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A Study of the Stationkeeping Maneuvers for the CBERS satellite



1. Introduction

The objective of this report is to study the stationkeeping maneuvers that will
have to be performed by the CBERS (China-Brazil Earth Resources Satellite) satellite. The
CBERS is a remote sensing satellite that is under development by China and Brazil, This
satellite is planned to stay in a polar frozen orbit and stationkeeping maneuvers will have
to be performed to keep its orbital elements in a specified range. This report will be
devoted to study the correction of the semi-major axis, eccentricity and argument of
periapse, that are three of the Keplerian elements that will change due to the orbit
perturbations.

An algorithm capable of calculating the bi-impulsive transfer orbit with
minimum AV between any two Keplerian and coplanar orbits is developed and used to
calculate the maneuvers expected for the CBERS satellite. Several maneuvers are
simulated, both to change the orbital elements individually or in groups. This algorithm is
based on the minimum AV Lambert's problem shown in Prado (1993) and Prado &
Broucke (1994). In the format that it is implemented here it is possible to include
constraints in the region of the orbit that an impulse can be applied. The advantage of this
approach is that there is no approximation or linearization involved, and, in consequence,

the method derived can be used to transfers of any magnitude.
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3. The Minimum AV Lambert's Problem

The original Lambert's problem is one of the most important and popular topics in
celestial mechanics. Several important authors worked on it, trying to find better ways to
solve the numerical difficulties involved (Breakwell ef alii 1961; Battin, 1965 and 1968;
Lancaster et alii 1966; Lancaster & Blanchard, 1969; Herrick, 1971; Prussing, 1979; Sun
& Vinh, 1983; Taff & Randall, 1985; Gooding, 1990). It can be defined as: "A Keplerian
orbit, about a given gravitational center of force is to be found connecting two given points
(P, and P,) in a given time At."

For this research, we use a problem that is related to the Lambert's problem. The
formulation is slightly different from the original one, but it also has many important
applications. This new problem is called "Minimum Delta-V Lambert's Problem" and it is
formulated as follows: "A Keplerian orbit, about a given gravitational center of force is to
be found connecting two given points (P, that belongs to an initial orbit and P, that belongs
to a final orbit), such that the AV for the transfer is minimum."

To solve this problem, the analytical expressions for the total increment of the
velocity required AV (as a function of only one independent variable) and for its first
derivative with respect to this variable are obtained. Then, a numerical scheme to get the
root of the first derivative and the numeric value of the AV at this point is used. More
details on this point are available in Prado and Broucke (1994). From this information it is
possible to get all the other parameters involved, like the components of the impulses, their
locations, etc. This problem is used to search for a minimum two-impulse transfer between
two given coplanar orbits in the approach that is used in Lawden (1991), Prado (1993) and
Broucke & Prado (1993).



4. Definition of the Orbit Transfer Problem

Suppose that there is a spacecraft in a Keplerian orbit that is called O, (the initial
orbit). It is desired to transfer this spacecraft to a final Keplerian orbit O,, that is coplanar
with the orbit O,. To perform this transfer, we start at the point P, (r;, 9,), where an
impulse with magnitude AV, that has an angle ¢, with the local transverse direction is
applied. The transfer orbit crosses the final orbit at the point P, (r,, 0,), where an impulse
with magnitude AV, making an angle ¢, with the local transverse direction is applied. To
get to the basic problem (the "Minimum Delta-V Lambert's Problem™), it is necessary to
specify the true anomaly (8,) of the departure point in the orbit O, (point P,) and the true
anomaly (8,) of the point of arrival in the orbit O, (point P,). With these two values given
and all the Keplerian elements of both orbits known, it is possible to determine both radius
vectors T, and T, at the beginning and at the end of the transfer. Then the problem is to find
which transfer orbit connecting these two vectors and using only two impulses is the one
that requires the minimum AV for the maneuver. This problem is what was defined as the
"Minimum AV Lambert's Problem". The sketch of the transfer and the variables used are

shown in Fig. 1.
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Fig. 1 - Geometry of the Transfer Orbit.

5. Mathematical Development

Using basic equations from the two-body celestial mechanics, it is possible to write
an analytical expression for the total AV (= AV, + AV,) required for this maneuver. To
specify each of the three orbits involved in the problem, the elements D, h and k are used.

