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Abstract

The problem of determining the optimal board length from
which panels have to be cut to satisfy some specified
demand with minimum waste is analysed. Two heuristic
procedures are suggested. The first procedure uses bin-
packing heuristics successively; the second method uses a
branching scheme where potentially good board lengths are

analysed.
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INTRODUCTION

We consider a cutting stock problem in a furniture manufacturer
setting, where rectangular panels of different sizes and
guantities have to be cut from rectangular boards. Manufacturers
in the furniture industry, for instance, are often able to
specify to suppliers of the boards the precise length of board
they require, rather than accept standard board lengths. This may
be on a job to job basis, or the length may stay constant for

some period of time.

Many manufacturers often have available for their use some kind
of optimising program that generates "good" cutting patterns and
corresponding quantities, given a set of jobsl. Most of these
programs assume the board 1lengths are given. Obviously the
manufacturer c¢ould run such an optimiser program many times with
various board lengths and take the one which produces the least

waste, However this is time consuming and prone to error.

Little has appeared in the literature on the assortment problem
which is the problem of determining what should be the stock
sizes. We have studied a few papers, two in the glass industry
context??, and another in the paper industry setting‘. A fourth
paper in the furniture manufacturing context! analyses a closely
related problem when different board types from which the panels
can be cut, are available and the best mix of boards, which

minimises the cost, has to be determined.



We propose here two heuristic procedures to determine the best
board length to order. The first heuristic is straightforward and
uses a sequence of bin-packing&q and job scheduling8 heuristics.
Its application is most suitable for cutting stock problems with
special restrictions, for instance, those that reguire orthogonal

guillotine cutsi.

The second heuristic procedure is more general in nature and can
be used in any cutting stock problem, However, it requires an
optimiser program that provides a solution to the cutting stock
problem given the board length. The procedure repeatedly
generates potentially good board lengths which are analysed by
the optimiser program until some stopping condition is achieved.
The approach is quite similar to a branch-and-bound method. It
was developed primarily to be used for solving small sized

problems.

Before starting the description of the methods we make the
observation that the minimum and maximum lengths required are
generally known and they are going to be denoted Lin and Lyay.,

respectively.

Method 1

Consider an infinitely 1long, fixed width rotated board (bin)

(Figure 1).



———————
A

Figure 1
Rotated board of infinite length

Insert a panel in the bottom left hand corner according to some
rule, e.g. largest, widest, etc, and form a strip or shelf. Fill
the strip using an appropriate rule, for instance, following some
priority list. Insert the next panel in the list that fits in the
available empty space(s). Continue in this manner up the board
(or bin) until all panels are fitted (see Figure 2). Any shelf

bin-packing heuristic®? would be applicable.

PN

| Strip n
| Strip n-1

Strip 1

Figure 2
Cutting pattern for a board of infinite length
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We now divide the board into its strips (see Figure 3). The aim

is to produce a grouping of these strips into equal length boards

with minimum loss.

-------- ( 1 |

Strip 1 Strip n-1 Strip o

Figure 3

Given the maximum possible board length of L., and the fixed
board width, it is possible to estimate the minimum number of
boards (Npi,) into which these strips could be fitted. Each strip
traps some waste so this calculation does not use the origiral
panel area but the total area of the strips. Try to f£ill Njip
boards with these strips: this is similar to a wmachine shop
scheduling proble:ms where the strips represent jobs and the
boards represent machines, A possible strategy to follow is to
fill the board having the greatest waste remaining with the
largest strip still in the 1list. If the strips do not fit into

Npjn boards, start again with Npi,+1, then Npj,+2, and so on

until a feasible solution is found. Call this Nemin-

Now fit the strips into Nepintt boards (use, for instance a
heuristic for minimising the total makespan in a job scheduling
problem with Ngpi,+1 machines) and observe the greatest total
strip ‘height’ in any board: this would be the final board length

for that number of boards because clearly every other total strip
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height would fit into it.

