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Abstract

An enumeration scheme to find the k-best solutions to the
value independent knapsack problem is presented. The scheme
requires O(N(B-A(1))) of memory allocation where A(1),
without loss of generality, is the smallest coefficient of
the knapsack constraint. Memory requirements may be reduced
to O(B-A(1)) with a slight deterioration in computational
performance when retrieving the Kk-best solutions. Similar
schemes are presented for the 0-1 case and when the
variables have explicit upper bounds.
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INTRODUCTION

Consider the following knapsack problem (KP)

Max C(1)X(1)+C(2)X(2)+...+CIN)X(N)

subject to
AX(D+AQ)X(2)+..+AN)X(N) <=B 1)
X(i) >= 0 AND INTEGER FOR ALLi.

KP is hard to solve; it is known to be a NP-hard probleml,

Many research works can be found on knapsack or related problems??, For the particular
case where C(i)/A(i) is constant for all i, called the value independent knapsack problem
(VIKP), the performance of methods based on branch-and-bound deteriorates sharply
since good bounds are hard to obtain. In this case, enumerative schemes (usually based on
dynamic programming) are as good as any other solution method. Most dynamic
programming type algorithms for the 1-best solution requires O(NB} of memory allocation
although it is possible to have an improved implementation that requires only O(B) of

memory requirementsi?,

Algorithms for the k-best (k>1) solutions to VIKP can be derived using the current
enumerative schemes. However, to the best of our knowledge, this has not been addressed
explicitly in the literature. We present a few cases where such solutions might be of interest

and therefore motivate our work.

‘The k-best solutions for the VIKP might be helpfull in the process of finding solutions to
problems where the knapsack constraint (1) is one among possibly many other constraints

of a problem.



Consider, for example, a cutting stock problem*-13 where rectangular panels of different
sizes have to be cut from a large board. Assume some cutting constraints (possibly due to
the machine) must be satisfied: cuts have to be guillotine type and orthogonal, the cutting
patterns have to be formed by strips from where cross cuts are made to obtain the final

panels required.

A heuristic approach to generate feasible cutting patterns for this two dimensional problem
could be a two stage procedure where good combination of strip widths are identified first
and then, panels are fitted into these strips, the best way possible. The best combination of
strip widths are obtained by solving a one-dimensional lmapsack problem. Not only the best
combination of widths but all the first k-best combinations are of interest to determine
patterns. This is so because the best combination of strip widths may not necéssarily

produce the best pattern in terms of overall waste.

Another example arises again in the cutting stock context. Some of the approaches for
solving the cutting stock problem require that the best cutting patterns or all cutting
patterns have to be generated beforehand so that afterwards the best mix of patterns is

determined. The best cutting patterns, in the one-dimensional case, are the best solutions

of a VIKP,

A third situation where finding the k-best solutions of a VIKP might be of interest is when
computer memory is limited and we are interested, for instance, in finding a solution to a
linear diophantine equation. A branch-and-bound type algorithm might generate lots of
branches before reaching a solution and most dynamic programming type algorithms
requires O(NB) of memory allocation. Both type of methods probably would be infeasible
to run as they stand, in this limited memory computer, if N and/or B is large. However, if B

were smaller, less memory is needed, at least for a dynamic programming type

implementation.



Based on this last observation, consider the following example: “Find a solution to the

linear diophantine equation:

6371 +6475%2+684Tx3+9752x4+ 10000x5 + 11785xg + 13042x7 = 29269

xj > =0 and integer for all i."

It is possible to define a surrogate inequality with smaller coefficients by simply scaling
down the coefficients and the right hand side value by a common factor and conveniently

rounding the coefficients to the nearest integer so that none of the solutions of the initial

problem is lost.

For the previous equation one could obtain the following inequality by dividing the
coefficients by 1000:

Oxp +6x2 +6x3+9x4+ 10x5+ 11xg+ 13x7 < = 29

xj > =0 and integer for all i

By enumerating the k-best solutions to this surrogate problem, one could verify their

feasibility to the original problem and hence, obtain a solution:

solution number  solution ths feasible
1 x3=1x5=1x7=1 29 NO
2 x2=1x5=1x7=1 29 NO
3 x4=1x5=2 29 NO
4 x3=1x4=1x7=1 28 NO
5 x3=1xg=2 28 NO
6 x2=1x4=1x7=1 28 YES!



