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Resumo:

Apresenta-se neste trabalhe uma abordagem para gerar
algoritmos monotonicamente decrescentes para as relaxagdes
"surrogate” e Lagrangeana do problema muitidimensional da
mochila em variaveis 0-1. O +trabalho mostra a 1mportancia do
controle do tamanho do passo em um algoritmo tipo
subgradientes, Nio é permitida a repetigdo de valores
intermediidrios no algoritmo "surrogate" em duas iteragdes
segurdas. No algoritmo Lagrangeano obtém-se uma segiiéncia
mondétona decrescente de valores o6timos. Apresenta-se um
grande nimero de testes computacionais com problemas da

literatura.






THE 0-t MULTIENAPSACK PROBLEM: MOHOTONE SURROGATE AHND

LAGRANGEAN ALGORITHMS
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Abstract:

In this worK an approach for generating monotone decreas:ing
algorithms to the 0-1 MultiKnapsacK surrogate and Lagrangean
relaxations 18 showed. The work is centralized in coniroiing
the step s12e of a subgradient type algorithm., A repetition
of optimal intermediate values for the surrogate algorithm
18 avoided at least at the third consecutive iteration, and
for the Lagrangean case a monotone decreasing sequence of
values 18 assured. A lot of computational tests with

problems of the literature are presented.
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1. INTRODUCTION:

In this work we study monotone decreasing
algorithms for the 0-1 Multiknapsack surrogate and

Lagrangean relaxations.

The 0-1 Multiknapsack problem can be defined as

max cX
{P) s,t., AX < b

X € {0,130,

where, ¢ € N , b € N® , A is a mxn dense¢ non-
-negative integer matrix and (0, 1)7 = [(x € Rn:szo or xj=i;

J=1,...,n1.

Other surrogate algoritnms Wwere proposed by
Karwan and Rardin [10], Dyer [2}, Gavish and Pirkul f6], and
Sarin, Xarwan and Rardin (14}, [(15). The research in
surrogate duality were developed mainly Dby Glover {71,

Greenberg [8), Karwan and Rardin [10] and Dyer ([2].

In section 2 we define the Lagrangean and
Surrogate relaxations, and show one condgition for the
equality between the optimal wvalues cf the Surrogate
Continuous and Lagrangean relaxations. A general subgradtient

algorithm is also presented. The surrogate version of the



algorithm is analysed in section 3, and the Lagragean
version 1in section 4. In section S we present a reduction
phase for the Lagrangean version and computational tests

with Dboth algorithms wusing 13 problems of the literature.

2. LAGRANGEAN AND SURROGATE RELAXATIONS

In this section, we recall the surrogate and
Lagrangean relaxation definition and some properties. One
condition <for the equality Dbetween the optimal! values of the
Lagrangean and the Surrogate Continuous relaxations of (P}
15 showed. A general subgradient type algorithm 1s also

given.

The Surrogate relaxation of (P} can be defined as
max c¢x
{SRy) 5., WAX £ wb

X € [on
where w € R.R,

and for the Continuous version {SRCy), X € (0)F

is substituted by X € (0,4 that means O ijs 1;3=4,....0.



The Lagrangean relaxation of (P) 1is

{LRy) -~ max {cx = Ww(AX - D),

s.t x€0,110

where w € R,M

Let us define the {functions

LR,M® --> R, W --> Iw) = V{(LRy)
ssR,B --> R, w > s(w) = Vv(SRy); and
sc;R, M --> R, w --> sc(w) = V{SRCy)

where v(.) is the optimal value of problem (.).

It's well Xnown that:

- 1 is a function continuous, convex and linear

by parts in R,D(RocKafellar [13]);

- s is a quasi-convex function in R,® and upper

semicontinuous in the compact B = fw 2 O {w| = 1} and
i

- sc is a gquasi-convex function in R,® and

continuocus in B {(Greenberg H. and Pierskalla W.P. [9]).

