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ABSTRACT - This paper considers the problem of applying an impulsive thrust
in a spacecraft that is performing a Swing-By maneuver (also called Gravity
Assisted maneuver). The objective is to derive a set of analytical equations that
can calculate the change in velocity, energy and angular momentum for this
maneuver as a function of the three usual parameters of the standard Swing-By
maneuver plus the two parameters that specify the planar impulse applied. The
dynamics used to obtain those equations is the one given by the " patched-conic"
approach. A study is also performed to find in which cases the impulse is more
efficient when applied during that close approach or after that, in a two steps
maneuver. After that, the same maneuvers are computed under the dynamics
given by the restricted three-body problem and the results are compared with the
ones obtained previously under the "patched-conic" dynamics.

1-INTRODUCTION

The Swing-By maneuver is a very popular technique used to decrease the fud expenditure in space
missions. The standard maneuver uses a close gpproach with a ceestid body to modify the velocity,

energy and angular momentum of the spacecraft. There are many important applications very well known,
like the Voyager | and Il that used successive close encounters with the giant planets to make a long

journey to the outer Solar System [FHan 66]; the Ulysses mission that used a close gpproach with Jupiter to
changeits orbital plane to observe the poles of the Sun [Carv 86]; etc.

In this paper, a different type of Swing-By maneuver is Sudied, where we are dlowed to apply an impulse
to the spacecraft during its closest approach with the celestia body. This type of maneuver increases very
much the dternatives available to misson designers to meet the requirements of many missons. New
equations are derived to give us the change in velocity, energy and angular momentum as a function of the
three independent parameters (required to describe the standart Swing-By maneuver) described in the
next section ard the new two parameters that belongs to this particular mode!: the magnitude of the impulse
applied and the angle tha this impulse makes with the velocity of the spacecraft. All those equations are
derived assuming thet: &) the maneuver can be modded by the "patched conic' modd (a series of

Keplerian orhits); b) that the impulse is gpplied during the passage by the perigpse and; ¢) that it changes
the velocity of the spacecraft ingantaneoudy; d) the motion is planar everywhere.

After that, this powered Swing- By is compared with a different maneuver, where the impulse is not gpplied
during the close gpproach, but just after the spacecraft leaves the sphere of influence of the celestial bodly.
In that way, the best postion to gpply an impulse in the spacecraft is investigated: during the close
approach with the celestial body or after that, in atwo steps maneuver.

Those maneuvers are then recaculated, using the more redigtic dynamics given by the restricted three

body problem and the results are compared.



2- THE STANDARD SWING-BY MANEUVER

The standard Swing-By maneuver consigts of using a close encounter with a cdegtia body to change the
velocity, energy, and angular momentum of a smaler body (a comet or a spacecraft). This standard

maneuver can be identified by three independent parameters.

i) Vi, the magnitude of the velocity of the spacecraft when gpproaching the celestial body or Vp, the
magnitude of the velocity of the spacecraft a perigpse (those quantities are equivalent);

i) s the distance between the spacecraft and the celestid body during the closest gpproach;

iii) y , the angle of approach (angle between the periapse line and the line that connects the two primaries).

Fig. 1 shows the sequence for this manewer and some of those and other important variables.
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Fig. 1 - The Standard Swing-By Maneuver.

It is assumed that the system has three bodies. a primary (M1) and a secondary (M2) body with finite
meass that are in circular orbit around their common center of mass and a third body with negligible mass
(the spacecraft) that has its motion governed by the two other bodies. We can see that the spacecraft
leaves the point A, crosses the horizontal axis (the line between M1 and M2), passes by the point P (the
perigpsis of the trgjectory of the spacecraft around M2) and goes to the point B. We choose the points A
and B in a such way that we can neglect the influence of M2 at those points and, consequently, we know
that the energy is congtant after B and before A (the system follows the two-body celestid mechanics).
Two of our initid conditions are dearly identified in the figure: the perigee distance M (distance measured
between the point P and the center of M2) and the angle y , measured from the horizontd axis in the
counter-clock-wise direction. The distance I, is not to scele, to make the figure eesier to understand. In
this paper only the planar motion (dl the three bodies dways in the same plane) is studied. The result of
this mareuver is a change in velocity, energy and angular momentum in the Keplerian orbit of the
spacecraft around the centra body. Using the "patched conic* gpproximation, the equations that quantify
those changes are available in the literature. Under this gpproximation the maneuver is consdered as
composed of three parts, where each of those systems are governed by the two-body celestial mechanics.
The firg system describes the motion of the spacecraft around the primary body before the close
encounter (the scondary body is neglected). When the spacecraft comes close to the secondary body,
the primary is neglected and a second two-body system is formed by the spacecraft and the secondary
body. After the close encounter the spacecraft leaves the secondary body, and it goes to an orbit around
the primary body again. Then, the secondary is neglected one more time. One of the best description of