For this example, the 6t best enumerated solution to the surrogate problem is a solution

to the onginal equation.

Observe that a similar approach could be used to solve other related problems, for
instance, equality constrained knapsack problems or an integer linear programming

problem having a linear diphantine equation as one of its constraints.

The proposed enumeration scheme is presented next. It is not based on the traditional
dynamic programming nor the branch and bound methods. Observe that a branch and
bound method is obviously not adequate to find the k-best solutions (k>1). The method we
propose is an extension of the Yanasse and Soma’s algorithm®™ to solve the one-
dimensional knapsack problem with equality constraint. It has advantages over previous

dynamic programming implementations in terms of computer memory allocation and
computational time.

THE ALGORITHM

Consider the following branching scheme:
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Figure 1
Enumeration tree



At each node an index, say J, is kept. Branching at each node is done according to the

following:

if J is the index kept at this node, new nodes are generated one for each one
of the variables with index greater or equal to J, i.e. J,-J+ 1,..,N. So, at most
N nodes will be generated from each node.

Stop branching at a node when the generation of another node implies the

violation of constraint (1).

This scheme will .enumerate all possible combinations of A(1)X(1)+
A)X(2)+...+ AN)X(N), for the different values that the X(i)’s can take, The desired

solution is obtained by getting the k-best nodes achieved in the enumeration,

The algorithm is based on the previous scheme; care should be taken in enumerating the
solutions in an efficient manner, that is, without repeating solutions. Each generated node
has a value b associated with it, b <= B, corresponding to some linear combination of the
coefficients. Different combinations might produce the same value b. To enumerate all
solutions further branching from these nodes would be needed for all these combinations,
starting from their respective indices. Duplication of computations is avoided by merging
together all these nodes and using only the smallest index for branching. The additional
branching required for the higher indices are implicitly enumerated due to the dominance
of the smallest index. The recovering of the solutions is done by backtracking the node
from where the branching was made to obtain the current node. This information is

contained in the index (or indices) kept at each node.

Consider the following implementation where it is assumed that A(1) <= A(j) for ali j.



Algorithm 1 for the k-best solutions

Define a B X N matrix M, and a B/A(1)-dimensional vector R. At the end of the
enumeration, M({J) = 1 if and only if there exists a solution to
A(DX(1)+AR)X(2)+..+ ADXD) =], with X(J)>=1. Array R is used to keep indices

while recovering the solutions.

Step 0 - Initialization}
(L)):=0for all LJ;
PO R:=0;
M:=1;

Step 1- WHILE POINTER < = B-1 DO
BEGIN
S:=M;
FOR J=S TO N DO
BEGIN
L.=A())+POINTER;
IF I<=B THEN M({,J):=1;
END;
NAOTEM:=0;
WHILE (NAOTEM =0) AND (POINTER <B-1) DO
BEGIN
i’/IOII\(I)'I'ER: =POINTER +1;
WHILE (M< =N) AND (NAOTEM=0) DO
BEGIN
M:=M+1;
IF M(POINTER,M)=1 THEN NAOTEM:=1;
END;
END;
END;

{generating the solutions}

Step 2 - POINTER:=B+1;
NUM: =();
COUNT: =0,

Step 3 - POINTER: =POINTER-1;
IF POINTER =0 THEN
BEGIN
WRITE °There is only 'NUM’ solutions to this

‘ problem’;
STOP;

END;
REF =POINTER;

FoR - WHIL E (320) AN ngts'i:ommm) 0) DO §:=5-
> 1;
IF'S 20 THEN RETURN 10 Step 3:



X(8):=X(S)+1;
COUNT:=COUNT +1;
R(COUNT): =§;

Step 4 - REF; = REF-A(R(COUNT));
WHILE REF>0 DO
BEGIN

R(COU
M{n(,EM( FI) 0DO L=I-1;

xg) :=X(D+1;
COUNT+ 1

UNT)
REF REF-A(R(COUNT)),
END;
NUM: =NUM+ 1;
WRITE solution;
{solution number 'num’ is given in the X array}