These characteristics contribute for successful
application of subgradient type algorithms in the Lagrangean

case and for a source of problems in the surrogate case.
For a given w:

(iy the solution of (LRy) 1s trivial;



]
(i1) the solution of (SRCy) is obtained as

follows {Dantzig [11):
- gort the ratios (:J-/WAJ in decreasing order,

- fix wvariables at 1 according this order until

the intfeasibility of the constraint,

Let i®¥ be the variable 1inhndex that makes the

infeasibility of the constraint; ‘}?1* is the basic variable,

and let Jy (J  €14,2,...,nkX =1 in the  solution  of

(SRCyw)l. Then,

V(SRCy) = T Cj + CixKig
7,
where Xjy - w(b - T AJy/wal%,
eI,
V(SRCy) = L cj - cCjyW8y/WALX | where gy= E AJ - b,
¥’J, €T,

wg $ 0 and |wg | < wAl*® and
W W

(iii) the solution of (SRy) c¢an be obtained by a
real constrained wversion of the algorithm FPK for 0-1
kKnapsack problems (Favard D. and Plateau G. £30. The

optimal value V(SRy) is integer but the constraint 1is real.

Let Xy = Cju/WAl% that 1is, Ay 15 the optimal
seiution of the (SRCy) dual. In the following we show a
sufficient condition for the equality between the optimal

values of the Surrogate Continuous and the Lagrangean

relaxation of (P).



PROPOSITION t: If w, = ly.w then V(SRCy) = V(LRW.).

Proof: V(LRwWg) = max fcx - W (AX - DB =
x€10,43"
= max {cX =~ Ly .W(AX - b)) =
x€i0, 111
= max fcx = (Cix/WAI®)W(AXx = D)} =
x€¢0, 137
n
= max { T [cy - (cije/wal¥)walyx; + (Cix/WAL* )wb] =

xcgo, 1} 7t

= D¢ - ¢ wg /wal®x = V(SRC ).
J 1x w w

Jer

This result shows that for an optimal solution

for problem (SRCy), there i1s a Lagrangean Relaxation (LRwg)
with the same optimal value. The optimal solution of (LRwg)
wlll be: [

X = &, for all jeJ
ki w

X = 0, otherwise.
L J

This will ©De used 1in section 4 in a Lagrangean version of

the general subgradient type algoritnm given in the

following.



Algorithm G

( For a given relaxation of (P), (RELyg), let
gw = L AJ - b, Jy ={J:xXjz1 in the optimal

JEJ solution of (RELy)1 1}

Compute w € R,M; solve (RELy); © ¢« + o
while V(RELy) $ & do
8 ¢ V(RELy);
compute 1t € R,
wews tg /e |?
for each 1t in {1, ...,m} such that wj < 0 do
wi & 0
endfor;
solve (RELy);

endwhile

The step size 1 will be defined at the
appropriated section depending on the relaxation (RELy)
used to (P}, and their contro! will maKe possible a monctone

nen-increasing sequence of v {RELy).



3. SURROGATE VERSION:

In this section a surrogate version of algoriithm
G 18 presented, with some theoretical results and suggestion

for controling the step size t at implementation phase.

The Algorithm S is derived of algorithm G Dby
makKing (RELy) = {(SRy). Suppose that 'w, W, and w’ are
values of w at three consecutiveliterations of algorithm
S, W' ¢ W + i gw/"gwua, t > 0, and xx is an optimal solution

to (SRy) (idem to w!' and ’'w).

PROPOSITION 2: (i) If gy@y: 2 O then V(SRy) 2 V(SRy:);
(i1) 1f g 8 < 0 and t ¢ |wg |.y& |%/|g & |
w ow! w’ w wow'
then V(SRy) 2 V(SRy:).

Proof: Of (SRy:) solution, w’'gy» ¢ 0, or

2
<

we +tegg /|8 |®
w' w oW’ w

(i) Like t > 0 and gydyw: 2 0, wgyr ¢ O, that 1s

Xx%x' is feasible to (SRy) and then Vv {SRy) 2 V(SRy: )i

(ii) If g &g <0 and t < |wg |.|& "3/|g g 1, a
wow? w! W w ow!

similar analysis shows that v(SR ) 2 v (SR }.M
w w!

