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Abstract 
 

This paper studies transfer orbits in the planar 
restricted three-body problem. In particular, we are 
searching for orbits that can be used in two situations: 
a) To transfer a spacecraft from one body back to the 
same body (known in the literature as the Hénon's 
problem); b) To transfer a spacecraft from one body to 
the respective Lagrangian points L4 and L5. To avoid 
numerical problems during close approaches the global 
Lamaître regularization is used. Under this model, the 
Hénon's problem became a Lambert's three body 
problem, as defined and explained later in this paper. 

 
Introduction 

 
To solve the problem defined above we study 

each situation individually. In the first situation, 
attention is given to the family of transfer orbits 
involving no more than one revolution of the spacecraft. 
The systems under study are the ones with more 
important practical applications: the Earth-Sun and the 
Earth-Moon systems. Five families of transfer orbits are 
found in the region studied and the results are plotted in 
terms of the true anomaly. The same plots also show the 
evolution of the Jacobian constant. A special effort is 
made to reproduce some of the previously found1,2 
transfer orbits with small ∆V, under this improved model. 

 
In the second situation, the problem of sending a 

spacecraft from the Earth to the Lagrangian points L4 
and L5 (in the Sun-Earth system) is treated as a natural 
extension of the problem of sending a spacecraft from 
one body back to the same body. Two transfer orbits 
from the Earth to L4 and two transfer orbits from the 

Earth to L5 are found. Next, the numerical integration is 
extended beyond the desired Lagrangian point and it is 
found that, for all four orbits, the spacecraft passes near 
the Lagrangian points L3, L4 and L5 and comes back to 
the neighborhood of the Earth. In general, the orbits 
found here can be applied to: 

 
i) Transfer a spacecraft between any two points 

in the group formed by the Earth and the Lagrangian 
points L3, L4, L5 (in the Earth-Sun system) with near-zero 
∆V; 

 
ii) Make a tour to the Lagrangian points for 

reconnaissance purposes3 with near-zero ∆V for the 
entire tour. The small relative velocities during the close 
approaches are ideal for the data acquisition phase or for 
a rendezvous with another spacecraft . There is also a 
possibility to recover the spacecraft after the tour, since 
it returns to the Earth's neighborhood; 

 
iii) Build a cycler transportation system linking all 

the points involved or only two of them. In a system like 
that, a heavy spacecraft can stay in one of the orbits 
showed here and a small spacecraft can make a "taxi 
service" and rendezvous with the heavy vehicle to 
transport persons and/or materials to/from it, similar to 
what happens in the systems proposed for the Earth and 
the Moon4,5 or for the Earth and the Mars5. 

 
Mathematical Model and Some Properties 

 
The model used in all phases of this chapter is 

the well-known planar circular restricted three-body 
problem. This model assumes that two main bodies (M1 
and M2) are orbiting their common center of mass in 



 

 

circular Keplerian orbits and a third body (M3), with 
negligible mass, is orbiting these two primaries. The 
motion of M3 is supposed to stay in the plane of the 
motion of M1 and M2 and it is affected by both 
primaries, but it does not affect their motion6. The 
standard canonical system of units associated with this 
model is used. Under this model, the equations of 
motion are: 
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where Ω  is the pseudo-potential function given by: 
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One of the most important reasons why the 

rotating frame is more suitable to describe the motion of 
M3 in the three-body problem is the existence of an 
invariant, that is called Jacobi integral (or energy 
integral). There are many ways to define the Jacobi 
integral and the reference system used to describe this 
problem (see reference 6, pg. 449). In this paper the 
definitions used by Broucke7 are followed. Under this 
version, the Jacobi integral is given by:  
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The equations of motion given by equations (1) 

are right, but they are not suitable for numerical 
integration in trajectories passing near one of the 
primaries. The reason is that the posit ions of both 
primaries are singularities in the potential V (since r1 or r2 
goes to zero, or near zero) and the precision of the 
numerical integration is affected every time this situation 
occurs. 

 
The solution for this problem is to use 

regularization, that consists of a substitution of the 
variables for position (x-y) and time (t) by another set of 
variables (ω1, ω2, τ), such that the singularities are 
eliminated in these new variables. For the present 
research the Lamaître's regularization is used. 