Step 5 - WHILE (NUM<k) DO
BEGIN

U
REF =REF AR(COUNT),

R(COUNT)-1;
WHI](_.E (I>0 AND M(REF,I)=0DO L:=1-1;
IFI>0THE
BEG}NR COUNT):=I
XEI): =X(I)+1;
RETURN TO Step 4;
END
ELSE
BEGIN
COUNT:=COUNT-1;
IF COUNT >0 THEN RETURN TO Step §
END ELSE RETURN TO Step 3;

END;

Observe that this algorithm can be implemented using O(N(B-A4(1))) of memory allocation

requirements for the first A(1)-1 rows of matrix M carry no information.

Variations of this algorithm can be implemented using a similar scheme and requiring less
memory allocation. This is not obtained freely but in exchange of possibly more

computations to retrieve the solutions as compared with algorithm 1.



Care on memory allocation requirements is of particular interest for algorithms
implemented on small computers where limitations on memory requirements might be

quite restrictive,

Algorithm 2 is an example of a possible implementation of algorithm 1 where only the
smallest index from where a node was generated is kept. Therefore, only an array of size B-
A(l) is required, instead of a matrix of size (B-A(1)) X N. The solutions recovering

operation has to be exhaustive since some valuable information are not stored.

Algorithm 2 for the k-best solutions

Define a B-vector M and a B/A(1)-dimensional vector R. At the end of the enumeration
M(I)=0 implies that there is no solution for A(1)X(1)+A(2)X(2) +.. + A(NYX(N)=];
M(I)=J, with J not equal to zero, implies that there is at least one solution to the previous
equation with X(J)}> =1 and possibly others with X(S)> =1 where N> =S>]J. So, J is the
smallest index for which a solution exists. The vector R serves the same purpose as in

algorithm 1.

Step 0 - {Initialization}
M(1):=0for all I;
POINTER: =0;
M:=1;
Step 1 - {Forward labeling}
WHILE POINTER < =B-1 DO
BEGIN
S:=M;
FOR J=STO N DO
BEGIN
I:=A(J)+POINTER,;
IF I< =B THEN
END IF (M(I)=0) OR (M(I)>J) THEN M(I):=J

NAOTEM:=TRUE;
WHILE (NAOTEM) AND (POINTER <B-1) DO

BEGIN
POINTER: =POINTER + I;
IF M(POINTER) >0 THEN
BEGIN

M:=M(POINTER);



NAOTEM:=FALSE;
END;
END;

END;

{Generating the solutions}

Step 2 - POINTER: =B;
NUM:=0;
COUNT:=0;
NAOACHOU:=TRUE;

Step 3 - ‘B}I];-P}LII’? (NAOACHOU) AND (POINTER >0) DO
IF M(POINTER) =0 THEN POINTER: = POINTER-I;
ELSE NAOACHOU: =FALSE;
END;

IF POINTER =0 THEN
BEGIN
WRITE ’There is only 'NUM’ solutions to
this problem’;
STOP,

END;
RE1;=POINTER;
S:=N;
FOR I=1TQ N DO X(I):=0;
WHILE (S > =M(POINTER)) DO
BEGIN
J:= POINTER-A(S);
IF (é;b(r}) AND ((M(J)>0) AND ((M(J)< =S) THEN

BE
X(8):=X(5)+1;
COUNT:=COUNT +1;
R{COUNT):=S§;
POINTER:=J;
END
ELSE
BEGIN
IF J=0 THEN
BEGIN
X(8):=X(S)+1;
NUM:=NUM+1;
COUNT:=COUNT+1;
R(COUNT); =§;
WRITE solution;
{solution 'num’ is given in the X array}
IF NUM=k THEN STOP;
CONTINUA:=0;
WHILE (COUNT> =1) AND (CONTINUA=0) DO
BEGIN
X(R(COUNT)):= XgR(COUNT))-l;
J:=J+ A(R(COUNT));
S:=R(COUNT);
COUNT:=COUNT-1;
IF (S§>M(I)) CONTINUA: =1;
END
ELSE