this maneuver and the derivation of the equations are in Broucke [Brou 88]. The equations are reproduced
below.
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In those equations d is the total deflection of the trgjectory of the spacecraft (see Fig. 1), V5 isthe linear
velodity of M2 in its motion around the center of mass of the system M1-M2 and ny is the gravitationa
parameter of M2. From those equationsiit is possible to get the fundamenta well-known results:

a) Thevariaion in energy (DE) isequd to the variaion in angular momentum ( DC);

b) If the Ay-By isin front of the secondary body, there is aloss of energy. This loss has a maximum &'y

= 90°;

©) If the Ay-By is behind the secondary body, there is a gain of energy. This gain hasamaximum ety =
270°.

There are many publications studying the standard Swing-By maneuver in different missons. Some
examples are: the study of missions to the satdlites of the giant planets [Byrn 82], [D'Ama 83], [D'Ama
79], [D'Ama 81], [D'Ama 82]; new missions for Neptune and Pluto [Wein 92], [Swen 92]; the study of
the Earth's environment [Farq 81], [Farg 85], [Mars 88], [Muho 85], [Dunh 85], [Efro 85], etc.

There are dso some dudies of the Swing-By maneuver under the model of the planar redtricted three-

body problem, like in the publications made by Broucke and Prado ([Brou 934], [Brou 93b], [Prad 93],
[Prad 94]).

3 - THE POWERED SWING-BY MANEUVER

The description of the powered Swing-By isthe main objective of this paper. The literature presents some
interesting gpplications of this maneuver, such as an Earth-Mars misson using a Swing-By in Venus [Stri
91]. For the present research it is assumed that the difference between this maneuver and the standard one
isthat it is possible to gpply an impulse to the spacecraft in the moment of the closest gpproach between
the spacecraft and the secondary body. Thisimpulse is dlowed to have any magnitude and it can have any
direction that belongs to the plane of mation of the three bodies involved. Fig. 2 shows the geometry of this
maneuver and defines some of the variables used.
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Fig. 2 - The Geometry of the Powered Swing-By.

Thevaridbles are:

) V-, the magnitude of the velocity of the spacecraft when approaching the celestia bodly;

i) Vo the magnitude of the velocity of the pacecraft a perigpse before the impulse is applied;

i) Vp 4+ the magnitude of the velocity of the spacecraft at perigpse after theimpulse is applied,

iv) dV, the magnitude of the impulse applied;

V) a, angle between \7p_ and the impulse gpplied. This variable defines the direction of the impulse. The

rangefor a is-180° < a < 180° (positive vaues are measured in the clock- wise direction);

vi) |, anglebetween V,,. and Vp;

V) b the distance between the spacecraft and the celestial body during the closest gpproach, when the
pacecrdft isin itsfirg orbit (before the impulse);

vi) 1, the distance between the spacecraft and the celestia body during the dosest approach, when the
gpacecraft is in its second orbit (after the impulse). Remember that the impulse changes the orbit of the
pacecraft, so there are two perigpses involved in this maneuver: one that belongs to the firgt orbit (before
theimpulse) and one that belongs to the second orbit (after the impulse);

vii) Vit the magnitude of the velocity of the spacecraft when leaving the celestia bodly;

viii) y, the angle of approach (angle between the perigpse line and the line that connects the two
primaries).