 
Another important property needed in this paper 

is the mirror image theorem8. It is an important and 

useful property of the planar circular restricted three-
body problem. It says that: "In the rotating coordinate 
system, for each trajectory defined by 
x (t ),  y ( t ),  x (t ),  y( t)& &  that is found, there is a symmetric 
(in relation to the "x" axis) trajectory defined by 
x (-t ), -y( -t ),  -x( -t ),- y(-t )& & ".  

 
Results to Transfer a Spacecraft from One Body Back 

to the Same Body 
 

The theory developed in the last few sections to 
solve the problem of transferring a spacecraft from one 
body back to the same body (called the three body 
Lambert's problem) can be used here to solve the 
Hénon's problem in the case µ ≠ 0. The approach used 
here is to solve the three body Lambert's problem with 
the following input data: i) The initial position for M3, 
that is the position of M2 at the time that M3 departs 
from M2; ii) The final position of M3, that is the position 
of M2 at the time that M3 arrives at M2  and; iii) The time 
of flight, that is 2π(τ/π) = 2τ; 

 
The solution of the problem (output of the three 

body Lambert's problem) is the desired transfer orbit (in 
the restricted three body context), ready to be plotted as 
a point in the equivalent of the Hénon's diagram9. The 
scheme looks very simple, but it is not so easy to 
implement. The difficulty arises from the fact that, to get 
convergence in the solution of the TPBVP involved, an 
accurate first guess is required for each transfer orbit 
considered. The first "good first guess" available is the 
solution of the related two-body Lambert's problem 
(same initial and final position and time of flight, but with 
µ = 0, using two-body celestial mechanics equations), as 
solved in references 1 and 2. If µ is small (such as the 
Earth-Sun system, where µ = 0.000003) this first guess is 
good enough to get convergence in the TPBVP for 
transfers with transfer time between 0.4 and about 9.0 
canonical units of time (0.06 to 1.43 years in the Sun-
Earth system). For transfer orbits with transfer time 
greater than that and/or involving more than one 
revolution for M3, a method to find a more accurate first 
guess has to be developed. Fig. 1 shows the results 
obtained by the numerical simulations of the Sun-Earth 
system, for the range 0 ≤ τ/π ≤ 1.43. It is the "equivalent" 
of the Hénon's diagram, which means that the 
differences from the original diagram are the following: 

 
i)   The orbit of M3 is no longer a conic (because 

this is a three body problem and not a two-body 
problem), so the concepts of "eccentric anomaly" and 



 

 

"true anomaly" do not exist anymore. For the graphs 
presented in this research, we plot τ/π, where τ is half of 
the transfer time in canonical units, against ν/π, where ν 
is defined by: 

 
 ν = ν if M3 passes periapse at τ = 0            (4a) 
 ν = π-ν if M3 passes apoapse at τ = 0         (4b) 
 
and ν is half of the angle travelled by M2 during the 
transfer. This definition has the goal of making ν a 
"generalized true anomaly" (that becomes the "true 
anomaly" in the case µ = 0) and ν is the generalization of 
the ν used in reference 2 (they also become the same 
quantity when µ = 0). Then, ν and τ (and so ν and τ) are 
linearly related, since the motion of M2 around M1 is 
circular (remember that M3 has negligible mass, which 
means that M1 and M2 is a two-body system);  
 

ii) The value of the Jacobi Constant J (Equation 
3) is given for several points in the diagram, since this is 
an important invariant in the restricted three body 
problem. 

 
To study these results in further detail, it is 

necessary to make an analogy between the two-body 
and the three body problem. It means that the name 
"hyperbolic orbit" (in the three body context) is given to 
an orbit that comes from a two-body hyperbolic orbit 
with the inclusion of the perturbation of the third body. 
The same analogy applies to an elliptic orbit and the 
important parameters (ε, ε', ε''), defined by Hénon9, are 
used again here: ε = +1(-1) if the periapse is in an 
abscissa positive (negative); ε' = +1(-1) if the sense of 
the orbit is direct (retrograde); ε'' = if the passage at τ = 0 
is at periapse (apoapse). 