In Figure 4 we illustrate a possible

output obtained at this stage.

strip 10

Strip 1

Board 1

Repeat the previous process with Ngnin+2 boards,

Final board length
i

strip 25
Strip 18
Strip 17 Strip 21
Strip 11 Strip 14
Board Ngpin Board Ngpipt+l
Figure 4

Strip groupings with Ngyin+l boards

then Nsmin+3

boards, etc. until the calculated final beocard length falls below

the minimum final board length L,;,. The solutions are summarised

in Table 1.

Boards

Nnin
Npintl
Npint2
Nomin
Ngmintl

-

Nemintk
sSmin
Nepintk+l

Table 1

Solution of the bin-packing problem

Final board length Board area used

<no solution>
<no solution>
<no solution>

L(0) A(0)
L(1) A(l)
L(k) A(k)

<less than Lmin’



The chosen board length is that which is associated with the nin

{Aa(0),A(1),...,A(K)].

The drawbacks of this approach are:

a. 1t assumes that boards can be cut in their rotated
orientation. Alternatively if the patterns are returned to their
normal orientation before cutting, it assumes that the resulting

patterns are both feasible and economic for a particular

manufacturer‘’s saw operation;

b. patterns are built up from pre-determined strips. The
limitations on the patterns have a direct impact on the quality
of the solutions because, for the same number of boards, other

acceptable patterns may produce panel arrangements with overall

smaller wastage.

The major advantage of this approach is that it is very simple

and yields a solution very rapidly.

Method 2

Method 2 relies on running an optimiging program for a set of
board lengths. We assume, therefore, that we have a program that
finds a solution to the cutting stock problem given the board

length.



The search path is best described graphically as depicted in
Figure 5. The axes are total board area (vertical) against board
length (horizontal). The objective is to find the lowest
horizontal line, corresponding to a particular board area, on
which there is a solution. The point on the line where this

occurs determines the optimal board length.

Total board
area n boards

Au)

A1) 7

" /

LMIN MID LMAX  board length
Figure S

Run the optimiser using the midpoint MID of the board length
range [LMIN,LMAX! and note the board area used. Call this the
upper area limit A(u) and call the total required panel area the

lower area limit A(v).

[1] Find an area in between (e.g. half way, one third, golden
section) say, half way; call it A(1). We have found a solution at
A(u); we now want to find if there is a solution at A(1l) (see

Figure 5).



Draw lines across the diagram (see Figure 6), each corresponding
to the number of boards in the solution. The first line is that
shown in Figure 5 and goes through the origin and the point
(MID,A(u)}). Other lines are drawn either side through the origin
and the points (A(u)/i, A(u)), where i=...n+2,n+l,n,n-1,n-2... is
the number of boards in the solution. Clearly these points do not
relate to alternative solutions: they exist to motivate the rest

of the method.

Total board n+2 n+1 n o-1
i LA
Au) 7//‘/ . n3
A1) / /
A(v) ///A/

vz
%

AN

A\

ILMIN L{1)LMAX

Figure 6

{2] Find the largest board length less than LMAX (L(1), say)
where there is an intersection on the 1line A(l1). Run the
optimiser for this board length and obtain the number of boards
in the solution. The solution will be represented by one of the

intersections above L{l) (see Figure §).
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If the solution relates to an area greater than A(u), repeat from
f2] with the board 1length corresponding to the next lower
intersection on the horizontal A(l) 1line. If there is no
solution, A(v) is updated to A(l); stop if abs(A(u)-A(v))< € (a

pre-specified error}.

[3] If the solution relates to an area less than A{(u), that'area
becomes the new upper 1limit. Tune the result locally - see

details below. Repeat the process from [1].

Reeping ’solution intervals’

Every time the optimising program is run with a particular fixed
board length, the corresponding number of boards is obtained. It
is possible to construct ‘solution intervals’ for each number of

boards as the search process proceeds.