BEGIN
F=J+A(S);
IF (S< =M(J)) THEN
BEGIN
CONTINUA:=0;
WHILE (COUNT> =1) AND
(CONTINUA =0) DO
BEGIN
X(R(COUNT)): =X(R(COUNT))-1;
J:=J+ A(R(COUNT));
S:=R(COUNT);
COUNT:=COUNT-1;
IF (S>M(J)) CONTINUA:=1;
END;

END;
END;

S:=8-1;

POINTER:=1J;
END;
END;
POINTER:=REF-1;
COUNT:=0;
NAOACHOU:=TRUE;
RETURN TO Step3;

This algorithm needs O(B-A(1)) of memory allocation although in our implementation we
used a vector of size B. Observe again that the first A(1)-1 elements of vector M are always
zero. It is possible to implement variations of the algorithm with additional memory
requirements (but still of the same order) in an attempt to speed up the recovering of the
solutions. We could keep, for instance, another array with the largest indices for which a
solution exists or the total number of indices for which a solution exists for each value of

the right hand side.

If the interest is solely on finding a single solution (1-best) to the VIKP, algorithm 2 is a
better implementation than algorithm 1 or any other dynamic programming based
algorithm that these authors area aware of, in terms of memory requirements and number
of computer operations. Observe that the computational complexity of this algorithm is

limited by O(N(B-A4(1)) in this case.

The proposed enumeration scheme can be easily modified to deal with the 0-1 case.



The 0-1 case

A simple adjustment can be made to solve problems where the variables are limited to 0 or
1. If J is the index kept at a node we now start branching from index J+1 instead of J. In

algorithm 1 Steps 0, 1 and 4 are replaced by:

Step 0’ - {initialization}
M(LJ): =0 for all L.J;
POINTER: =0;
M:=0;

Step 1’ - WHILE POINTER < = B-1DO
BEGIN
S:=M;
FOR J=S+1TONDO
BEGIN
I: = A(J)+ POINTER;
IFI< =B THEN M(LJ):=1;
END;
NAQOTEM:=0;
WHILE (NAOTEM =0) AND (POINTER <B-1) DO
BEGIN
i’dOINOI'ER: =POINTER + 1;
WHILE (M < =N) AND (NAOTEM=0) DO
BEGIN
M:=M+1;
IF M(POINTER,M)=1 THEN NAOTEM:=1;
END;
END;
END;

Step 4 - REF: =REF-A(R(COUNT)),

WHILE REF>0 DO

BEGIN
I: =R(COUNT)-1,
WHILE M(REF,I)=0 DO L: =I-1;
X(D:=1;
COUNT:=COUNT+1,
R(COUNT): =1,
REF: =REF-A(R(COUNT));

END;

NUM:=NUM+1;

WRITE solution;

{solution number 'num’ is given in the X array}

We refer to the above modified version as algorithm 1”.



Algorithm 2 can similarly be adjusted to solve 0-1 problems and obtain algorithm 2’.

Algorithm 2’ (0-1 case)

Step 0 - {Initialization}
M(I): =0 for all I;
PO R:=0;
M:=0;
Step 1 - {Forward labeling}
WHILE POINTER < =B-1 DO
BEGIN
S:=M+1;
FORJ=STONDO
BEGIN
I:=A(J)+POINTER;
IFI<=B THEN
END IF (M(I)=0) OR (M(I)>J) THEN M(]):=J

NAOTEM: =TRUE;
WHILE (NAOTEM) AND (POINTER <B-1) DO

BEGIN
POINTER: =POINTER + 1;
IF M(POINTER) >0 THEN
BEGIN
M:=M(POINTER);
.NAOTEM: =FALSE;
END;
END;
END;
{ Generating the solutions}
Step 2 - POINTER:=B;
NUM: =0;
COUNT:=0;
NAOACHOU:=TRUE;
Step 3 - WHILE (NAOACHOU) AND (POINTER >0) DO
BEGIN

IF M(POINTER)=0 THEN POINTER: =POINTER-1;
END ELSE NAOACHOU:=FALSE;

IF POINTER =0 THEN
BEGIN
WRITE "There is only 'NUM? solutions to
this problem’;
STOP;
END; _
§EFI;T =POINTER;
FORI=1TO NDO X(I):=0;
WHILE (S> =M(POINTER)) DO
BEGIN