They are defined by the following equations:

D:%; k =eCos(ow); h=eSin{(w) (1)

where p is the gravitational parameter of the central body; C is the angular momentum of
the orbit, e is the eccentricity and o is the argument of the periapse. The subscripts "0" for
the initial orbit, "1" for the transfer orbit and "2" for the final orbit are also used. In those
variables, the expressions for the radial (subscript r) and transverse (subscript t)

components of the two impulses are:



AV, =(Dk, - Dok, )Sin(6,) (D, h, — Dyh,)Cos(6,) )

AV, =D, - D, +(Dk, - D k,)Cos(6,)+{D;h, - D;h,)Sin(0,) 3)
AV,, =(D,k, - D/k,)Sin(6,) - (D,h, - D,h,)Cos(0,) 4
AV,, =D, -D, +(D,k, - D k,)Cos(8,)+(D,h, — D,h,)Sin(6, ) (5)

The problem now is to find the transfer orbit that minimizes the total AV and that

satisfies the two following constraints equations, expressing the fact that the orbits

intersect:
g, = Dj(1+k,Cos(,) + h,Sin(8,)) - D (1+k,Cos(6,) + h,Sin(8,)) = 0 (6)
g, = Dj(1+k,Cos(8,) +h,Sin(8, )) - D} (1+ k,Cos(6, ) + h,Sin(8, )) = 0 @)

The problem is reduced to the one of finding the value of D, that gives the

minimum value for the expression AV = \f V24 V4 \/ Vi+VE.

In the approach used to solve this problem, the constraints (6) and (7) are used to
solve this system for two of our variables, making the equation for the AV a function of
only one independent variable. The system formed by these two equations is symmetric
and linear in the variables h, and k,, so the system is solved for these two variables. The

results are the equations (8) and (9).

k, =-Csc(8, - ez){[[-gé-](x +k,Cos(6,)+h,Sin(8,)) - 1jsm(92)-...

1

...-((52](1 +k,Cos(0,) +h,Sin(9,)) - 1]sm(el)] (8)

1

h, =-Csc(0, - 92)[((-%%](1 +k,Cos(6,) +h,Sin(8,)) - 1}(:0.-;(91)—...

B .-((%](1 +k,Cos(6,) +h,Sin(6,)) - 1} Cos(Bz)} ©)

1



Now that the AV is a function of only one variable (D,), elementary calculus can be

used to find its minimum. All that has to be done is to search for the root of the expression

% = 0. From the definition of AV it is possible to write:

1
AW oo Ll ay, AV) gy ARV |, Ly ABVe) | AAV) (10)
oD, AV, oD, oD, AV, oD, oD,

Now, the chain rule for derivatives is applied to obtain expressions for the
AV, o(AV, oAV AV,
quantities ( “); ( ”); ( rZ); ( t2)
aI)l a1)1 aD] 6Dl

. A general expression for them is:

o(avy) _oav;)| +a(avij) ok, Avy) an,

+
oD, 4D, ok, D, &h, oD,

(11)

‘ Direct

where i = r,t; j = 1,2 and the word "Direct" stands for the part of the derivative that comes

from the explicit dependence of AV in the variable D,. The expressions for —(—”) and

i
a(AVij) ; y ’ ok,
—_~7 can be obtained from the equations (2) to (5) and the expressions for — and
I 1

sﬂ can be obtained from the equations (8) to (9).

1
With all those equations available, a numerical algorithm can be built to iterate in

. oAV :
the variable D, to find the unique real root of the equation u =0. To obtain the value
1

of % for a given D,, necessary for the iteration process required, the following steps
1

can be used:

i) Evaluate k, and h, from equations (8) and (9) for the given D;

ii) With D, h, and k, the equations (2) to (5) are used to evaluate AV,,, AV, AV, AV, A
Vi (AV2 +AV?) and AV, ({JAV] + AV );



o(av,)

1

8(av,
iii) With all those quantities known, it is possible to evaluate (Bk ’) and £
I 1

(obtained from equations (2) to (5)) and equation (10) to finally obtain Q(a%v_) for the
1

given D,.

b G g . oAv) . s
At this point, it is important to remark that the function 4(3D ) is very sensitive to
1

small variations in D,, specially when close to the real root. Its curve is almost a straight
line with a slope that goes to infinity when 6, - 6, goes to 180°. This characteristic is
particular for the set of variables used and it is not a physical problem. If another
independent variable is used, like the argument of the periapse of the transfer orbit, the
curve for the AV vs. D, has a much less sharp minimum and, in consequence, its derivative
has no big jumps.

This behavior makes numerical methods to find the root based on derivatives (like
the popular Newton-Raphson) inadequate. In this research, the method of dividing the
interval in two parts in each iteration shows to be adequate, although not fast in

convergence.