COROLLARY 1: (i) If Vv{(SRw) < V(SRy:») then gygyw:@ < 0O
{i1) 1f A "2 < |wg_ |/|€ 8 | then
w w! w w!
V(SRy) 2 V(SRyr).

Proof: 1mmed1ate.m



The multiplier w' is a function of t y and
naturally it is not Known a priori if gygy: is greater, less

or equal 0. But if t is "small enough™ then V(S5Ry) may be

greater than v{SRy:).

The following result shows that 1 can't be

“much smali® to avoid that V(SRy) = V(SRy:1).

PROPOSITION 3: (i) If t ¢ |wg | then v(SR } ¢ v(SR };
w w

w}
(1i) If t < |wg | and g ¢ > 0 then V(SR ) = V(SR );

w - w' w w!
(tii) If t < |we |, eg < O and t/[|8 "3 g

w w w! w

|wg |/|g g ] then v{SR ) = ¥ (SR ],
w! w W' W w?
Proof: (i) w’g = wg + t and if t ¢ |wg | then w'g < O,
w w w w

that is, X% is feasible to (SRy»);
(ii) immediate from proposition 2(¢(i1) and (i);

(ii1) immediate of proposition 2(ii) and (1).m

COBOLLARY 2: If v(S8R ) > v(8R ) then t > |wg |.
w w! w

Suppose now that Jy = Jy:r,

PROPOSITION 4: If Jy = Jy» then
(i) t £ |wg I;
w

(ii) O ¢ Iw’g | < |wg |.
w W

Proof: If Jy = Jyr then gy = 8y: and w'gy = Wgy + t S 0.

by

Then (1) t Iwg |, because wg ¢ ¢ and t > §;
w

w
{1i) 1mmediate from (1}.M

Then 1f Jw = Jyw:r the two hypothesis of

proposition 3 (ii) are fulfilled and v(SRy) = V(SRyp ).



L}

w!
(11) If |wg | <t < [wg_ |.|& “2/|g g | thenJ #J
w w! w w w! W w

COROLLARY 3: (i) If t > |wg l then J # J
w w

¥

and  V(SRy) 2 V{SRy:}.

Proof: (i) immediate from proposition 4;

(ii) immediate from (1) and proepositicn a.m

Some consequences and conditions for the scalar

product gyw&y:r Sign are presented in the next proposition.

PROPOSITION 5. (i) If |Wg l z lw'g | then g g , < 0y
W w

w’
(1i) g 8 > 0 if and only if |wg | > |w'g
W W’ w)

w)

w |
and wgy: $ O.

Proof: w'g :wg  +tgag /|8 "3 < 0, t > 0. Then
W' w’ W oW w

| then g & < Q;
w! v w'

(1i) if g g > 0 then |wg | > |w'e
w ow'

(1) 1f |wg_ | ¢ |w'g
wl

| and we < O]

w! w!

I1f wgy» > O the solution X%’ 1s not feasible 1o
(SRy) and then Vv (SRy:} may be greater than v{(SRy). In the

following we examine the consegquence.

PROPOSITION 6: If wgy: > 0 then gyByw: < ¢ and

e, £t lee 1718 0%
w' w ow! w
Proof: w'g = wg +tegag /| Ha' Because w'g < 0,
w’ w! w ow! w w!?
t > 0 and wg > 0 then wg <t |8 |71 e "2 and
w'’ w! w W' w
< 0,

We can now examine a suggestion value for t to

search the monotony in the sequence {V(SRy')1}.

10



The use of t = |'wg | may bpe considered a
w
natural derivation of proposition 2 (ii) upper limit in the

worst case, and produces good c¢omputational results. Then,

N INT
w

Wlew e |'we | g /e |2 and
w w w

wig = wg o+ |'we | g & /|g |°.
w! w! w w w! W
FROPOSITION 7: If t = |’wg | and J = J then g8 g ¢ 0.
w w w! ‘Ww
Prootf: 0Of proposition & (i) if J = J ' then |'wg | R A
w w
|wg |. Then, of proposition 5 (i), g g = O.W
w 'Wow
COROLLARY &4: If t = |’wg | ang J = J then J AJ = J .
w w w! '‘w w w!