J:= POINTER-A(S);
IF ((JI>\TO) AND (M(J)>0) AND (M(J)<S)) THEN

BEGI
X(8):=1;

COUNT:=COUNT+1;
R(COUNT):=§;
END
ELSE
BEGIN
IF J=0 THEN
BEGIN
X(S).=1;
NUM:=NUM+1;
COUNT:=COUNT+1;
R(COUNT):=§;
ITE solution;
{solution 'num’ is given in the X array}
IF NUM=k THEN STOP;
CONTINUA: =0;
WHILE (COUNT>1) AND (CONTINUA =0) DO
BEGIN
X(R(COUNT)):=0;
J:=J+ A(R(COUNT));
S:=R(COUNT);
COUNT:=COUNT-1;
IF (S>M(J)) CONTINUA:=1;
END;
END
ELSE
BEGIN
J:=J+ A&\S/I);
IF (S<=M(J)) THEN
BEGIN
CONTINUA: =0,
WHILE (COUNT > =1) AND
(CONTINUA=0) DO
BEGIN
X(R(COUNT)):=0;
J:=J+ A(R(COUNT));
S:=R(COUNTY);
COUNT:=COUNT-1;
IF (S>M(J)) CONTINUA:=1;

»

END;

END;

END;

S:=8-1;

POINTER:=7J;
END;
POINTER:=REF-1;
COUNT:=0;
NAOACHOU:=TRUE;,
RETURN TO Step3;



The general problem with explicit bounds on the variables could be solved using algorithm
1 and afterwards, deleting the solutions which do not satisfy the upper limit constraints. We

suggest instead an improved procedure.

It is possible to implement a modified version of algorithm 1 which avoids enumerating
some (not all) solutions that violate the bounds on the variables and therefore, potentially
decreasing the number of infeasibility checks in the retrievement of the solutions. Let the

element M(LJ) of matrix M be used to keep the following information:

if M(LJ)
with X{J)> =1.

0 then there is no solution to A()X(1)+ A@)X(2)+ +AQ)X(J)=L

if M(LJ) = q > 0, q integer, then there is a solution to A(1)X(1)+A(2)X(2)+
+ANX(D) =1, with X(J)> =q.

So, when branching at a node a check is made whether the upper limit condition of the
leading variable (the one corresponding to the smallest index) is being satisfied, This

modified algorithm is presented in the appendix.

Similar modifications could be made to algorithm 2 to handle problems with bounded
variables. Recall that M(I})=J>0 in algorithm 2 implies that there is a solution for
AMDX(L)+ AX(2) +... +AN)X(N)=I; with X(J)> =1. To avoid enumerating solutions
which violates the upper bound constraints on the variables we need to know how many
A(J)’s were used so far up to that point. It is possible to carry this information in another
array, say Y, the same size as array M. The memory allocation is duplicated but the order

of the memory requirements for this modified algorithm is the same.

There is no need to duplicate the memory requirements if a different enumeration order
(as compared with the previous algorithms) is used. Algorithm 3 to be presented next

requires the same amount of memory as algorithm 2.



Let us perform the enumeration in the following way. At each node in the enumeration
tree an index, say J, is kept. The branching scheme will generate new nodes from each
node, according to the variables J+ 1,J+2,..,N. For each one of these variables U(*) nodes
are generated (U(*) is the upper bound limit on variable *) if they do not violate constraint
(1). With this we avoid the need of having to keep how many A(J)’s were used so far 10
check whether the upper bound limit is being satisfied. The implementation is again done

in an efficient manner avoiding repeated branching.

Algorithm 3 (Bounded variables)

Step 0 - {Initialization}
M(I): =0 for all I;
POINTER:=0;
M:=0;

Step 1- {Forward labelirglg]}a
WHILE (POINTER < =B-1) DO
BEGIN
S:=M+1;
FOR J=STO N DO
BEGIN
K:=1;
I: =POINTER;
GOOD:=TRUE;
WHILE (K< =U(J) AND GOOD) DO
BEGIN
L=I+A(J);
IF (I<=B) THEN
IF (M(?d=P) OJR (M(I)>J) THEN