With those varidbles, it is possible to develop an dgorithm to evauate al the parameters involved in this
maneuver. The steps are shown next. Remember thet the initial conditions (given variables) are Vi, 1y,
y for the geometry of the close approach anddV and a to specify the impulse gpplied.

i) Usng the principle of conservetion of energy it is possble to cadculate Vp_ from V. and - The

equation used is Vp- = Viﬁf + 2m , Where m, isthe gravitationa parameter of the secondary body;
\/ oo
p_

ii) The next sep is to cdeuae V,,, from V,, dV ad a. The equaion used is
Vps =4/V2 +dv2 - 2V, 0V cosa ;

. 2
fromV,, andr, . The equationis Vi, , = V|§+ - %;

iv) The next quantity to be evduated is the semi-mgor axis () of the orbit after the Swing By. It is

obtained from V; . by the use of the equation a= gh ;

inf +

iii) Then it is necessary to cdculate V

inf+




v) Then, the quantity | is ceculaed. It comes from V,_, Vg, dV. The equaion is
aV’- V. -VZ.0

| =arccosk T
g A

vi) Then, the angular momentum (h), the semi-lactus rectum (p) and the eccentricity (€) of the orbit after
the SwingBy ae cdculated. They come from Vp., r, and |. The equdions are

h? p
h=rp. Vp+sin(90°—l ), p= — and e:1/1+—;
m a
vii) The next step is to caculate the true anomaly (fy) of the spacecraft in the second hyperbolic orbit (the

orbit after the impulse) around the secondary body just after the impulse. It comes from e, p and r,_. The

o 2 o0
equationIs f, = arccosg!'i P 1775
ge Mo "
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viii) Next, it is caculated the true anomaly (f ;) of the asymptotes of the second hyperbolic orbit of the
gpacecraft, around the secondary body after the impulse. It comes from e The eguation is
_ & 10.
f v = arccosg- —=;
e €g
iX) Then, the total deflection for this maneuverisgivenby Q =d+fy +f |y - 90°.

Now, it is necessary to proceed the caculations to obtain the equations for the variation of energy, velocity
and angular momentum. Fig. 3 shows the geometry of the vector addition, that provides the basic
informaton to derive those equations.

Vinf-
Fig. 3- Vector Addition for the Velocities.

From that figure it is possible to obtain the anaytica equations required. The horizontd and the vertica
components of the velocity before the close encounter (V;y, V;y) and after the close encounter (Vo Voy)
are:

V,, =-V,, snly - d), V,, =V, +V,,. cosly - d) (5-6)

inf-

Voo == Vi 8n(y - d+Q), V,, =V, +V,,, cosly - d+Q) (7-8)



With those equations it is essy to cdculate the variations in velocity, energy and angular momentum. To
derive those equations it is assumed that the Swing- By maneuver is ingantaneous and thet the position of
the spacecraft remains congtant during the maneuver. The equations are:

imp + Vozy - Vli - Vli’) (9- 10)

DCir :d(voy ) Vly) (12)
where d is the distance between M, and M.
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4- RESULTSFOR THE TWO-BODY MODEL

In this section the methods explained in the previous sections are used to generate some results to
understand better this maneuver. The Earth-Moon system is used as an example. A spacecraft makes a
powered Swing-By with the Moon for severd vaues of the impulse (they can have different magnitudes
and directions, but they are dways in the plane of the motion of the three bodies). Fig. 4 $ows the
vaidions in veocity, energy and angular momentum for the powered Swing-By. The horizontal axis
represents the angle a that defines the direction of the impulse and the vertical axis represents the
magnitude of the impulse. The parameters used for this maneuver are; my = 398600 kg.km¥'s2, m, = 4900
kg.km¥/2, Vi = L0 kmis, y = 270°, Mp- = 1900 km, V, = 1.02 km/s, d = 384400 km. Thisisa
maneuver that generates an increase in the energy (180° <y < 360°). For theintervalsa > 90° and a <
-90° the impulse has a component opposite to the direction of motion of the spacecraft, decreasing the
energy, and it is working againgt the Swing-By. The blanck parts of the graphics (a > »150° and a < »-
150°) correspond to regions where the impulse caused the capture of the spacecraft by the Moon. From
Fig. 4 it is dear to see that the maximum trandfer of velocity and energy occurs closeto a = (® and the
minimums occur close to the borders of the graphic. Note aso that there is a Smmetry with respect to the
linea @0°. The graphic for the variation in angular momentum shows a different pattern, with Smmetries
with respect to thelinesa @-90° and a @90°. But, remember that the maximum transfer is not dways
the god of the mission. A very close approach may be required to get data from the celestid body, but the
consequent large increase in velocity and energy may not be desired for the continuation of the mission. In
that way, a chart like that can provide important information for the mission designers, that can choose the
parameters of the impulse that satisfy better the gods of the misson.

