INPE-5420-PRE/1762

SEARCH FOR PERICDICITIES IN GEQPHYSICAL
TIME SERIES BY ITERATIVE REGRESSICN
ANALYSIS 1IN C

DANTIEL J. ROGER NORDEMANN

ACEITO PARA APRESENTAGAO NO 132 CONGRESSO NACIONAL
DE MATEMATICA APLICADA E COMPUTACIONAL

INPE

Sio0 José dos Campos
1992

SECRETARIA DA CIENCIA E TECNOLOGIA
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-5420-PRE/1762

SEARCH FOR PERIODICITIES 1IN GEOPHYSICAL
TIME SERIES BY ITERATIVE REGRESSION
ANALYSIS IN C

DANIEL J. ROGER NORDEMANN

ACEITO PARA APRESENTACAO NO 132 CONGRESSO NACIONAL
DE MATEMATICA APLICADA E COMPUTACIONAL

INPE

5ao0 José dos Campos
1992

Cbu: 550.3
PALAVRAS-CHAVE: PERIODICITIES; GEQPHYSICS; ITERATIVE
REGRESSION; C LANGUAGE

SEARCH FOR PERIODICITIES IN GEOPHYSICAL TIME SERIES
BY ITERATIVE REGRESSION ANALYSIS IN C.

DANIEL JEAN ROGER NORDEMANN

Instituto Nacional de Pesquisas Espaciais - INPE
CP 515, 12201 Sao Joseé dos Campos, Brazil

ABSTRACT: In order to determine periodicities 1in time series from
geophysical phenomena, an iterative regression analysis is performed in
compiled ¢ 1language. This program uses a least square regression
described by Wolberg {1]; It provides the amplitude, period and phase of
individual sine components with their uncertainties. Weighting input

data according to their uncertainties is also incorporated.

KEY WORDS: Time series, periodicities, iterative regression analysis, C

Tanguage, geophysics.

RESUMO: Para determinar as periodicidades em séries temporais oriundas
de fenomenos geofisicos, um método iterativo de regressao foi
desenvolvido em 1linguagem C. O tratamento usado & baseado num metodo de
regressao por minimos quadrados descrito por Wolberg [1] e aplicado a
determinacao da amplitude, pulsacao e fase dos componentes senoidais
individuais e de seus respectivos desvios padrao. A vantagem principal
do metodo de Wolberg e sua capacidade de levar em conta as incertezas

sobre os pontos experimentais atraves da ponderacao dos dados.

PALAVRAS-CHAVE: Series temporais, periodicidades, regressao iterativa,

linguagem C, geofisica.

1. INTRODUCTION

An iterative regression analysis was developed in compiled C language as
a method for searching periodicities in geophysical time series. The
process used is based on a regressive least square analysis described in
Wolberg's book “Prediction Analysis® [1] and applied to the
determination of the parameters of a sine functions, one at a time,
within time series [2]. The main advantages of Wolberg’s method is the
imbedded capability to take 1into account the uncertainties on the
experimental points through weighting of data and to give the standard
deviations on the parameters of the searched function which best fits
with the experimental data. The necessary condition of derivability on
regard to the parameters and to the variable(s) is obviously satisfied
when dealing with sine function. The other condition to realize is that
the experimental points must 1lead to convergence during the search of
the unknown parameters, which was achieved with most of data sets
tested, when searching for the parameters of a sine function, if

stgnificant, within a time series,

2. ITERATIVE REGRESSION ANALYSIS FOR SINE FUNCTION IN C LANGUAGE.

The summary of the principle of the method used is given in Appendix A.
The jterative regression analysis used has been already described in
detail by Wolberg [1]. It has been applied to searching periodicities in
time series, through a program in C language to be run in microcomputers
and which is described in this article. It has also been used to prepare

a Lotus 1-2-3% spreadsheet dedicated to the same problem [3).

