence of otherp-periodic oscillations.

IV. COMPARISON OF THE CHAOTIC REGION WITH
ITS THEORETICAL BOUNDARY IN THE
ADIABATIC APPROXIMATION

Equation~1! describes the motion of a satellite about its
center of mass in the coordinate frame attached to the mag-
netic field vector. We shall now use another form of this
equation. In particular, we shall consider the motion of a
satellite in a uniformly rotating coordinate frameOXY
whose originO coincides with the position of the satellite on
an orbit corresponding to the angleu; the X-axis is at an
angle 2u to the plane of the equator and theY-axis makes an
angle 2u with the Earth’s axis of rotation.

It is readily shown that, in this coordinate frame, the
geomagnetic field vector oscillates about theY-axis, where
the angle of deflection of this axis is

n5arcsin~2sin~u!cos~u!/A113 sin2~u!!.

Let c be the angle between the axis of the satellite along
which the magnet is mounted and theY-axis of the above
reference frame. The equation of rotation of the satellite then
takes the form

d2c

du2 1aA113 sin2~u! sin~c1n~u!!50. ~2!

When a@1, and if we putu5zAa, Eq. ~2! reduces to
the equation of a pendulum with slowly varying frequency
and a phase shift. This means that the results reported in
Refs. 15 and 16 are valid for Eq.~2!. The theoretical bound-
aries of the chaotic region can be constructed for Eq.~2! in
the following manner. The boundary between the chaotic
region and the region of regular rotation in the forward di-
rection is the rotational trajectory of a pendulum of fre-

FIG. 25. a595.55~fragment!.

FIG. 26. Comparison of chaotic region with its theoretical boundary.
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quencyAa, the area under the trajectory being equal to the
maximum area under the separatrix of the pendulum~2!, i.e.,
under the separatrix of a simple pendulum of frequency
A2a. The rotational trajectory that is symmetric relative to
the abscissa axis is the boundary between the chaotic region
and the region of regular rotation in the reverse direction.
The inner boundary of the chaotic region is the separatrix of
the simple pendulum of frequencyAa.

Figure 26 shows the chaotic region of Eq.~2! for a
5900 ~i.e., when the magnitude of the small parameter is
1/30!, obtained by the method of Poincare´ point maps for the
trajectory with the initial point~2p, 20! and u50. The
regular curves are the boundaries discussed above. It is clear
that the chaotic region extends somewhat beyond the theo-
retical boundary represented by the lower branch of the sepa-
ratrix.

Small islands of stability17 may exist within the chaotic
region.
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