Next, Fig. 5 sows a smilar maneuver, but with y = 90°, that is the case where the energy decreasesin
the standart Swing-By (0° < y < 180°). For the intervd a > 90° and a < -90° the impulse hes a
component opposite to the direction of motion of the spacecraft, decreasing the energy, and it is working
in favor of the Swing-By. In this case there are positive and negative vaues for the change in energy. Inthe
postive regions of the plot of the variation in energy, the impulse is dominaing the Swing-By and the net
result is an increase in energy. In the negative regions of the same plot, the Swing-By and the impulse are
working together to decrease the energy of the spacecraft. Note that positive vaues occur only above a
certain limit in the magnitude of the impulse and that this limit decreases when a approaches zero. The
varigion in velocity and angular momentum present a behaviour smiler tothecasey = 270°.
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After those firgt cdculations, the efficiency of the powered maneuver is studied. The powered maneuver is
compared with a maneuver where the impulse is gpplied after the Swing-By. This new maneuver has two
main steps. @ A standard non-propelled Swing-By with the same parameters of the powered maneuver
(the same Vi, Iy, y ); b) Then, in asecond step, an impulse (with the same magnitude dV of the impulse
used in the powered Swing-By) is applied after the spacecraft leaves the secondary body. Thisimpulseis
assumed to be gpplied in a direction that extremize the transfer of energy. For the maneuvers where the
god isto increase the energy (180° < y < 360°), thisimpulse is posigrade (applied in the direction of the
motion d the spacecraft) and for the maneuvers where the god is to decrease the energy (0° <y < 180°
), thisimpulseis retrograde (applied in the direction opposite to the mation of the spacecraft). Fig. 6 shows
the results for y = 90° and 270° ad for V,,. = 10 and 20 km/s. The quantity plotted is

| DE | - |DEimpafter | where DEjny, is the energy variation obtained by the powered Swing-By and D

Eimpaﬂer is the energy variation of the maneuver that applies the impulse after the close approach. The
sysdem of axis has I (distance of closest gpproach, in km) in the horizontal axis and y (the angle of
approach, in degrees) in the vertical axis.



It means that a pogitive vaue for this quantity indicates that the gpplication of the impulse during the close
goproach is more effident (in terms of causing a variation in energy of larger magnitude) than the
gpplication of an impulse with the same magnitude after the close approach.

To obtain the numerica vauefor the DE; mpafter it is necessary to follow the steps shown below.

) Evauate the energy before the close approach (E;) from the equation E; = % (Vii +V72 ) % , Where m

isthe gravitationd parameter of the primary body and d isthe distance M -M,,;

i) Next, the energy after the standart Swing-By maneuver is obtained, directly from the expresson
Eo = Ej- 2V,V,s Sndsny ;

iii) Then, the magnitude of the velocity after the sandard Swing-By maneuver is cdculaied from the

energy, using the expresson Vv = ’28%0 +%9;
e a

. . . 1 .
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It is dear to see that the efficiency is highly dependent on the angle of gpproach and that it has little
dependence on the distance of closest gpproach. We can dso see that the efficiency has the same
behaviour for the cases V, ;. = 1.0 kmV/s and 2.0 km/s. There is only a shift on the values. It isdso visible
that there is ardatively small area of negative vaues, what means that an impulsve Sving-By maneuver is
a better choice for most of the cases. Note also that the plots match very well at y = 180°, dthough the
god of the maneuver (gain or lose of energy) changes a this point.