ELSE GOOD:=FALSE;
ELSE GOOD: =FALSE;
K:=K+1;
END;
END;
NAOTEM:=TRUE;
WHILE (NAOTEM) AND (POINTER < =B-1) DO
BEGIN
POINTER: =POINTER + 1;
IF (M(POINTER)>0) THEN
BEGIN
M:=M(POINTER);
NAOTEM:=FALSE;
END;
END;
END;



{ Generating the solutions}

Step 2 - POINTER:=B+1;
NUM:=0;
COUNT: =0

Step 3 - POINTER: =POINTER-1;
IF (POINTER =0) THEN
BEGIN
WRITE ’There is only ’'NUM’ solutions to
this problem’;
STOP;

END;
IF (IRI/I(POINTER) 0) THEN RETURN TO Step 3

FORI 1 TO N DO X(I): =0;
WHILE (S> =M(POINTER)) DO
BEGIN
J:=POINTER-A(S);
n:E((J3 >0) AND ((M(J) >0) AND (M(J) < =S)) THEN
B
IF (X(S)<U(S)) THEN
BEGIN

X(8):=X(S)+1;
COUNT:=COUNT+1;
R{COUNT):=S;
POINTER: =J;
END
ELSE
BEGIN
J.=J+ A(S);
IF (S < =M(J)) THEN
BEGIN
CONTINUA:=0;
WHILE (COUNT> =1) AND
(CONTINUA=0) DO
BEGIN
X(R(COUNT)): = X(R(COUNT))-1;
J:=J+ A(R(COUNT));
S:=R(COUNT);
COUNT: =COUNT-1;
IF (§>M(J)) CONTINUA:=1;
END;
END;
S:=8-1;
POINTER:=J;
END;
END
ELSE
BEGIN
IF (J=0) THEN
BEGIN
IF (X(S)<U(S)) THEN
BEGIN

X(S):=X(S)+1;
NUM: =NUM+1;
COUNT: =COUNT+1;



R(COUNT):=S§;
WRITE solutlon;
{solution 'nmum’ is ixven in the X array}
IF NUM =k THEN STOP;
CONTINUA:=0;
WHILE (COUNT?> =1) AND
CONTINUA =0) DO
EGIN
X(R(COUNT)) SR(COUNT)) 1;
J:=J+ A(R(COUNT
S$:=R(COUNT);
COUNT:=COUNT-1;
IF (§>M(J)) CONTINUA:=1;
END;
END
ELSE
BEGIN
J:=J+A(S);
IF (S<=M(J)) THEN
BEGIN
CONTINUA:=0;
WHILE COUNT> 1) AND
%CONTINUA 0) DO
EGIN
X{R(COUND)):=
X(R(COUNT)-1;
J:=J+ A(R(COUNT));
S:=R(COUNT),
COUNT:=COUNT-1;
IF (S>M(J)) CONTINUA:=1;
END;
END
END;
END
ELSE
BEGIN
J.=J+ A(S),
END;
S:=8-1;
POINTER: =];
END;
END;
COUNT: =0;
RETURN TO Step3;

This modified enumeration order could be used to produce similar algorithms equivalent
to algorithms 1 and 2 (and also 4, in the appendix) with comparable performances. The 0-1

case, is the limit case where both enumeration orders are indistinguishable.

An efficient generation of the 1-best solution for the bounded variables case can be

obtained replacing Steps 2 and 3 of algorithm 3 with the following:



{generating 1 solution}

Step 2’ - POINTER: =B;
FOR I=1TO N DO X(1): =0;
WHILE (M(POINTER) =0) DO POINTER:=POINTER-1;
g\IDEX: =M(POINTER);
=1,
NEXT:=0;
[:=POINTER;
WHILE ((K<U(INDEX)) AND (NEXT=0)) DO
BEGIN
I: =I-A(INDEX);
IF (I=0) THEN
BEGIN
X(INDEX): =K;
NEXT: =1,
END
ELSE
BEGIN
IF (M(I) <INDEX) THEN
BEGIN
X(INDEX): =K;
K:=1;

INDEX: = M(I);
END
ELSE
K:=K+1;
END;
END;

We refer to this modified version as algorithm 3’.

Some limited computational tests were performed and are presented next.