Proof: immediate.m

With this very interesting result, two 153 the
greater number of iterations with the same optimal solution
for the relaxation (SRyg-). In almost all the <c¢ases this

result remain valid for the optimal value.

PROPOSITION &: (1}If t = |’'wg | and g,.g > 0 then J # J
w wow w w!

(ii) I¢ t = |'wg |, g g > 0 and ¢g g :Q
w 'wow w ow!

then V(SRy) 2 V(SRyr) and Jy # Jy .

Proof: {1i) By proposition 5 (1il}, if gryww > 0 then t =
l'wg I > ]wg | and by corollary {+ (i} J # J
w w w w!
(ii) immediate from propositions 2 and S.W
It 1is impossible that T ¢ |wg | for two
w

consecutive iterations of algorithm S. If g:ygy > 0 there is

a sufficient condition (t > |wg ]) for v(SR ) > V(SR }.
w w w!

11



It is important to note that some results can be
changed when the projection of w?' in the non-negative
orthant of R®™ is made, because for an i € {i,...,m}, 1f w; #
0 and w'; < 0, when w'; ¢« 0, and maybe

Wigy # Wy + L

wg #wg + t.gg /e “2 (idem for 'w and w).
w! w! w w! w

Algorithm S can be modified introducing
it wi « 0 then (8w); ¢« 0, for i € {4,...,m}.

This simple modification 1is necessary at implementation

phase to preserve the main results of this section.

4, LAGRANGEAN VERSIOHN

Let Algorithm L be a derivation of algorithm G
for such that relaxation (RELy) = {SRCyw) - From (SRCy)
solution we have: Iix, by = ci,/wAi*, gw » and Jy. Suppose
that w and w' are two consecutive 1terations of algorithm L,
and from (SRCys) solution: ix’, Ayt = Cixr/w A%’ go, and

Jwi .

The result of proposition i, v(SRCwi = V(LEw¢),
for wg = Ay.w, W1ll be used in algorithm L, and at each
iteration, problem (SRCy) may be solved Dby the expected
linear time complexity algorithm NEKR of Fayard and Plateau
{Fayard D. and Plateau G. [3}1)}. This wil} produce a seqguence

of Lagrangean values v(LRw,').

12



The solution of (SRCy) have an integer part, the

X = 1, j €J and the real part X = |we ]/wAi*, |we | <
J w, i# w w

wal®*. For the integer part a similar analysis than the one
made for the (SRy) Problem can be repeated here, that is,
the search for t such that wgy,» ¢ 0, and all propositions
and corellaries of section 3 are applied to (SRCy). For the
(SRCy) case the following pProposition is a stronger result
than all those for (SRy), and this is a consequence of the

function sC characteristics (see section 2}.

PROPOSITION 9: If wg ¢ O and |wg > wAl*' tnen v(SRC ) >
W w

wll
V(SRCwl ).

Proaf: It wg £ 0 and ’wg

| > wAl*’ then wig + Al*’) < o
W’ wl

w!
and V(SRCy») = £ Cj5 =~ Ciyr Wigyr/W'AI¥’ < B ¢y 4+ ¢y <

J€J,, jeg,

v (SRC ).
Sl
Suppose now that wg $ 0 and |wg | % wal®'’,
w! w

< | < wAal®*’ then there

FROPOSITION 1G: If weg < 0 and [wg
w! w!

existsg a @ 2 0 such that

B Gy = WyWeyr + 2 = V(SRCyl), R 2 0,
j€g ? wWew w
where LMy = Cj,r/wAl¥’.

If ix =1*’ then @ = E jc_ - ) waly,

J w
JEK

where K = (Jy U Jyr) - (Jy 0O Ty ).