1 I t
LMINIm i Ij ik In  LMAX

Suppose we have already run the optimiser for 1; and 1y (see
Figure 7) and for both lengths we obtained n* boards. It seecenms
reasonable to assume that within the interval [1lj,1x] the
solution from the optimising program will also be n* (it would be

true if the program used an exact method).
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Hence, if during the search process, we obtain a board length 1ls,
where 1i<1j<lk, we do not need to run the optimising program
again since it is most likely that the number of boards for 14
will be n*. Suppose we run the program for lp (or l,) and we also
get n*. The new solution interval for n* can then be updated to

[1p,1g] (or [1,1,1).

By storing these intervals we can reduce the computatiocnal time

considerably.

Tuning

If a better solution is obtained in [3], local improvements might
be achieved by adjusting the board length slightly, as follows.
Figure 8 illustrates the true, jagged line of possible solutions

if we were using an exact method.

Total board
arca
r////’ >
L~
—
Any A() Cw
LMIN L(l) LMAX board Iength

Figure 8



[4] We can reduce the board 1length by delta (a wvalue chosen
conveniently, for instance 1% of the board length) and run the
optimising program (if this new board length value does not fall

within any of the known soclution intervals).

If the number of boards is unchanged, we have a new (better)

solution, and we can repeat from [4].

If the number of boards increases (also by checking the solution
intervals), try half way between the previous board length and
the closest smaller Kknown upper bound length limit (upper limit
of the solution intervals) for the higher number of boards. (The
solution intervals should be updated every time the optimising
program is run.) Keep bisecting the appropriate distance (until
it reaches a predetermined value), running the optimising progranm

and updating the solution intervals.

As a final adjustment, it is often possible to inspect the final
patterns and find that the board length can be rounded down or

even reduced by a small quantity.

Examples

We present some limited computational results to illustrate the
algorithms. The relevant data of the test problem is given in
Table 2. The optimising program used to generate a solution to

the cutting stock problem given the board length, is described in
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Yanasse, Zinober and Harrisl. Those unfamiliar with the cutting
terminology used can refer to ref 1. The cutting patterns are

constrained to contain guillotine cuts.

Table 2
SAWKERF: 5
MAXIMUM NUMBER HEAD CUTS: 2
TRIMS:
TOP: 5
BOTTOM: 0
RIGHT: 5
LEFT: 0
HEADCUT: 5
BOARD ROTATABLE FOR CUTTING: NO
BOARD WIDTH: 1220
BOARD LENGTH RANGE:
[2440,3660]
PANEL NUMBER LENGTH WiDTH DEMAND
1 850 550 22
2 850 700 16
3 900 550 10
4 900 700 10
5 1100 550 2
6 1100 700 2
7 1300 550 2
8 1300 700 2

Total panel area = 37,055,000

For this particular data set, the board cannot be rotated for
cutting. Method 1 is not strictly applicable as the patterns in
their normal orientation might not be feasible for particular saw
constraints. For the sake of illustration only we apply method 1

to this data set.
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Method 1

Method 1 was implemented with several passes using different
priority 1lists, by 1length, width, area, weighted area
(demand*area), and the best solution was chosen. Initially wé
assume a board of width 1220 and infinite length. The necessary

total board length to cut all panels is found to be 30660.

Hence, a lower bound on the number of boards is 9 (30660/3660
rounded up}. The optimal board length obtained using methed 1 is
3170. With this board length 13 boards are used to cut the

panels. The total board area for this solution is 50,276,200,

The computer running time to obtain this solution was 89 seconds

on a 286/AT PC (Computing index equal to 13.7 compared to an IBM
PC/XT) .

Figure 9 presents the complete solution of the problem given by
Method 1. The patterns are shown in the orientation and order in

which the method created them.