COMPUTATIONAL EXPERIMENTS
Some computational tests were made comparing algorithms 1’ and 2”.

For all test problems, all the coefficients A(i)’s of the knapsack constraint were randomly
generated in the interval {1,500]. We were interested in observing the effect on
computational time when the value of the right hand side changes, the number of variables
in the problem increases and the number k of the best solutions desired increases. For ¢ach

set of parameters tested, a fixed sample size of 50 was used.

Algorithms 1’ and 2’ were implemented in Turbo-Pascal version 5.5 on a Toshiba Lap-Top
1200HB (performance index equal twice of an IBM PC/XT). Since this Turbo-Pascal
version can handle only 64 Kbytes of addressable space, the maximum right hand side value
considered in the tests was 1000 which was set taking into consideration the memory

requirements of algorithm 1. All processing times were measured in seconds.

For the first set of tests, we varied the number k of the k-best solutions required. k was set
to 10,20,...,90,100. The right hand side value was fixed in 1000. The number of variables was
fixed in 50. In Figure 2 we present the results for algorithms 1’ and 2’. Algorithm 2’

outperformed algorithm 1’ in all cases.
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Figure 2
Processing times with varying k’s for algorithms 1’ and 2’



In the second set of problems we varied the number of variables n. n took the values
10,11,12,...,50. The right hand side and k were fixed in 100. The results are presented in
Figure 3. Again, algorithm 2’ outperformed algorithm 1’
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Figure 3
Processing times for algorithms 1’ and 2’ when n varies

In the last set of tests we varied the right band side values. They took the values
500,600,...,1000. The number of variables and k were fixed in 50 and 100, respectively. The

results are presented in Figure 4. Once again, algorithm 2’ outperformed algorithm 1'.
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Figure 4
Processing times of algorithm 1’ and 2’ with varying B’s



From the test results, we can see that the times obtained from algorithm 2’ is slightly
inferior to algorithm 1'. The forward enumeration is responsible for most of the processing

time as N increases as can be seen comparing Figure 5 and Figure 3. The forward

enumeration of algorithm 1’ was always more time consuming than algorithm 2.
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Forward enumeration contribution to the processing times

Retrieving the solutions demands an amount of time which depends on k and N, but is
quite insensitive with the value of the right hand side. Its contribution to the overall

computer processing time sharply decreases (percentagewise) as the size of the problem
increases.

The backward retrievement of the solutions in algorithm 1’ should be faster than in
algorithm 2’ for N and/or k large. For the range of values N tested, the backward
retrievement of algorithm 2” was faster than of algorithm 1’ for the smaller values of N,

becoming increasingly comparable when N was increased (see Figure 6).
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Backward retrievement of solutions for algorithm 1’ and 2’



It is interesting to observe that from the limited test results algorithm 2’ was always faster
than algorithm 1°. Obviously we cannot guarantee that this will be the general case specially
for larger values of k. From Figure 4, we might speculate that there are indications showing
that for larger values of N, algorithm 2" might stay faster than algorithm 1’ since the gap
between the two lines seems to increase with N. That might be so, because although the
retrievement of solutions in algorithm 1’ is faster than in algorithm 2’ for N large, it is not

fast enough to compensate its slower forward enumeration.

We expect a comparable behaviour for the other cases we considered for all algorithms are

similar in nature,

SUMMARY AND CONCLUSIONS

Algorithms for finding the k-best solutions to the value independent knapsack problem

were presented, including the 0-1 and the general bounded variables cases.

Special care was taken in proposing alternative algorithms which require smaller amounts
of computer memory. Limited computational tests showed that for the 0-1 case the
"alternative” algorithm has an improved computer runtime as compared with its

corresponding “"original" algorithm if the number k of the k-best solutions required is kept

small.

Implementations were suggested for the 1-best case which are marginally better than

previously known dynamic programming type procedures with regard to memory allocation

and/or cornputational time.

The computational tests showed that the major contributor to the overall computational

time is the forward enumeration when N and/or B is large. This gives encouragement to



the idea of exploring further the approach presented in the introduction about scaling down
the original data to solve certain problems. This is currently being investigated by these

authors.