The list of the program written 1in C, including comments is given in
Appendix B. The presence of many lines of comments turns it quite self-
explained for readers familiar with C language, even for beginners. Most
of variables used are declared as global. As usual in C programming, the

program is structured and divided in several functions, facilitating the

understanding of its articulation and also turning easier the
substitution by the user of some functions with equivalent ones written
with different code, such as for resolution of the linear system or
inversion of matrix. The program has been written, compiled and linked

within the Turbo C*** environment.

The compiled and linked (.EXE) ready to run version may be executed in
any IBM-PC™™ compatible machine, without need of loading the Turbo C****
software. The execution time depends, of course, directly on the
microcomputer (XT, 286 AT or 386 AT), on its clock freguency and on the
presence of an arithmetic coprocessor. Some examples of running times

are given ahead for comparison.

At the beginning, the user is asked through short character strings the
names of the data file (drive, path, name and extension if any). Data
need to be written 1in an ASCII file of 4 numerical columns: time,
uncertainties on time, vanes which are function of time and their
uncertainties. The data file 1s read just after entering its path and
name, and input data are shown on the screen. The number of sample

points is determined automatically from the number of data Tines read.

The user is then asked the path and name of the result file. After this,
the calculation begin. A descriptive header is shown and shortly after,
the first 1line of running iteration is shown. The results appear on the
monitor screen as lines containing the period, amplitude, pulsation,
phase values, each one followed by its uncer?ainty, the sum of the
square of the residues, as an indicator of convergence and the number of
iterations already performed for the considered interval of fregquency.
The last line shown on the bottom of the screen describes the running
iteration and 1s updated at each fteration. When a convergence is
achieved, the running line 1is completed by an asterisk as an indicator
of achieved convergence, and promoted one 1line higher, by vertical

scrolling of the screen. This provides permanently the informations

relative to the last convergences achieved. The lines corresponding to
achieved convergence are also saved, one by one in append mode, within
the ASCII file dedicated to the results obtained.

Just after the interrogation on the path and name of input data, the
user is asked if weighting is desired. This option is offered to make
use of the possibility of the program to search for periodicities taking
into account the uncertainties on data as entered in columns 2 and 4 of
the input file. The “no weighting” option 1is offered to perform
calculations with the following conditions: the weighting coefficients
are substituted by a constant value 1, which is equivalent to even
weighting or weighting with equal absolute uncertainty on all Y values

and no uncertainty on time values.

The option to perform the search for periodicities with and without
weighting on the data, has been included because it has been observed
that the results obtained with the same set of data, with no weighting
or with weighting with different uncertainties, may lead to different

results, possibly including loss of convergence for some periodicities.
This has to be carefully investigated, from the point of view of
artificial time series and geophysical applications. From this remark,
it seems highly advisable to perform, 1in most cases, the search for
periodicities with and without weighting. This possibility is one of the
most important advantages of this iterative regression analysis applied

to time series.

3. TESTS AND COMPARISON OF PROCESSING TIME.

The search for periodicities was performed by two different
microcomputers, on a 100-sample artificial time series treated by the
program in C language described in this paper and also within the Lotus
1-2-3% spreadsheet already described [31]. The machines used were IBM-
PC** compatible microcomputers: an XT machine running at 12.5 MHz,
without hard disk and an AT 386 running at 25 MHz, with arithmetic

coprocessor and hard disk.

For all the calculations performed, the same conditions were used:
Number of data samples: 100; Pulsation sweep: from 3.15 to 0 ; Pulsation
sweep interval: 0.025 ; Maximum number of iterations per interval: 30 ;
Convergence if sum of squared corrections Tower than 10~6. The results
on the processing time necessary to perform the search for

periodicities, as described, is given in TABLE I.

TABLE I

Processing times.