5-RESULTSUSING THE RESTRICTED THREE-BODY PROBLEM
The god of this section is to reproduce the maneuvers caculated in the previous sections usng the well-
known planar circular restricted three-body problem as the dynamica modd. Thismode assumes that two
main bodies (M, and M,) are orbiting their common center of massin circular Keplerian orbits and athird
body (M 3), with negligible mass, is orbiting these two primaries. The motion of M is supposed to Say in
the plane of the motion of M, and M, and it is affected by both primaries, but it does not affect their
motion [Szeb 1967]. The canonica system of units is used, and it implies that: i) The unit of distance (I) is
the distance between M, and M,; ii) The angular velocity (w) of the motion of M, and M, is assumed to
m2
m +my
masses of M, and M., respectively) and the mass of M, is (1-n), so the total mass of the system is one;
Iv) The unit of time is defined such thét the period of the motion of the primariesis 2p; v) The gravitationd
congtant is one.
Then, the equations of motion in the rotating frame are:

be one; iii) The mass of the smdler primary (M,) isgivenby m= (wheremy and m, arethered

v W 1V W

K-2y = X-—— = ——, Y+2X = y-— = — (12-13)
Y fix fix J Y fy fy
where W is the pseudo- potentid given by:
w =2+ i) 0 I (14
2 51 P

This sysem of eguations has no andyticd solutions, and numericd integration is required to solve the
problem.

The equations of motion given by equation (12-14) are right, but they are not suitable for numerica
integration in trgectories passing near one of the primaries. The reason is that the podtions of both
primaries are sngularities in the potentia V (snce r; or r, goes to zero, or near zero) and the accuracy of
the numericd integration is affected every time this Stuation occurs.

The solution for this problem is the use of regularization, that conssts of a subgtitution of the variables for
position (x-y) and time (t) by another set of variables (wy, ws, t), such that the singularities are diminated
in these new variables. Severd transformations with this god are available in the literature ([Szeb 1967],
chepter 3), like Thide-Burrau, Laméitre and Birkhoff. They are cdled "globa regularization”, to emphasize
that both singularities are diminated in the same time. The case where only one singularity is diminated & a
time is caled "locd regularization”. For the present research the Lameaitre's regularization is used. More
detailsare available in [Szeb 1967].

Fig. 7 shows the difference between the results obtained using the two-body celestid mechanics and the
new results obtained using the restricted three-body problem for the maneuver with y = 90°. Resultsare
smilar for other cases studied and are not shown here to save space. The quantities shown are defined as:
(Vaue for the two-body modd) - (Vaue for the three-body modd). To make the plots more clear, the
results for the energy is multiplied by 10 and the results for the angular momentum is divided by 10'. The

10



magnitudes of the differences go from very close to zero until 0.15 (in energy) and 4*10* (in angular
momentum). Those numbers represents maximum errors in the order of a few percent (less than 10) in
both cases. The errors are smdler in the intervd -90° < a < 90° and they grow up close to the border of
the graphics. It means that the two-body gpproximation of this maneuver gives better resultswhen -90° <
a < 90°. Itisdso possble to conclude that this approximation increases in quaity when the magnitude of
theimpulse increases.
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6 - CONCLUSIONS

A method to cdculate the variations in velocity, energy and angular momentum for the powered Swing- By
is developed based in the "patched-conic" gpproximation. Numerica examples are caculated for the
Eath-Moon system to test and validate the algorithm developed. Then, the powered Swing-By maneuver
is compared with a different maneuver that is performed in two steps: i) a nonpropelled Swing-By; ii) an
impusive thrust applied after the Swing-By. In that way, it is possble to investigate the best position to
gpply the impulse. The results shown that for the mgjority of the cases studied the powered Swing-By isa
better choice. Next, the maneuvers are reproduced under the dynamica modd give by the redtricted
three-body problem. The differences between the results are shown. It is possible to conclude that the
two-body problem gives a better gpproximation in the interval -90° < a < 90° and that this gpproximation
increasesin quaity when the magnitude of the impulse increases.
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