13



Proof: If wg $ 0 and |wg | s WALX
wl w!
the solution -
Yy =1, for aill j € J |,
J w!
y = |we I/wAl*H
1% w’
Y = 0, otherwise,
L J

ls feasible for (SRCy), then there 15 a @ > 0 such that

Z CJ - X,wwgw) + § = V(SRCw)-

J€J,
Suppose now that ix = ix', then A’y = hy
and for @ = B |c -\ wAJ|,
J w
JEK
E c -hawg + I [c - WAJ| =
J w o ow! J w
JGJw, JEK
= B (Cj - AyWAJ) + Aywb - T (Cy = iyWAl) +
JEK, J€T,
where Kji = Jys = (Jy N Jy ),
K = J - (J NJ ).M
J w w w!

Using proposition 10, conditions can be examined

for v{SRy) 2 V{(SRys )

PROPOSITION 11: It wg < 0 and |wg < wAY*' ang
w?

"
(i) 1f |wg '|/wAi*’ > |w'eg ’|/w’A1*’, or
w w

(11) if |wg |/wal*' < |w'g [/w'Al*' and
W’ w)

i4



c |w's |/W’Ai*’ - ¢ {weg [/wAi*’ ¢ Q then
ix w! w!

ix
V(SRCy) 2 V(SRCy:» ).

Proof: Using proposition 10 and of (SRCy1 ) solution,

V(SRCy)} — VI{SRCy:) = Cixs W gwr/W'ALY' = ¢\ wgy/wAlX' + @
Then, because wgy: and w’'gy: are both < 0 and @ 2 0, (i) and

(i1) are 1mmediate.m

Remark 1: As V(SRCy)} and v(SRCy:) € R, the equality 1n (i)
and {(ii) has a small probability, and this implies strictly

decreasing surrogate values.

Y

CORROLARY S : If Jy = Jyur and gyAl*' 2 0 then v(SRCy)

V(SRCy»r) and 0 < V(SRCy) = VI(SRCy1) ¢ Ciy1 (W'gy/W ALY’

Wgw/WALR ) 4 g,

proof: If Jy = Jyr, 8w = Eywr and by proposition 4 (1) 1t

[ K

|#e |. Then for g al*’ » o,
w w

[we |/wal*’ > wg o+ t|/ (WA« t g AVX'/yg |2,
w w w w

that 18, by proposition {1 (i), V(SRCy) > Vv{S8RCy:) and
V(SRC } -~ V(SRC ) = ¢ (wrg /w' A8’ - wg swal*’) + Q.4

w w! i%? w w
Remark 2: If Jy = Jy» and i* = i*' then @ = 0.

The following result gives an upper bound to t

at each iteration of algorithm L.

PROPOSITION 12: t < max { wadjg §18/1e Ad}3;
w w
JetL, ..., 0}
Proof: From the (SRCy:) solution w!Al*' 5 0, or

wal®’ + ¢ g Al*’/"g "3 > 0. And then
w w

15



t < wAl*’"g "3/|g Al*'I or 1 <max { wAJ"g "3/‘g AJ|I
W w JEEL, L. w w

(1f g Al* = 0, 0 ¢ t < @)Y
w 1

The step si12ze 1 may be:

t = [V(SRCy) - Vpl/(Ag.P)

where Vh is a lower bDbound on v(P) obtained by any

heuristics, and p Is a positive constant definegd at the

first 1teration of the atgorithm.

A nice characteristic of this definition 1s that
with a Jjudicious choice of p we can estimate of when the
property t < |wg | (sufficient condition for decreasing 1n

w

the surrogate case) will be fulfilled.

PEOFPOSITION 13: If t ¢ |wg | then
w
[(SRCy) - vpl ¢ Cix-P
Proof: t =z [(SRC }-v ].wAl¥,/c .p, then like |we | ¢ wAl¥
w h 1% W

the result 1s 1mmed1ate.m

CORQLLARY 5: If [(SRC ) - v } > ¢ p then t > |wg ].
w h w

i%

proof: 1mmedlate.m

S, COMPUTATIQNAL TESTS:

In this section we opresent computational tests

using algorithms 8 and L with 13 problems of the literature.