8088 XT 12 MHz 80386 AT 25 MHz
no coprocessor with 80387
Size No With No With
(KB) weight. weight. weight. weight.
(min) (min) (min) (min)
TSIRA.C 6.3
TSIRA.0BJ 1.0

TSIRA.EXE 44.7 148 175 5 5

As it may be seen from Table I, there is roughly a factor of 30 between
the processing times for the execution of the program with the machines
tested. Weighting or not the data does not change very much the
processing time. Of course any other programming style may give
different results for these tests. A similar calculation was formerly
developed to be run within a commercial spreadsheet. As expected, the
program in C presents a much shorter processing time, approximately half
time, 1in relation to the calculations performed in spreadsheet
environment. The commercial spreadsheet solution has shown several
advantages [3], but besides the shorter processing time, the program in

C presents the following advantages:

- Input of data much easier in C, by reading an ASCII external file.

- Less memory occupation, and the same program may be easily used for
calculaticns with or without weighting.

- Program easier to understand, to explain, to maintain or to modify.

- Other advantages of C 1language, 1including easy portability, for

instance to more powerful machine like workstations.

4. CONCLUSIONS.

In this work, a review of the conditions of application of the iterative
regression method described by Wolberg [1] to problems of regression and
prediction analysis has been given. The main advantages of the method
are its application to any derivable function, its capability of
weighting the input data to take into account their reliability, the
determination of the uncertainties associated to the calculated
parameters and its easy programming in various languages in any micro-,

mini- or main-frame computer.

Through the example of artificial series, it has been observed that
besides the values of the parameters calculated, the analysis of their
uncertainties represents a powerful tool to measure the reliability of
the results, which has the highest importance in the case of prediction
analysis. The implementation in a C 1language algorithm is, as it was
shown in this work, very easy, and, in our opinion, this process is
satisfactorily time efficient, which was not the case for the

implementation in commercial spreadsheet.

ACKNOWLEDGMENT

The author wishes to thank Nalin Babulal Trivedi and Severino Luiz
Guimaraes Dutra for their participation in fruitful discussions and
revision of the manuscript.

REFERENCES

(1] J. R. WOLBERG, Prediction Analysis, Van Nostrand, Princeton,
NJ,1967.

[2) D. J. R. NORDEMANN, Pesquisa de periodicidades em series temporais

geofisicas por regressdo iterativa em C, XIII Congresso Nacional de

Matematica Aplicada e Computacional, Brazil, 1990.

[3]1 D. J. R. NORDEMANN, Pesquiéa de periodicidades em séries temporais

geofisicas por regressao iterativa em planilha, XIII Congresso Nacional

de Matematica Aplicada e Computacional, Brazil, 1990.

* Llotus 1-2-3 9s a trademark of Lotus Development Corporation,

Cambridge, MA.
**IBM-PC is a trademark of International Business Machines Corporation.
*% Turbo € is a trademark of Borland International, Scotts Valley, CA.

APPENDIX A

The general principle of the iterative regression method 1is given in
detail in Wolberg's book [1], solely dedicated to it. Here, we give only
a simple presentation of the method, applied to the search of
periodicities in time series; for this reason, we use the example of the
fitting data to a three-parameter sine function in the form of
Y=ag*sin(ay*t+ap). To help follow the demonstrations given in Wolberg’s
book, the same symbols were used in most formulas; Underwritten indexes
were used in this text whereas conventional square brackets were used

for array indexes in the code (Appendix B)Y.

At the beginning, initial values are given to the parameters to allow
the first jteration to be performed. Any initial value may be indicated,
but practically there is a need to indicate initial values not too far
from the unknown final values. This is needed generally to save time but
also to help the algorithm converge to final values. The convergence may
be easy, from any initial value, but in the case of fitting several sine
function to the same set of data, which is the general case, one can
figure that in the 4-dimension space (a “vertical” axis for the function
F, as defined ahead, and three “horizontal” axis for the three
parameters ap, a) and ap), the experimental data can generate a surface
with several “valleys” and “cups”, the bottom of which are convergence
points for a set of parameters. A set of initial values outside a given

cup may not lead to the bottom of the cup.