 
It is important to have always in mind that these 

parameters refer to the two-body elliptic orbits and are 
applied here as a valid approximation, since µ is small. 

 
It is possible to see in this Figure the appearance 

of five distinct regions, when the analogy with the two-
body problem is considered. They are called Regions A 
to E and they are identified by: 

 
i)  Region A: It is composed of hyperbolic orbits 

and it goes from τ/π = 0.0796 (the first point that gives 
convergence to the TPBVP) to τ/π = 0.16393, the frontier 
with the Region B. They have the highest values for J (it 

implies that the initial impulses also have the highest 
values) and the shortest transfer times, as expected. The 
notation (- - +) is a short form of ε = -1, ε' = -1 and ε'' = +1. 

 
ii)  Region B: It is composed of elliptic orbits that 

have their periapse with a negative abscissa (ε = -1), 
travel in a retrograde (opposite to the motion of M2) 
direction (ε' = -1) and M3 passes periapse at τ = 0, the 
middle of the transfer (ε'' = +1).  This region starts at (τ/π) 
= 0.16393, the boundary with Region A and extends to 
(τ/π) = 0.5, the boundary with Region C. 

 
iii) Region C: It is composed of elliptic orbits that 

have their periapse with a positive abscissa (ε = +1), 
travel in a retrograde (opposite to the motion of M2) 
direction (ε' = -1) and M3 passes apoapse at τ = 0, the 
middle of the transfer (ε'' = -1).  This region starts at (τ/π) 
= 0.5, the boundary with Region B and extends to (τ/π) = 
1.0, the boundary with Region D. 

 
iv) Region D: It is composed of elliptic orbits that 

have their periapse with a positive abscissa (ε = +1), 
travel in a direct (the same of the motion of M2) direction 
(ε' = +1) and M3 passes apoapse at τ = 0, the middle of 
the transfer (ε'' = -1). This region starts at (τ/π) = 1.0, the 
boundary with Region C and extends to (τ/π) = 1.1, the 
last point that gives convergence for the TPBVP in this 
region. 

 
v)  Region E: It is composed of elliptic orbits that 

have their periapse with a negative abscissa (ε = -1), 
travel in a retrograde (opposite to the motion of M2) 
direction (ε' = -1) and M3 passes apoapse at τ = 0, the 
middle of the transfer (ε'' = -1). This region starts at (τ/π) 
= 1.0 and extends to (τ/π) = 1.43, the last point that gives 
convergence for the TPBVP in this region. 

 
Results for the Earth-Moon System 

 
After that the attention is turned to the Earth-

Moon system. This is a case with more practical interest 
and sooner applications, but it is also a more difficult 
case due to the high value of the mass parameter (µ = 
0.0121505). Fig. 2 shows the results obtained, using the 
same definitions and conventions used for the Sun-
Earth system. The main difference is that the single 
conic approximation for the first guess works only in the 
range 0.0637 ≤ τ/π ≤ 0.9072. As a consequence, only the 
regions A, B and C in the diagram can be found. 
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Fig. 1 - Equivalent of the Hénon's Diagram for the Sun-Earth System. 

 
 The results shown in this research do not give 
the whole picture of the equivalent of the Hénon's 
diagram9. It shows only the portion that can be 
constructed by using the conic trajectory given by the 
case µ = 0 as the first guess for the Lambert's three-body 
problem routine. However, the method outlined here can 
be used to generate the whole picture, if a procedure to 
find a more accurate first guess can be developed. 
 

Transfer Orbits with Minimum ∆∆ V 
 

An important characteristic of this problem1,2 is 
the family of transfer orbits with near zero ∆V to transfer 
a spacecraft from M2 back to M2 again. These orbits, 
that exist in the two-body problem model (case µ = 0 of 
the three body problem), are important enough to 
deserve a study in the more realistic case µ ≠ 0. In the 
present section this research is performed in the Sun-
Earth system. The two-body solution is used as the first 
guess and a trial and error technique (in the initial 
velocity) is used to find the solution. The gradient 
method did not work with those first guesses, due to the 
high nonlinear characteristic of the system in this 
particular case. Fig. 3 shows the trajectory, as seen in 

the rotating frame. It is important to note that the ∆V for 
escape velocity from the Earth is 0.3735 canonical units 
(the absolute minimal for any transfer from the surface of 
a celestial body), which means that the ∆V found in this 
transfer orbit (0.3839 canonical units) is only a little bit 
above it (0.0104 canonical units), and there is not much 
improvement left to be done, as far as fuel savings are 
concerned. 