16
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A reduction phase for algorithm L are also presented. This
makes possible to fix variables at their optimai values
and/or eliminate redundant constraints. The main features of

these tests are reported in tables 1,2 and 3 of the

Appendix.
The test problemg of literature are:
W1-w8 due to Weingartner and Mess [17},
F due to Fleisher [4},
P% and P7 due to Petersen [12}, and
8T1 and 3T2 due to Senju and Tovoda {16}.
The initial multiplier w used in both algorithm
is n n
wi = (& ajj - bj)/ B ajj, 1 =4, ...,m
j=1 LR

For algorithm 8, t

|’wgw| is wused at all
iterations. The stopping c¢riteria in algorithm G is changed
to a more flexive one, in order to search for an improved
solution, 1.e., a counter is introduced to stop algorithm S
after a fixed number of incresing values of V(SRy). But,
when v(SRy*) increases for +the {first time (V(SRWRC) is
reached), it is near the dual surrogate optimal solution and
very few iterations were necessary (see tablg 1). The nice
characteristic of <corolilary 3, i.e.,, the Vv(SRCy) values and

solutions can not be repeated at the tithird consecutive

algorithm iteration is preserved.



We also have made tests makKing t & t/2 when
V(SRyg) < V(SRy:}, and the bounds v(SRwK*} are comparable
wlth that onhes of table 1, but with an increasing at the

number of 1i1terations.

For algorithm L, t = [V{(SRCy)-Vpl/P. Ay at alt
1terations and none counter are introduced at implementation
(see table 2). The parameter p 15 fixed at the first
1teration to estimate when t 2 |wgw|, and for problems Wi-
w8, Pe e PT, e F , p = 10 i§ a good choice, but for 5STi
and 8T, p must be small, egqual to 0.5. This 18 a directly
consequence of the problems data. It 1s 1nteresting to note
that this adequate values for p are all equivalent to make
1074 « t/"gw"a $ 1073 at the initial iteration of algorithm
L for each test oproblem. The computationail tests show that
with the <choice of the interval [107% 1073) for t/"gw"a ,

corollary 1 18 valid 1n a great number of <consecutlve

1terations.

The lower Dbound of v{(P), vy , 15 obtained by the

tollowing greedy heuristic

18



HEURISTIC: (i) sort the ratios cj/wAd,  gz1,...,n, in
decreasing order (this was already obtained by the sc¢lution

of (SRCy);

(11) fix variables at {1 according this order
while each constraint of (F} is feasible. When one
constraint is violated, set the correspondent Xj = 0 and

continue,

Because the sequence {Vv(SRCy' }1} is monotone
decreasing, the results of table 2 are obtalneq 1n very few
iterations (k=) comparing with traditional subgradient
algorithms, The bounds  v{(SRCyK*) are very good comparing
with the (PL) bound (the solution of the (P) dual}. The
values of Yh are also very good (less than 1% error o¢f
v{P)}. Lorena and Plateau [11) presents other successful
tests with diferent values of t/"gw"a in the 1nterval

(1074 1073,

The monotony characteristic of sequence (V(SRCy')
18 attractive to apply reduction tests of type described 1n
Fréville and Plateau (5], while the algorithm L 18 1n
course. At the end we have fixed some variables and/or

eliminated some redundant constraints.

Table 3 shows for each test problem the number of

variables fixed at iteration 5, 10, 15, 20, and at the final

19



iteration of algorithm L,

in wich all we

iteration

Reduction test 1:

using the

20

following simple test

need is completly given at each algorithm

Given 9 € {0,131, w

€ R, and Vh, the following 1is a sufficient condition to
reduce the size of (P) £ixing variables to their optimal
value
1f there 15 an index J € {i,...,n} such that
| V(SRC ) - | 4% | | < v
L w J 4 h
where  a0; = ¢ - ry.wAJ (resp. dlj) if ¢ - Ay WAS  is
positive (resp. negativel},
then the variable X j must be fixed at value 1 - 3.
The following elimination test of redundant

constraints can be made at some tterations of algorithm L:

Reduction test &:

max Apx

(PK,) subj. to  WAX

X €

then, the following condition

of constraint K

If there is an index K €

[

i1,

| v(pPK )
w

Let the problem

¢ wb

[o, 111,

is sufficient for elimination

...,mj such that

| £ v
J h
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then constraint Ag ¢ by can be eliminated. This test can
be made only for constraints Kk such that w'; is near O

and wy # 0, for some K € f{i,.,m).