The starting point of the principle of the method is the error function

which is calculated for every t through the following formula:

F = Y-ag*sin(ay*t+ap) "

where Y s the signal measured; t is the time and ag, a1 and ap are the
three unknown parameters for one sine function. The demonstration of the
process starts with the derivation in relation to the parameters of the
sum of the squares of the function F, conveniently multiplied by
individual weighting factors. This Jleads to a linear system, the
coefficients and second members of which are sums, for all the
experimental points, of products including these derivatives. The
corrective terms Ag, Ay and Ay to apply to the parameters ag, aj and ap

respectively, are solution of this linear system.

In that way, an iteration gives as a result a set of corrective terms to
apply, by subtraction, to the initial values used for this iteration, in
order to obtain the new values of the parameters to begin with the next
iteration. This process 1is replicated up to the moment when the
corrective terms are smaller than a given value compatible with the

precision of the results.

The values of Ag, Ay and Ao are solutions of the system:

[CI*[A)=[V] (2>

with C4j=(dF/daj)*(dF /dajd/L (3)
Vi =CdF/das)*F /L (4)

S = FXF/L (5)

Formula (3), (4) and (5) represent the sum over all the experimental
points, although indexes and sum symbols relative to the experimental

data samples are omitted, for reason of clarity.

L = (dF/d2 Dy2 + (dF/dt)Z Dy2 = Dy2 + (dF/dt)2 Dy 2 (6)

10

L is the weighting coefficient corresponding to an experimental point,
Dy and D¢ representing the standard deviation or error associated to Y

and t respectively.

The values of L (Eq. 6) for every sample measured and the sums described
in equations (3}, (4) and (5) are calculated and transferred into
matrixes [C] and [V]. Matrix [C] is inverted and matrix [A] is obtained

by
[A] = [C)-1 % (V] (7

If the quadratic sum of the Aj contained in [A] is greater than a given
value, say for instance 0.000001, the iterations must proceed and the
values of Aj are subtracted from the values of aj , to give the new

initial values and begin a new iteration.

When the criterion of convergence is achieved, the values a; of the
parameters are considered as being the best estimates, and the standard

deviation D3 for these values is given by:

Ckg being the diagonal term of matrix [C)-1 corresponding to parameter
ak ; S, the sum already defined; n, the number of experimental points
and p, the number of unknown parameters. (n-p) represents the number of

degrees of freedom.

N

As stated before, it is not possible to determine all the parameters for
several sine functions at the same time, because of the practical
impossibility to converge to the desired values. For this reason, and
because of the orthogonality of sine functions of different periods,
this method was developed 1in order to look for the three parameters
relative to a unique sine function and to repeat adequately the process
for the other unknown sine functions, through a sweep process beginning
by 1ine while(...) of function main{) as shown in the 1list presented in

Appendix B.

12

APPENDIX B

The following listing presents the program in C as it was used for the
tests; A few Tines of comments were added in order to explain how the

program was built and works.

/* TSIRA.C */

#incTude <stdio.h>

#include <math.h>

#include <io.h>

#include <stdlib.h>
int k,kmax,iter,itermax;
double ts[4][500]),al[3]1,A[3],sd[3]1,c[3]{3],e[31{3],v(3],tmax;
double FO,Fa0,Fal,Fa2,L,arg,omega,domega,omegamax,delta,d,$S,sdT;
char dataname[40],outputname[40],s[20],u[20],ds[20],du(20],w[4];
char number[51];
const double f2pi=6.283185308;

main ()
{
/* Data input x/
readfile();
/% Pulsation value sweep %/
omega=0;

domega=Ff2pi/tmax;
omegamax={(double)domega*kmax/2;
f¥ Screen & output file header *f

writehead();