 
Results for Transfers Between the Earth and the 

Lagrangian Points 
 

In this section, the theory developed in the first 
sections of this paper is used to find transfer orbits 
between the Earth and the Lagrangian points with 
minimum ∆V. Since the results are different for each of 
the trajectories studied, it is necessary to study them in 
detail one by one. For identification purposes the 
definition of the following nomenclature is made: LONG-
4-5 is the orbit that goes to L4 first, just after leaving the 
Earth, and then goes to L3 and L5, and has a long period 
(about 25 years); SHORT-4-5 is the orbit that visits the 
Lagrangian points in the same order, but with a shorter 
period (about 13 years); LONG-5-4 is the orbit that visits 



 

 

the Lagrangian points in a opposite order (L5 first, and 
then L3 and L4) with a long period (about 28 years); and 
SHORT-5-4 is the orbit similar to LONG-5-4 (same order 
of points visited), but with a shorter period (about 11 

years). This is the orbit with the shortest period of all the 
orbits studied. Each one of these orbits is described in 
detail in the following sections. 
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Fig. 2 - Equivalent of the Hénon's Diagram for the Earth-Moon System. 

 

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50
-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

EarthSun

 
Fig.3 - Transfer Orbit with Minimum ∆V from the Earth 

Back to the Earth, as Seen in the Rotating Frame. 
 
 
 
 
 

The "SHORT-5-4" Orbit 
 

In this orbit the spacecraft M3 leaves the Earth 
and visits the Lagrangian points in the order L5 (in 2.12 
years), L3 (in 6.46 years), L4 (in 10.88 years) and then it 
returns to the Earth's neighborhood (in 13.05 years). 
Table 1 shows the coordinates x and y, the distance R 
from the Lagrangian point, the velocity components Vx 
and Vy, the magnitude V of the velocity vector and the 
time (t) lapsed from departure for the passage by all the 
important points, referred to the rotating frame for all 
orbits studied in this paper. The distances are expressed 
in 106 km, the velocities in m/s and the time in years.  

 
 It is important to remember again that the ∆V 

required for Earth's escape is 11180 m/s (the absolute 
minimal for any transfer from the surface of the Earth), 
which means that all the ∆Vs involved in Earth's escape 
that are shown in this research are of this order of 
magnitude. Then, there is not mu ch room left for 



 

 

improvements, as far as fuel savings are concerned, in 
those maneuvers too. All ∆Vs of this order of 
magnitude, when the spacecraft is leaving the Earth, or 
near zero, when the spacecraft is far from the Earth, are 
called "near-zero ∆V" in this research. Fig. 4 shows the 
first two revolutions of this trajectory. The particular 
important points of this orbit are: 

 
i) A shorter time is required for all transfers 

involved, when compared with the two "LONG" 
transfers. A period for the total tour (from the Earth back 
to the Earth) is about 13 years. The legs connecting L4 
and L5 to the Earth has a little more than 2.1 years each; 

 
ii) It also has closer approaches to the 

Lagrangian points visited, when compared to the two 
"LONG" transfers; 

 
iii) After the close approach with the Earth, in the 

end of the first revolution, this orbit continues for a 
second revolution in the same direction of motion. The 
trajectory followed in the second revolution is not much 
different from the trajectory followed in the first one, and 
there are 12 "crossing points". Those are points that 
belong to the trajectory followed by the spacecraft in the 
first and in the second revolution. Those 12 crossing 
points are candidates for a one-burn maneuver that 
transfers the spacecraft from the trajectory it follows in 
the second revolution to the trajectory it follows in the 
first revolution. After this maneuver the spacecraft starts 
again its journey to L5,  L3,  L4 and the Earth. Then, a 
cycler transportation that links all the points involved in 
about 13 years is achieved. 