The main advantage of this approach is the
automatic reduction induced by the algorithm, but the
results are not comparable with the ones of Fréville and
Pitateau [S}, because here we have used a less elaborated

heuristic to obtain Vh-

6. COHCLUSION:

The good results of tables 1, 2 and 3 can be
extended to other 0-1 problems for that problem (8RCy) 1is a
continuocus (-1 Knapsack problem, because in this case all

propositions remain valid.

The current work concerns an improvement at the
reduction phase {for algorithm L wusing more elaborated tests
and heuristics, and for ©Ppoth algorithms the wvalidation of
the suggested values for t in other randomly generated
problems of great size. The first experiments leads to

efficient and strong results.
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APPENDIX

Table 1

Problem K  V(SRyKc) k¥  cont  v(SR,K¥)  v(SR,®)
P& 13 10667 27 5 10659 11081
P 22 16613 28 2 16596 17236
ST 1 33 7853 4y 3 7850 8341
ST 2 34 8774 50 3 8771 9110
F 13 2230 25 3 2219 2410
WN 1 8 141548 8 1 141548 146260
WN 2 8 130883 8 1 130883 136708
WN 3 6 98416 15 4 97906 101507
WN 4 T 121087 21 S 120647 124504
WN 5 11 98796 11 1 98796 122363
WN 6 10 130773 10 1 130773 140447
WN 7 17 1095491 22 3 1095491 1101533
WN 8 6 62Tud2 12 3 627442 636916

Where:

K¢ = lteration number of when V(SRy:) > V(SRy):
K = number of iterations;

cont = counter of times in wich V{(SRys) > V{(SRy);
v(SRy®) : 1nitial optimal value of (SRy);

v(SRwK; ) : optimal value of (SRy) for w : wK.: and
v(SRK*) - final optimal value of (SRy).



Table 2

Prob v(P) (PL) v(SRC 9) %¥* Vv (SRC K*) t/"g "3
w w w

Wi 141278 142019 148363.8 22 142019 4, 2x10" %
w2 130883 131637.5 137840.2 36 131636.4 4.7x10” %
W3 95677 9647 102400.3 66 99650 4,5x10" 4%
wWd 119337 122505.2 125896 10 122507.9 4.3x10° 4
W5 98796 100433.1 123271.1 34 100433.1 2.1x10°4
Wb 130623 131335 141157.1 24 131335 5.4x10™4
W7 1095445 10653721.2 1101848 5 1095722 B 3.5x10°4
W8 624319 628773.7 637939.9 14 628775.2 3.5x10”%
F 2139 2221.8 2447.8 20 2229.6 3.3x107%
P6 10618 10672.3 11091.6 53 10675.9 S.o0x10”4
P7 16537 16612.8 iT248.1 40 16613.9 4.5x10”4
STt 7772 7839 8356.5 48 7853.4 2.5x107%
3T2 g722 8773 9123.3 21 8774.6 T7,0x10"%

Where!

v(P) = the optimal solution value of (FP);

(PL) = the optimal solution value of the linear

programming relaxaticon of (P);

K* = number of iterations;

v(SRCWO} = initial optimal value of (SRCy); and

V(SRCWK*) = final optimal value of (SRCy)-



Table 3

Probl. size Vh # of fixed variables at iteration
5 10 15 20 final
WN 1 2x28 140618 7 8 10 10 10
WHN 2 2x28 130723 10 11 15 15
WN 3 2%x28 35627 9 9 9 9 10
WN 4 2%X28 119337 10 1t 14 14 14
WH 5 2x28 98796 2 4 5 6 16
WN 6 2X28 130233 5 10 10 14 14
WN 7 2x105 1095352 38 81 89 30 90
WH & exi105 620060 42 47 47
P & 5x%x39 10547 1 1 1 i &
P 7 5x50 16499 4 9 9 9 18
ST 1 30x60 7761 11 15 15

ST 2 30x60 araza 14 i6 16 16 16
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