13

while((omega+=domega) comegamax}
{
/* Initial guess for parameters
a[0]=10.0;
al1]=omega;
al2]=0.5%f2pi;
/% Iterations %/
iter=1;
do { recalc();
solve();
newvalue(); }
while C(iter++<citermax && delta>le-6 && deltacled);
/* Control iteration number,

convergence and divergence */

/* Convergence achieved: write
one Tine in result file ®f
if (deltacle-6) writefile();

recalc()

®{

}
/% End on allowed pulsation
value exhaust *®f
/% Error function *®/
/¥ F = ¥ - a[0I*sinCal)*t +alz]) *®/
/¥ F = ts[11ik] - alOI*sintal11*ts[01[k]+alZ]) */
{

/¥ Initializing *f
c(01[0]=c[11[1]=c[2][2]=cL01[1]=c[1][2]=c[01[2]=0.0;
VE0)=v[1])=v[2]=5=0.0; k=-1;

/* Sums on all samples %/

while (++k<=kmax)
{

14

/* Derivatives / parameters %/
FaO=-sinCarg=a[1)*ts[0][k1+al[2]);
Fa2=-a[0)*cos(arg);
Fal=Fa2*ts[01[k];
FO=ts[1][k]+a[0]*Fa0; /* Difference function o7}

/% Without or with weighting x/
if(strancmp(w,”y",1)) L=1.0;
else L=ts[3]{k)*ts[3][k]+al11*al1]xFa2*Fa2*ts{2)[ki*ts[2][k];
/* L= sigma¥ * sigmaY¥ + (sigmatxdF/dt) % (sigmat*dF/dt) %/

/% Filling matrix ¢[3](3] x/
c[01[0]+=FalD*Fal/L;
c[1101]+=Fal*Fal/L;
c(2)[2])+=Fa2*Fa2/L;
¢[OI[1)+=Fa0*Fal/L;
ci11{2]+=Fal*Fa2/L;
c[01[2]+=Fa0*Fa2/L;
/% Filling matrix v[3] *f
v[0)+=Fa0*F0/L;
v[11+=Fal1*FO/L;
v[2]+=Fa2*F0/L;
S+=FO*FO/L; 1
}

15

solve()

/% Any resolution may be used
{
d =cLOMO]*(c[1101]*cl2]1(2)-c[1]{21%c[1]{21);
d+=c[O][11%cc[01[2]%c[11[2]-c[0)E1]%c[2](2]);
d+=c[01[2)%(c[0][1 ¢c[1)(2]-c[01[2]*c[112(1]);

e[0][0)=Ccl1][1]*c[2][2]-c[11[2]*c[1]1[2])/d;
e[11[1]=(c[0][0]*c[2](2]-c[O0][2]*c[01[2])/d;
e[21[2]1=¢c[0][0T*cETI[1]-c[0][1]%c[0](1])/d;
ef(01[1]=(c[01[2]1*c[11[2]-c[01[T11*c[2)[2])/d;
e[01[2]=Cc[0]011*c[11[2]-c[01[2]*c[11[1 D /d;
e[11[2)=Cc[0I[11*c[0][2]-c[0][0]*c[11[2]1)/d;

A[0)=e[01[01*v[0)+e[01[1]%v[1]1+e[01[2]%v[2];
A[1]=e[01[T)%v[0}+e[1]{11%*v[1 1+e[1](2]%v[2];
Al2)=e[01[21*v[0]+el1](2]1%*vE) J+e[2][2]1%v[2];
}

newvalue()

{ /* Sum of squared corrections
delta=A[0]*A[O]+A[11*A[1]+A[2]*A[2];
S=sqrt(S/(kmax-2));

/* Degree of freedom = kmax+1-3

= sample nr - parameter nr */

/* New value;standard deviation
a[0]-=A[0]1; sd[0])=S*sqrt(e[0]{0]);
al11-=A[1]; sd{11=S*sqrt(e[1]1(1]);
al2)-=A[2]; sd(2)=S¥sqrt(e[2](2]);