 
Then, the final result is a periodic trajectory 

linking the Earth and the Lagrangian points L3, L4, L5 
that has a period of about 13 years and that requires a 
∆V = 0.0667 (1986.7 m/s) per revolution for nominal 
operation. 

 
The "LONG-4-5" Orbit 
 

In this orbit the spacecraft M3 leaves the Earth 
and visits the Lagrangian points in the order L4 (in 4.69 
years), L3 (in 13.96 years), L5 (in 23.29 years) and then it 
returns to the Earth's neighborhood (in 27.84 years). The 
plot of this trajectory is omitted here to save space, but 
it is available in reference 1. The particular important 
points of this orbit are: 

 

i) It has the closest approach with the Earth at the 
end of the first revolution. This is an important 
characteristic, if a capture of the spacecraft is planned 
for after the tour; 

 
ii) After this close approach, the orbit is slightly 

deviated by the Earth, but very close approaches to the 
Lagrangian points and the Earth again exist in at least 
two more revolutions, with no nominal corrections 
required. It makes this orbit the best one for a 
continuous cycler without nominal corrections; 
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Fig. 4 - The Orbit "SHORT-5-4". 

 
iii) This orbit has the characteristic of reversing 

the direction of its motion after some of the "swing-
bys"1,2 with the Earth. It means that some of the "swing-
bys" with the Earth has the effect of changing the 
direction of the motion in the rotating frame. During the 
first five revolutions of this trajectory, it occurs twice: 
the first one reverses the counter-clock-wise motion to a 
clock-wise motion at the end of the third revolution (the 
first three revolutions are in the counter-clock-wise 
direction), and the second one reverses the motion of 
the spacecraft to a counter-clock-wise motion again, at 
the end of the fourth revolution. 
 
The "SHORT-4-5" Orbit 
 

In this orbit the spacecraft M3 leaves the Earth 
and visits the Lagrangian points in the order L4 (in 1.81 
years), L3 (in 5.49 years), L5 (in 9.20 years) and then it 
returns to the Earth's neighborhood (in 11.00 years). Fig. 
5 shows the first two revolutions of this trajectory. The 
particular important points of this orbit are: 

 
i) After the close approach with the Earth (in the 

end of the first revolution) the spacecraft starts a new 
tour to the Lagrangian points, in the reverse order. It 



 

 

means that the "swing-by" with the Earth has the effect 
of changing the direction of its motion in the rotating 
frame. Even more curious, integrating this trajectory for a 
longer time it is possible to see that the first five 
revolutions have alternating directions of motion. It 
means that there are four consecutive "swing-bys" that 
have the property of reversing the direction of the 
motion of the spacecraft. It is also noted that the second 
revolution has very close approaches to the Lagrangian 
points visited. It makes this orbit very suitable for a 
double-tour to the Lagrangian points, with no impulses 
required for nominal operation; 

 
Table 1 - Position, Velocity and Time for the passages 

by the Lagrangian points in 106 km, m/s and years 
(referred to the Rotating frame) 

Orbit "SHORT-5-4" 
Point x y R Vx Vy V t 
Earth - - - 0.0 11130 11130 0.00 

L5 74.9 -130.1 0.55 306.8 590 664 2.12 
L3 -150.0 1.32 1.38 253.2 -610 661 6.46 
L4 76.1 129.7 1.30 -128.1 685 697 10.88 

Earth 150.4 0.00 0.81 479.5 1111 1209 13.05 
Orbit "LONG-5-4" 

Earth - - - 0.0 11107 11107 0.00 
L5 78.1 -129.6 3.34 -51 -497 500 4.24 
L3 -153.7 0.0 4.07 -197 1311 1337 12.74 
L4 74.9 130.6 1.09 27 48 57 20.81 

Earth 149.6 0.7 0.75 -938 -253 971 24.88 
Orbit "SHORT-4-5" 

Earth - - - 0 -11140 11140 0.00 
L4 74.9 129.2 0.37 715 -334 786 1.81 
L3 -149.3 -0.4 0.46 18 789 792 5.49 
L5 74.6 -128.9 0.69 -807 119 816 9.20 

Earth 149.6 -0.1 0.12 2302 -1346 2666 11.00 
Orbit "LONG-4-5" 