6. Changing the Keplerian Elements Individually

The objective of this section is to get a better understanding of the orbital
maneuvers required to change the semi-major axis, eccentricity and argument of periapse,
one at a time. Several cases were simulated to have a general idea about the optimal
solutions.
1) Change in the semi-major axis

The maneuvers studied in this section has the objective of changing only the semi-
major axis, keeping constant all the other orbital elements.

If the two orbits are circular, the best solution is the Hohmann transfer. Transfer
where the radius of the final orbit is larger than 11.93876 the initial orbit, that would lead
to a bi-elliptical transfer, are not considered in the present study. Transfers with more than

9



two impulses and/or transfers passing by the infinity during the maneuver are also
excluded from the present report.

If the orbits are elliptic they are necessarily co-axial and aligned (periapses in the
same direction), since the argument of the periapse does not change during the maneuver.
In this case, the bi-impulsive transfer that has the minimum value for the AV is the transfer
that uses the most distant of the apses (the apoapse of the orbit that has the larger semi-
major axis). This rule is stated in Marchal (1965) and it was confirmed by the results

obtained in the present research. Fig. 2 shows the two situations described.

10
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Fig. 2 - Maneuvers to change the semi-major axis.

2) Change in the eccentricity
The maneuvers studied in this section has the objective of changing only the

eccentricity, keeping constant all the other orbital elements.
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The simulations made in the present research found that the best solution is to
apply the two impulses at the apses, always using the most distant of the apses. Fig. 3
shows several examples. Note that to achieve this transfer the two impulses have opposite

directions. Those conclusions are valid to increase and to decrease the eccentricity.

To increase the eccentricity:

A A

Transfer Orbit
Initial Orbit

//- >ﬁm' o - AV2 NAV] -

Final Orbit Initial Orbit

Transfer Orbit

Circular-Elliptic Transfer Elliptic-Elliptic Transfer

To decrease the eccentricity:

§ i
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Initial Orbit Final Orbit
N Zias O 7\
o o
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Final Orbit

Transfer Orbit

Circular-Elliptic Transfer Elliptic-Elliptic Transfer

Fig. 3 - Maneuvers to change the eccentricity.
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3) Change in the argument of the periapse

The maneuvers studied in this section has the objective of changing only the
argument of the periapse, keeping constant all the other orbital elements.

The simulations showed that the solution is usually obtained by the application of
two impulses with the same magnitude and in directions making angles close to zero (first
impulse) and 180° (second impulse) with the transverse direction. The transfer orbit has an
argument of periapse that is close to the average between the argument of periapse of the

initial and the final orbit. Next, some examples are shown with the numerical data.

i) For the case where Aw = 45°, a= 1.0 and e = 0.2, we have the following solution:
6, =120°, 6, = 286°

Transfer orbit: a=1.07774, ¢ = 0.18497, @ = 22.5°

AV, =0.038 m/s, AV, =0.038 m/s, AV;=0.076 m/s

b =4.4°,¢,=177.5°

ii) For the case where Aw = 45°, a= 1.0 and e = 0.4, we have the following solution:
6, = 128°,0,=278°

Transfer orbit: a=1.16288, e =0.36936, o = 22.5°

AV, =0.078 m/s, AV, =0.078 m/s, AV:=0.156 m/s

¢, = 8.2°, ¢, =173.7°

iif) For the case where Ao =90°, a= 1.0 and e = 0.2, we have the following solution:
0, = 140°,06, = 310°

Transfer orbit: a = 1.14282, e = 0.14251, © = 45°

AV, =0.069 m/s, AV, = 0.069 m/s, AV;:=0.138 m/s

O =2.4°, b, = 177.4°
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iv) For the case where Ao = 180°, a= 1.0 and ¢ = 0.2, we have the following solution:
6, =178°, 06, =360°

Transfer orbit: a = 1.20000, e = 0.00005, ® = 90°

AV, =10.096 m/s, AV, =0.096 m/s, AV =0.192 m/s

¢, = 0.0°, ¢, = 180.0°

7. The Maneuvers Required by the CBERS Satellite for each Orbital
Element

In this section, the maneuvers required by the CBERS satellite are studied for each
orbital element. It means that, for each maneuver performed here, two of the three orbital
elements that we need to change are kept constant and only the third one is changed. The
nominal orbit for the CBERS satellite is:

Semi-major axis (a) = 7148865 m
Eccentricity (e) = 0.0011
Argument of periapse (w) = 90°

The velocity of the spacecraft, that is required to convert the magnitude of the
impulses from the canonical system to m/s, is 7467 m/s.