Appendix - An algorithm for bounded variables

It is assumed that X(I}) <= U(I) for I=1,..,N and the U(I)’s satisfy 1< =U(I)< = {B/A(I)]

for all I, where [s] denotes the largest integer less or equal to s.

Algorithm 4 (bounded variables}

Step 0 - {Initialization}
M(LJ):=0 for all LJ;
POINTER: =0,
FOR J=1TO N DO
BEGIN
I:=A(J)+ POINTER;
[F I< =B THEN M(LJ)):=1;
END;
NAOTEM:=0;
gEH(!x]IHI\]IE (NAOTEM 0) AND (POINTER <B-1) DO
POINTER: =POINTER +1;
M:=¢;
WHILE (M < =N) AND (NAOTEM =0) DO
BEGIN
M:=M+1;
IF M(POINTER,M)=1 THEN NAOTEM:=1;
END;
END;

Step 1 - WHILE POINTER < = B-1 DO
BEGIN
IF (M{(POINTER,M) <U(M)) THEN S:=M;
ELSE S:=M+
FOR J=STO N DO
BEGIN
I:=A(J)+POINTER,;
IF I< =B THEN
IF (J>M) THEN M(LJ):=
ELSE M(LJ): M(POINTER M)+1;
END;
NAOTEM: =0;



Step 2 -

Step 3 -

Step 4 -

WHILE (NAOTEM =0) AND (POINTER <B-1) DO
BEGIN
&OH\(I)TER: =POINTER +1;
WHILE (M < =N) AND (NAOTEM=0) DO
BEGIN
M:=M+1;

IF (M(POINTER,M)> =1) THEN NAOTEM: =1,
END;
END;

END;

{generating the solutions}

POINTER:=B+1;
NUM:=0;
COUNT:=0;

POINTER: =POINTER-1;
IF POINTER =0 THEN
BEGIN
WRITE "There is only 'NUM'’ solutions to this

problem’;
STOP;

END;

IS(EPI‘\:] =POINTER;

FOR 1=1 to N DO X(I):=0;

WHILE (S>0) AND (M(POINTER,S)=0) DO S:=S-1;
IF (S=0) THEN RETURN TO Step 3;

X(S):=X(S)+ 1;

COUNT: = COUNT+1;

R(COUNT): =S;

REF: =REF-A(S);
NAOTEM: =0;
WHILE ((REF>0) AND (NAOTEM=0)) DO
BEGH\{ S
WI—IILI% (I I> 0 AND (M(REF,I)=0 OR X(I}=U([))) DO
:=I-1;
IF (I>0) THEN
BEGIN
XD:=XD+1;
COUNT:=COUNT+1;
RI(ECOUNT =1
REF:=REF-A(R(COUNT));
S:=R(COUNT);
END
ELSE
BEGIN
REF:=REF + A(S);
S:=8-1;
NAOACHOU:=TRUE;
WHILE (NAOACHOU) DO
BEGIN
WHILE ((S>0) AND (M(REF,S)=0})
DO §:=8-1;

¥



IF (S=0) THEN
BEGIN
IF (COUNT>1) THEN
BEGIN
COUNT:=COUNT-1;
XI(SR(COUNT)): =X(R(COUNT))-1;
REF:=REF+ A(R(COUNT));
S:=R(COUNT)-1;
END
ELSE
BEGIN
NAOTEM:=1;
NAOACHOU:=FALSE,;
END;
END
ELSE
NAOACHOU:=FALSE;
END;

END;
END;
IF (NAOTEM=1) GOTO Step 3;
NUM:=NUM+1;
WRITE solution;
{solution number 'num’ is given in the X array}
IF (NUM=k) STOP;

Step 5 - IF (COUNT=0) RETURN TO Step 3;
X(R(COUNT)): =X(R{COUNT))-1;
REF:=REF + A(R(COUNT));
I:=R{(COUNT)-1,
COUNT:=COUNT-1;

WHILE ((I>0) AND (M(REF,1)=0 OR X(I)=U(I}))) DO
I:=1-1;

IF (1>0) THEN

BEGIN
COUNT:=COUNT+1;
R(COUNT): =1;
X(D:=X(D+1;
S:=R{(COUNT);
RETURN TO Step 4;

END;

RETURN TO Step 5;
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