Earth - - - 0.0 -11101 11101 0.00 
L4 73.7 127.9 1.99 -294.9 378 479 4.69 
L3 -144.4 -0.1 5.21 -53.6 -1748 1751 13.96 
L5 72.8 -127.4 2.86 512 673 846 23.29 

Earth 149.6 0.0 0.00 24085 -10381 10657 27.84 
 

ii) It has the shortest transfer time (in the first 
revolution) of all orbits described. The period for an 
Earth-to-Earth trip is about 11 years and the legs 
connecting the Earth and the Lagrangian points L4 and 
L5 last about 1.8 years each way; 

 

iii) It has the closest approaches to the 
Lagrangian points visited (during the first and second 
revolutions). 

 
Of course, maneuvers can be made to get any 

desirable result, like repetition of the first revolution 
only; repetition of the first two revolutions and so on. 
Several crossing points are available for a one-burn 
impulsive maneuver, if desirable. However, the most 
interesting application for the curious "swing-by" found 
in this trajectory is to build a "cycler transportation 
system" between the Earth and the Lagrangian points L4 
and L5, as explained in the next section. 

 
A Cycler Transportation System Between the Earth and 
the Lagrangian Points L  4 and L  5 
 

The "swing-by" discovered in the previous 
section can be used to build a cycler transportation 
system between the Earth and the Lagrangian point L5. 
Suppose that the spacecraft starts at L5 with zero 
velocity. It is possible to apply an impulse of 0.0274 (816 
m/s) such that its velocity goes to Vx = -0.0271 and Vy = 
0.0040. With this velocity, the spacecraft follows one 
trajectory that is part of the SHORT-4-5 trajectory, as 
shown in Fig. 6. Then, it goes to the Earth, makes the 
"swing-by" and returns to L5, arriving there with 
velocity Vx = -0.0018, Vy = 0.0263. At this point, it is 
possible to apply an impulse ∆V = 0.0337 (1003.8 m/s), 
such that its velocity goes to Vx = -0.0271, Vy = 0.0040 
again and it starts the cycler one more time. The time-line 
for a complete cycler is: 
 

t = 0 The spacecraft leaves L5 from rest (as seen 
in the rotating frame) with an impulse of ∆V 
= 0.0274 (816 m/s) 

t = 
1.80 
years 

The spacecraft arrives at the Earth, makes a 
swing-by to reverse the sense of motion 
and it starts going back to L5 

t = 
7.62 
years 

The spacecraft arrives at L5. A new 
impulse of ∆V = 0.0377 (1003.8 m/s) is 
applied to send it back to the Earth and to 
start the cycler again 
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Fig. 5 - The Orbit "SHORT-4-5". 
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Fig. 6 - The Cycler System Between the Earth and L5. 

 
 Another possibility to start the cycler again is 
to divide this last impulse in two parts. The first one has 
a magnitude of ∆V = 0.0264 (786.1 m/s) and brings the 
spacecraft to a complete stop at L5. The second one is 
similar to the impulse applied in the beginning of the first 
revolution (∆V = 0.0274 = 816 m/s) and it starts the next 
revolution of the cycler in the same way that it started 
the previous one. The advantage of this double impulse 
maneuver is that it is possible to keep the spacecraft 
parked at L5 for as long as needed, allowing time to 
refuel, transfer of cargo, repairs, etc. The disadvantage is 
obviously the larger ∆V required. The one-impulse 
maneuver requires 1003.8 m/s and the two-impulse 
maneuver requires a total of 1602 m/s, that is 598.2 m/s 
more expensive. To reproduce this cycler system for the 
Lagrangian point L4 there is no need for further 
calculations. By using the mirror image theorem it is only 
necessary to find the mirror image of the previous 
trajectory linking the Earth and the Lagrangian point L5. 
Note that the mirror image of the legs for an Earth-bound 
trip in now a L4-bound trip and the mirror image of the 
L5-bound leg is now the Earth-bound leg.  

