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I - INTRODUCTION  

A circular to rectangular waveguide transition is a very 

useful device for construction of a mode transducer, [1], [2], [3]. 

While in [2] and [3] the transition is made by deforming conveniently 

only one dimension of a circle, in [1] this is done by deforming 

simultaneously both of the dimensions. The idea of such a deformation 

was firstly exposed in [4], and a curve which relates the cross-sectional 

dimensions of such a transition was presented. 

The basis of this idea is to truncate conveniently the 

cross-section of a circular homogeneous waveguide in a manner that the 

final cross-section is a rectangular one, and the cutoff wavelength of 

the fundamental TE
11 

mode of a circular through transition to the 

fundamental TE
10 

of a rectangular waveguide is the same. Figure 1 shows 

a typical cross-section of such a transition. 

Using the transverse resonance method, Pyle [4] computed 

a curve of (d
1  i

r ) versus (d
2 
 /r) which defines the cross-section of that 

transition. The computed results obtained did notpass through the origin 

as it should. It was assumed that this was caused by numerical errors, 

and the curve was made to pass throught the origin by multiplying it by 

a convenient correction factor. This factor was thought to be a bit 

arbitrary. 

Also, [4] did not present the characteristic impedance of 

such a transition. This parameter is very important in the design of mode 

transducers [1], [2]. 
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In this work, the curve for truncation of a circular 

waveguide in order to get such a transition as well as its characteristic 

impedance computed by the finite-difference method are presented. 

II - THEORY  

Define d as the largest dimension of a figure and Is:  as the 

cutoff wave-number of a waveguide whose cross-section is this figure. For 

the fundamental TE 11 
mode of a circular waveguide, it can be shown that 

(kcd) circ = 2  Pill 	 (1) 

where pi ll  = 1.841184 is the first zero of the derivative of the Bessel 

function of the first kind and first order. 

For the fundamental TE
10 

mode of a rectangular waveguide, 

we get 

(k
c
d)

rect 
= il 
	

(2) 

where d is either the diameter of the circular waveguide or the largest 

side (a) of the rectangular waveguide. 

For a transition originating from a circular waveguide in 

which both dimensions are truncated and which maintains the cutoff 

frequency, 
(kcd)trans 

can be cast in form 

d 2  

(k cd) trans = 2  P 1 11 (1  - -F) 	 (3) 



-3 

In this case, the largest dimension d is the dimension a of Figure 1. 

Notice that (3) is reduced to (1) for d 2  = 0. 

By equating (2) and (3), it is obtained the value of the 

largest dimension (a) of the rectangular waveguide which maintains the 

same cutoff wavelength as the transition. This gives the value of 

d2 max 
 - 0.1468553. 

From geometrical considerations, it is found that 

d1 max  
0.4783255. 

The dimensions d
1 
and d

2 
for the transition cannot be found 

analytically and will be computed numerically. 

Following [5], the mode characteristic impedance of a 

waveguide for TE modes is defined as 

2P Z= 
0 	II* 

where P is the total power transmitted by the waveguide and I is an 

associated axial current. The normalized characteristic impedance at 

infinite frequency is give by 

z  _  o(frequency =.)  
o (4) 

where o is the characteristic impedance of free space. The characteristic 

impedance at any finite frequency can be found by dividing (4) by 
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li _ ( .1)2 

where f
c is the cutoff frequency of the guide, and f is its working 

frequency. 

It can be shown that for a circular waveguide the 

normalized characteristic impedance is 

Tr(P 1] -1 ) 
z - 	 
o 8 

while for a rectangular waveguide 

= 
Hz b 

z — — 
o 	8 a 

In the case of the rectangular waveguide treated in this work 

(1  - dl ma)  
11 2 	  

z - 

c) 	8 (1 	d2 max )  

From (6) it is seen that the characteristic impedance of 

a rectangular waveguide depends on its cross-sectional dimensions, 

while from (5) it is seen that it does not for a circular waveguide. 

This fact leads us to suspect that for a transition which maintains the 

cutoff wavelength of a circular waveguide constant, there is no linear 

relatioship between the cross-sectional dimensions of the transition 

and its characteristic impedance. 

(5) 

(6) 

(6') 
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III - RESULTS  

A computer program using the finite-difference method and 

giving (y) and zo , for a waveguide of arbitrary cross-section, was 

run for several transition cross-sections. For fixed values of (d 2/r), 

different values of (d
1
/r) were assumed and the values of (k cd) and 

(zo ) were computed. The values of (d l /r) and (d 2/r), which produced the 

lowest error as compared to the theoretical 
(kcd)trans 

given by (3), 

were selected. With these values of (d l /r) and (d 2/r), Figure 2 was 

drawn. 

For ali plotted points of the figure, the error in (k cd) 'trans was less 

than 0.1%. Pyle's [4] curve is also shown on Figure 2. 

It is seen that there is a good agreement between Pyle's 

[4] and our curves for very high or very low values of (d l /r) and (d 2/r). 

In the intermediate region, the difference becomes quite significant. 

This discrepancy could be explained by rather arbitrary correction 

factor adopted by Pyle in [4]. 

In Figure 3 three characteristic impedance curves are 

represented: (I) computed by the finite-difference program, (II) and 

(III) computed by applying the results of this work and Pyle's one [4] 

to equation (6), respectively. 
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The characteristic impedance data obtained from the finite-

difference computer program showed an error of 3.6% when compared to the 

known theoretical results for circular and rectangular waveguides. 

Therefore ali the computed values for the characteristic impedances were 

scaled down bythisfactor and are presented as curve (I) on Figure 3. 

Two other curves presented in this figure are based on the 

assumption of [1], which assumes that 	expression (6) is valid for the 

transition. From Figure 3, it can be seen that this is indeed true for 

(d i /r) in the range 0.4783255-0.44. For values of (d i /r) lower than that 

it is not so, and the error in the value of characteristic impedance is 

maximum for the circular waveguide as it should be. 

By assuming the proportionality of the impedance of the 

truncated circle to the ratio b/a, as is done in [1], we are, actually, 

approximating a truncated circle by a circumscript rectangle of 

dimensions bx a. This is poor approximation, especially for the cases 

in which d
1
/r and d

2
/r are small when the figure is more of a circle 

than a rectangle. In this cases, the field lines in the waveguide are 

better described by the Bessel functions than by the trigonometric 

functions. This fact shows up in the expression of the characteristic 

impedance. 
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IV - CONCLUSIONS 

A circular to rectangular waveguide transition which 

maintains the cutoff wavelength of the fundamental TE 11  mode of the 

circular waveguide is computed by the finite-difference method. 

The curve which relates the dimension of the truncation 

is presented and compared with the one presented in [4]. The results of 

this work are less than 0.1% of the theoretical ones as far as cutoff 

wavelength is concerned. The precision of the results of [4] is not 

known. 

The normalized characteristic impedance of such a 

transition is also computed and compared with the one used in [1]. It 

is shown that the simplified assumption of [1], as far as the normalized 

characteristic impedance is concerned, is valid only for large truncation 

of a circular waveguide. This corresponds to a rectangular waveguidewith 

slight rounding of the corners. For the other region, wherethetruncation 

of the circular waveguide is not large, the simplified assumption of [1] 

is in error. This fact could be accountable for the measured reflection 

coeficient of the mode transducer described in [1] being twice the 

theoretical one. 
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Figure 1 
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