X/

*/

®f

16

/% Only valid or allowed values */
a[0]=fabs(a[0]);
a[1]= fabs(al1])-omega)<«domega/2 ? a[1] : omega;
al2])-=f2pi*floor(al2])/f2pi);

printaCy; printf(“\r");
1

readfile()
{
FILE *fp;

title();

/% Data file name or default X/
printf(“\nEnter drive:filename.ext for data input: “);
gets(dataname);
if(!strcmp(dataname,“~))

{strcpy(dataname,“DATA.PRN");
printf("\t\t\t\t\t%s\n",dataname);}

/% Test if reading file OK %/
if((fp=fopen(dataname,”r~))==NULL)

{printf(“\ncannot open file\n*); exit(13};}

/* Ask if weighting desired %/

weight();

/% Ask number max of iterations %/
iternr();

/% Read and show on screen ®f
k=0;

while(fscanf(fp, %s%hs%s%hs\n”,s,ds,u,du) | =EQF)

{printf("94d %8.3f %8.3G\t",k,ts[0)(kl=atof(s),ts[2][k]=atof(ds));
printf("%8.3f %8.3G\n",ts[1](kl=atof(u),ts[3]1[k++]=atof(dud);

}

17

printf(“\nnumber of samples = %d\nin”,k);

kmax=k-1;

tmax=ts[0](kmax]-ts[0]{0];

fclose(fp);
}

weight()
{
puts{“\nWeighting data? (y/n} (default = y): "); gets(w);

/* [ENTER], y, Y give ~y* %/
ifCistremp(w,”) Istrncmp(w,”Y*, 1)) strcpy(w,”y*);
/% For no weighting: n or N %/

if(strnempiw,”y”,1)&&strncmp(w, "N, 1)&&strncmp(w, “n”, 1))

weight(); /¥ if no 1st char 0K, ask again *f
else printfc ititi\tit\ths\nin™,w);
}
iternr()
{

printf(”\nMaximum number of iteration per run? “);
gets(number);
if(!strempCnumber, ")) strcpy(number,”30);

itermax=atoi(number);

if(itermax<5 || 1termax>999) itermax=30;
}

18

writehead()

/* Screen & output file header xf

FILE *fp;

/* Result file name or default *f
printf(“\ntnter drive:filename.ext for output: ~);
gets(outputname);
if(!strempCoutputname,)

{strcpy(outputname, “FILE.ASC");
printf("Atit\t\t\t%s\n",outputname);}

/% Test if write file OK */
if((fp=fopenCoutputname,“a”))==NULL) printf(“cannot cpen file\n”);

fprintf(fp,“\nData : %-23s Results: %-23s\n”,dataname,outputname’;
fprintf(fp,“Sample: %-23d omegamax= %-8.3f\n”,kmax+1,omegamax);
if(istremp(w,“y”)) fprintf(fp,“Weight: yes*);

else fprintf(fp,”Weight: no “);

fprintf(fp,“\t\t\tdomega = %-8.3f\n",domega);

fprintf(fp,”Iterat: %~-23d\n”,itermax);

fprintf(fp,”\n PERIOD “);
fprintf(fp,” AMPLITUDE PULSATION PHASE “);
fprintf(fp,” residue Nr of”);

fprintf(fp,“\n T +-sd(T)"};

fprintf(fp,” al0) +-sd[0) a[1] +-sd[}] af2] +-sd[2])");
fprintf(fp,” delta iter\n”);

fclose(fp);

19

title();

printf(“Data : %-23s Results: %-23s\n”,dataname,outputname);
printf(“Sample: %-23d omegamax= %-8.3f\n",kmax+1,omegamax);
ifCistrempiw,“y")) printf(“Weight: yes*);

else printf(“Weight: no “);

printf(“\t\t\tdomega = %-8.3f\n",domega);

printf(“Iterat: %-23d\n”,itermax);

printf(“\n PERIOD s

printf(” AMPLITUDE PULSATION PHASE “¥;
printf(” residue Nr of“);

printf("\n T +-sd(TY)*);

printf(” a(0] +-sd(0] al[l] +-sd[1] af2] +-sd[2]17);
printf(” deita iter\n™);