 
The "LONG-5-4" Orbit 
 

In this orbit the spacecraft M3 leaves the Earth at 
t = 0 and goes to L5 (in 4.24 years), L3 (in 12.74 years), L4 
(in 20.81 years) and back to the Earth's neighborhood 
again (in 24.88 years). The special properties of this orbit 
are: 

 
i) This is the orbit with smaller residual velocity 

during the close approaches with the Lagrangian points 
among all the four orbits studied. This is important to: 
facilitate the data acquisition and/or a rendezvous with 
another spacecraft; reduce the magnitude of the impulse 
required to stop the spacecraft at the Lagrangian point; 

 
ii) After completing the first revolution, the 

spacecraft makes a "swing-by" with the Earth, changes 
its direction of motion (as seen in the rotating frame) 
from "clock-wise" to "counter-clock-wise" and goes 
back to pass near L4, L3, L5 and the Earth, in a second 
revolution. The closest distance between the Lagrangian 
points and the spacecraft are a little bigger in the second 
revolution than in the first one, but a maneuver with a 
small ∆V can provide closer approaches, if desirable. 
This orbit has the disadvantage of longer transfer times 
than the ones found in the "SHORT" versions, but it has 
the advantage of requiring smaller ∆Vs. The 
characteristic of changing its direction of motion can be 
used in the whole orbit, to make a complete tour to the 
points and start it again in the reverse order, or in part of 
it, to build a cycler transportation system between the 
Earth and the Lagrangian points L4 and L5, as done 
before. The details of this new version of this cycler 
system are explained better in the next section. 
 
An Option for a Faster Cycler Transportation System 
Between the Earth and L  5 or L  4 

 
The characteristic of reversing the direction of 

motion of the LONG-5-4 orbit can  be used to build a 
new version of a system for permanent transportation 
between the Earth and the Lagrangian point L4. In this 
version, the spacecraft leaves L4 (by applying an 
impulse such that Vx = 26.8 m/s and Vy = 47.7 m/s), goes 
to the Earth, and returns to L4 with the impulse given by 
the Earth's swing-by (with no necessity of fuel 
expenditure). Next, an extra impulse is applied, to make a 
fine adjustment that allows M3 to arrive at the 
Lagrangian point L4. Optimization techniques are not 
applied (although there is freedom to choose the 



 

 

position for the maneuver and the time of flight from this 
point to the destination point L4) to find the maneuver 
with minimum ∆V for this case. A simple trial case 
(guessing a position for the impulse and a subsequent 
time of flight to L4) shows that an impulse of less than 
0.02 canonical units (about 560 m/s) can satisfy all the 
requirements. Then, after M3 arrives at L4, it is necessary 
to apply another impulse to reverse its motion and send 
it back to the Earth, following the same trajectory it did 
in the first revolution. Again, a trial case that satisfies all 
the requirements, but without any optimization 
technique, shows that a maneuver with ∆V less than 0.05 
in canonical units (about 1500 m/s) is sufficient. 

 
The final result is a trajectory that requires 4.0728 

years for the Earth-bound trip, 1.7825 years for the L4-
bound trip and about 2060 m/s per revolution in 
maneuvers. It is a little mo re expensive than the previous 
cycler transportation system showed before (2060 x 1820 
m/s), but it is faster (5.86 x 7.62 years). The decision for 
which trajectory to use depends on the specific 
requirements of the mission considered. 

 
 Again, a similar system can be build between 
the Earth and the Lagrangian point L5 by using the 
mirror image theorem, in the same way it was done 
before.  The mirror image of the legs for an Earth-bound 
trip in now a L5-bound trip and the mirror image of the 
L4-bound leg is  now the Earth-bound leg. 
 

Conclusions 
 

In this paper, the problem of transferring a 
spacecraft from one body back to the same body in the 
planar restricted three-body problem is considered. 
Solutions are found for the Earth-Sun and Earth-Moon 
systems. Trajectories under this model with near-zero ∆V 
to move a spacecraft between any two points on the 
group formed by the Earth and the Lagrangian points L3, 
L4,  L5 in the Earth-Sun system are found. It is shown 
how to apply these results to build a cycler 
transportation system to link all the points in this group. 
It is also shown how to use one or more "swing-by" 
with the Earth to build a cycler transportation system 
between the Earth and the Lagrangian points L4 and L5, 
with small ∆V required for maneuvers in nominal 
operation. 
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