For the purposes of this first study, it is assumed that the stationkeeping must be
performed when at least one of the orbital elements is out of the range that is specified by
the following constraints:

Error in semi-major axis = 200 m
Error in eccentricity = 0.0001
Error in argument of periapse = 5°
1) Change in semi-major axis

For this maneuver it is assumed that the semi-major axis decayed 200 m while the
eccentricity and argument of periapse remained in the nominal value. So, the initial
(subscript "i"

a; = (0.9999720235

) and final (subscript "f") conditions, in canonical units, are:

14



¢, =0.0011

w; = 90°

a;=1.0

e-=0.0011

we= 90°

The solution obtained is:

6, = 106°, 6, = 286°

Transfer orbit: a=1.00000, e = 0.00111, & =90.2°

AV, =0.0522 m/s, AV, =0.0522 m/s, AV = 0.1044 m/s
¢, =0.0°, ¢, =0.0°

2) Change in eccentricity
For this maneuver it is assumed that the eccentricity was reduced by 0.0001 while
the semi-major-axis and argument of periapse remained in the nominal value. So, the
initial (subscript "i") and final (subscript "f") conditions, in canonical units, are:
a=10
¢; = 0.0010
o, = 90°
;= 1.0
e;=0.0011
o= 90°
The solution obtained is:
8, =90°,0,=270°
Transfer orbit: a= 1.00005, e = 0.00105, ® = 90°
AV, =0.1865 m/s, AV, =0.1868 m/s, AV;=0.3733 m/s
o, =0.1°, ¢, = 180°

15



3) Change in argument of periapse to 95°
For this maneuver it is assumed that the argument of periapse was increased by 5°
while the eccentricity and semi-major axis remained in the nominal value. So, the initial
(subscript "i") and final (subscript "f"") conditions, in canonical units, are:
a=1.0
e, =0.0011
w; = 95°
a=1.0
e;=10.0011
wp=90°
The solution obtained is:
0,=2.0°06,=182.0°
Transfer orbit: a=1.000048, ¢ =0.0011, o = 92.5°
AV, =0.1791 m/s, AV, = 0.1791 m/s, AV, = 0.3582 m/s
¢, = 1.1°,¢,=179.1°

4) Change in argument of periapse to 85°
For this maneuver it is assumed that the argument of periapse was decreased by 5°
with the eccentricity and semi-major axis remained in the nominal value. So, the initial
(subscript "i") and final (subscript "f") conditions, in canonical units, are:
a=1.0
g;=0.0011
w; = 85°
2,=1.0
e;=0.0011
oy=90°

16



The solution obtained is:

0, =178.0°, 0, = 358.0°

Transfer orbit: a = 1.000048, ¢ = 0.0011, 0 = 87.5°

AV, =0.1791 m/s, AV, =0.1791 m/s, AV;=0.3582 m/s
6, =0.9° ¢,=179.1°

8. The Maneuvers Required by the CBERS Satellite for each Two of the
Orbital Elements

In this section, the maneuvers required by the CBERS satellite are studied for each
two of the orbital elements. It means that, for each maneuver performed here, one of the
three orbital elements that we need to change remains constant and the two other are

changed.

1) Change in semi-major axis and eccentricity
For this maneuver it is assumed that the semi-major axis decayed 200 m, the
eccentricity was reduced by 0.0001 and argument of periapse remained in the nominal
value. So, the initial (subscript "i") and final (subscript "f") conditions, in canonical units,
are:
a8, = 0.9999720235
e;=0.0010
w;, = 90°
a=1.0
e=0.0011
o= 90°
The solution obtained is:
8, = 90°, 8, =270°
Transfer orbit: a = 1.000036, ¢ = 0.00106, » = 90°

AV, = 0.2387 m/s, AV, =0.1346 m/s, AV;=0.3733 m/s
17



¢, =0.1°, ¢, = 180°

2) Change in semi-major axis and argument of periapse
For this maneuver it is assumed that the semi-major axis decayed 200 m, the
argument of periapse was reduced by 5° and the eccentricity remained in the nominal

value. So, the initial (subscript "i") and final (subscript "f") conditions, in canonical units,

are:
a,=0.9999720235
¢;=0.0011

;= 85°

a=1.0
e;=0.0011
w;=90°

The solution obtained is:

6, =178°, 8, = 358°

Transfer orbit: a=1.000034, e = 0.0011, » = 88.23°
AV, =0.2314 m/s, AV, = 0.1269 m/s, AV =0.3583 m/s
¢, =0.9° ¢,=179.1°