1
writefile()
/% File and screen:
Write one line with results ®f
{
FILE *fp;

if((fp=fopen(outputname,”a”))==NULL)

printf(~“cannot open file\n*);

fprintf(fp,“%6.3f %6.3f ~,f2pi/al1],f2pixsd[11/Cal1]*al1]));
fprintf(fp,~%6.2f %6.2f ~,al0],sd[0]);

fprintf(fp,“%6.3f %6.3f ~,al1],sd{1]);

fprintf(fp, %6.2f %6.2f ~,al2],sd[2]);

fprintf(fp,“%6.2E %4d\n”,delta,iter);

fclose(fp);

printa(}); printf("\n”);

1

20

printa()
/* Show on screen during iteration
and after convergence %/
1
sdT=f2pi®sd[11/cal1)*al1]);

printf(“%6.3f %6.3f ~,f2pi/al1),sdT<1E+3? sdT : 999.);
printf(“%6.2f %6.2f ~,al0],sd[0]<1E3 ? sd[0] : 999.);
printf("%6.3f %6.3f ~,a[1],sd[1]<1E4 ? sd[1] : 999.);

printf(%6.2f %6.2f ~,al2],sd[2]«f2pi ? sd[2] : f2pi);
printf(“%6.2E %4d ~,delta,iter);

}

title)
{
printf("An\n\n\tTIME SERIES ITERATIVE REGRESSION ANALYSIS”);
printf(“Anin\t\tDN SOFTWARE\n\n~);
}

mgcw:?mm
INSTITUTO NACIONRL DE PESQUISAS ESPACIAIS AUTORIZACAO PARA PUBLICAGCAO

. : TiITULO .

Search for Periodicities in Geophysical Time Series by Iterative Regression
Analysis in C

AUTOR

Danjel Jean Roger Nordemann

TRADUTOR

EDITOR

ORIGEM PROJETO SERIE NS DE PAGINAS ~y— N2 DE'FOTOS —~=N? DE MAPAS —
CEA/DGE | QUIATM | I— 21 | |
TIPO
|] reo e [Jwre [Oere {Jman [Jreoo [Jrace 0O _—
p DIVULGAGAO \
EXTERNA] INTERNA (O reservaoa [[] LisTa DE DISTRIBUIGAO ANEXA

PERIGDICO, EVENTO

XIIICNMAC - Congresso Nacional de Matematica Aplicada e Computacional

CONVENIO
h - v
p AUTORIZACAO PRELIMINAR \
/ /
. ASSINATURA y
¢ REVISAO TECNICA Y
[soLicimapa {T] pispEnsaDa
ASSINATURA
RECEBIDA — _/_ __/— DEVOLVIDA —_/.__/
e ASSINATURA! DO REVISOR)
- REVISAO DE LINGUAGEM \
{Jsovicitapa {] oispensapa
ASSINATURA
Ne
RECEBIDA —. /. / DEVOLVIDA___/___/
Y ASSINAPURA DO REVISOR)
PROCESSAMENTO/ DATILOGRAFIA ‘é%’ -
- M)
recesina 9L/ 20, 90 pevorvipa2®_ ;10,99 Maria de Lolfdes Tavdres Lemos
ASEINATURA)
’ REVISAO TIPOGRAFICA -
RECEBIDA—/__/___ DEVOLVIDA__/___/. /
n;s?mruaa)
AUTORIZACAO FINAL ~ 1
11 ,08 , 92 Jose HumbertgAndrade Sobral
- ASSINATURA y
p PALAVRAS - CHAVE S
Periodicities - Geophysics — Iterative Regression, C Language
550, %)

INPE = 106.1