14



Board 1

Board 3

15

Board 4

Boards 5 and &

Boards 7,8,9 and 10

i




Board 11 Boards 12 and 13

Figure 9
Solution of the problem given by Method 1

Method 2

Table 3 presents the board lengths obtained successively when we
apply Method 2 to solve the same problem. In column 2 of the
table, the number of boards necessary to cut all the panels is
presented. These values are given by running the optimising
program given the board length. Column 3 of the table gives the
solution for the cutting stock problem given by the ‘solution
intervals’, that is, we previously found that for some board
length xlow, the number of boards necessary to cut the panels was
n and for ancother board length xhigh, xhigh > xlow, the same
nunber of boards was required. Therefore, we assume that any
board length in between these points will also require n boards
to cut the panels. There is no need to run the optimising program
for these points. Tuning was included and the delta value used
was 25, The bisecting process was aborted since an error of
approximately 1% was considered good enough. Also, the pre-

specified error e was set to 1%.
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Table 3
Potential board lengths tried by Method 2

board length solution by optimising solution
program by interval
(STARTING POINT)
30590 14
3333 14
3055 14
2819 15
2794 15
2769 i5
2744 15
2719 15
2694 15
2669 17
3552 12
3229 14
2960 15
2732 is5
2536 18
3452 i2
3164 14
2920 15
2712 15
2530 18
3564 12
3267 14
3015 15
2799 15
2612 17
2449 18
3620 iz2
3318 14
3062 14
2843 15
2653 17
2487 i8
3648 12
3343 14
3086 14
2865 15
2674 16

2506 18
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The running time taken to obtain the final sclution was 209

seconds. In Figure 10 we present the patterns obtained with

best board length selected, which was 2694.

the

Boards 1,2 and 3 Boards 106,11 and 12
1 1 1
3R
2R 2R 2R
1 1 3
Boards 4 and & Board 13
SR [1] &R
2R 2R IR R 1R
Board 6 Board 14
1 3 1
E é
k4 ?
foards 7,8 and § Board 13
1
4R 4R 4R IR 4R 13 IR
1

Total number of boards used to cut the panels was 15.
Total area of the boards is 49,303,860.

Figure 10
Solution given by method 2
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This solution represents an improvement of approximately 1.97%
over the solution given by Method i. In fact, by just checking
the patterns obtained, we can adjust the board length to the
corrected value of 2675 (the patterns shown in Figure 10 are
already adjusted to this value). The total area of the boards
becomes 48,952,500, an improvement of about 2.7% over the

solution given by Method 1.

As can be seen, the running time to obtain a solution for the
second method is longer than that for the first method. This is
often the case. In larger problems the first method is able to
produce a solution in a few minutes but the second method might
take a long time, since it relies on the optimising program to

produce a solution for every board length tried.

Concluding Remarks

We have presented two heuristic procedures to determine the best
board length from which panels are to be cut in a cutting stock
problem. Method 1 is of limited use, due to the special nature of
the patterns it generates. Method 2 has more general application
because the optimising program used to generate pétterns can be
replaced by any other which the user might feel appropriate for

the problem.

In theory, Method 2 can be used to solve cutting problems of any
size. From the practical point of view, however, we have to limit

its use to small sized problems since the running time depends on
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how long the optinmising program takes to generate a solution. The
procedure uses the optimising program every time it finds a
potentially good board length. If the problem is large, each
optimisation will take a long time. In addition, the number of
boards in the final solution might be large implying that a
potentially larger number of board 1lengths may have to be
analysed. In this case, there would be no advantages in using
Method 2 over a trial and error method which would run the
optimising program for some selected values of board lengths

chosen conveniently within the allowed range.

We have noticed that the ‘optimal’ board length seems to be
strongly influenced by the odd sized panels which are to be cut.
Smaller panels have a reduced impact on the determination of the
board length as they can, in general, be accommodated in any
smaller spaces left on the boards. This suggests the application
of Method 2 only to a subset of the original set of panels to be
cut. This subset should include panels with relatively large
requirements, large area, length and/or width. The smaller
problemn so defined would run faster and the first k best beoard
lengths could be checked with the whole set of data and the best
board length chosen. Our limited computational test experiments

using this approach were quite promising.

Acknowledgements: This work was partially funded by SERC ACME
Directorate grant number GR/F/68942.
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