3) Change in argument of periapse and eccentricity

For this maneuver it is assumed that the argument of periapse was reduced by 5°,
the eccentricity was reduced by 0.0001 and semi-major axis remained in the nominal
value. So, the initial (subscript "i") and final (subscript "f") conditions, in canonical units,
are:
a=1.0
e, =0.0010
o, = 85°

a=1.0
18



e;=0.0011
We= 90°
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The solution obtained is:

6,=130°,0,=310°

Transfer orbit: a=1.000068, e = 0.00105, & = 87.62°
AV, =0.2528 m/s, AV, =0.2531 m/s, AV =0.5059 m/s
¢, =0.2° ¢, = 180°

9. The Maneuver Required by the CBERS Satellite

In this section, the maneuvers required by the CBERS satellite are studied for all
the orbital elements at the same time. It means that all the three orbital elements are
supposed to be in the limit allowed by the requirements and all of them will be changed by
a single bi-impulsive maneuver. Two situations are simulated: the one where the argument
of periapse decreased by 5° and the one where the argument of periapse increased by 5°.
So, for the first situation the initial (subscript "i") and final (subscript "f") conditions, in
canonical units, are:
a; = 0.9999720235
¢;=0.0010
w; = 85°
a=1.0
e;= 0.0011
wy=90°
The solution obtained is:
8, =130°, 6, =310°
Transfer orbit: a = 1.000054, e = 0.00106, o = 88.13°
AV, = 0.3050 m/s, AV, =0.2010 m/s, AV, = 0.5060 m/s
d, =0.1°, ¢, =179.9°

For the second situation the initial (subscript "i") and final (subscript "f")

conditions, in canonical units, are:
20



a; = 0.9999720235

€;=10.0010

w, = 95°

a,=1.0

e;=0.0011

we=90°

The solution obtained is:

0, =50°, 0, =230°

Transfer orbit: a = 1.000064, e = 0.00106, ® = 91.87°
AV, =10.3050 m/s, AV, =0.2010 m/s, AV, = 0.5060 m/s
6, =0.0°, ¢, =180.0°

Table 1 shows the results obtained from the above simulations.

Table 1 - Fuel consumed for all the maneuvers simulated

Maneuver ¢, (deg) ¢, (deg) AV (m/s)
Semi-major axis 0.0 0.0 0.1044
Eccentricity 0.1 180.0 0.3733
Argument of Periapse (from 95°) ksl 179.1 0.3582
Argument of Periapse (from 85°) 0.9 179.1 0.3582
Semi-major axis and Eccentricity 0.1 180.0 0.3733
Semi-major axis and Arg. Per, (85°) 0.9 179.1 0.3583
Eccentricity and Arg. Per. (85°) 0.2 180.0 0.5059
Total (from 95°) 0.1 179.9 0.5060
Total (from 85°) 0.0 180.0 0.5060

10. Conclusions

There are many conclusions that we can reach from the data shown in Table 1.
First of all, we can see that all the impulses applied are very close to tangential. The angles
¢, and ¢, are always close to 0 or 180 degrees. This is a very interesting characteristic,
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because it validates the use of methods of optimal transfers that are restricted to tangential
impulses. Next, we can see that the fuel consumed is smaller for the correction in semi-
major axis (0.1044 m/s) then for the corrections in eccentricity (0.3733 m/s) or in
argument of periapse (0.3582 m/s). The two possible situations for the drift in the
argument of periapse (positive until @ = 95° or negative until © = 85°) does not change
anything in the fuel consumed in the maneuver to correct this element individually or in
the maneuver that correct all the elements at the same time. From the analyses of the
maneuvers to correct two or three elements at a time, we can see that the correction in the
semi-major axis can be obtained with a zero cost, because the total AV for the combined
maneuver and the maneuver that do not include the semi-major axis are the same. In the
case of the maneuvers in eccentricity and argument of periapse, the combined maneuvers
requires 0.5059 m/s, showing a savings of 0.2256 m/s over the total for the two maneuvers
realized individually (0.7315 m/s).

Another characteristic that is visible from the data is that the correction in semi-major axis
uses two impulses in the positive direction (direction of the motion of the satellite), while
the corrections in eccentricity and argument of periapse both use two impulses in opposite
directions (the first one is positive and the second one is negative). In the combined
maneuvers the correction in eccentricity and argument of periapse dominates the transfer

and the impulses are in opposite directions.
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