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Abstract. We present some results of the analytical
integration of the energy rate balance equation, assum-
ing that the input energy rate is proportional to the
azimuthal interplanetary electric ®eld, Ey , and can be
described by simple rectangular or triangular functions,
as approximations to the frequently observed shapes of
Ey , especially during the passage of magnetic clouds.
The input function is also parametrized by a reconnec-
tion-transfer e�ciency factor a (which is assumed to
vary between 0.1 and 1). Our aim is to solve the balance
equation and derive values for the decay parameter s
compatible with the observed Dst peak values. To
facilitate the analytical integration we assume a constant
value for s through the main phase of the storm. The
model is tested for two isolated and well-monitored
intense storms. For these storms the analytical results
are compared to those obtained by the numerical
integration of the balance equation, based on the
interplanetary data collected by the ISEE-3 satellite,
with the s values parametrized close to those obtained
by the analytical study. From the best ®t between this
numerical integration and the observed Dst the most
appropriate values of s are then determined. Although
we speci®cally focus on the main phase of the storms,
this numerical integration has been also extended to the
recovery phase by an independent adjust. The results of
the best ®t for the recovery phase show that the values of
s may di�er drastically from those corresponding to the
main phase. The values of the decay parameter for the
main phase of each event, sm, are found to be very
sensitive to the adopted e�ciency factor, a, decreasing as
this factor increases. For the recovery phase, which is
characterized by very low values of the power input, the
response function becomes almost independent of the
value of a and the resulting values for the decay time
parameter, sr, do not vary greatly as a varies. As a
consequence, the relative values of s between the main

and the recovery phase, sm=sr, can be greater or smaller
than one as a varies from 0.1 to 1.

1 Introduction

The energization of the ring current is usually described
by a ®rst order di�erential equation, known as the
energy rate balance equation. Let D be the pressure
corrected Dst index,

D � Dst ÿ b
���
p
p � c �1�

where p is the disturbed-day ram pressure of the solar
wind, qV 2 (q and V are respectively the solar wind
density and velocity), b is a constant of proportionality
and c gives the quiet-day contribution to D (the
corrected index should also incorporate a factor due to
induced currents in the solid earth e.g., Langel and
Estes, 1983; Stern, 1984, but this correction is usually
neglected in the literature). After a transformation of the
energy function to D�t� times a constant factor in the
energy rate balance equation (e.g. Gonzalez et al., 1989),
this equation can be written as

dD�t�
dt
� D�t�

s
� Q�t� �2�

where Q�t� (given in unities of magnetic ¯ux over time) is
proportional to the input power for the energization of
the ring current, and s is the ring current decay time.
Throughout this work we will assume, as many authors
have done before, that most of the Dst variability
represents the ring current evolution, although a recent
work has questioned this classical assumption (Camp-
bell, 1996).

The balance equation has been studied by many
authors and commonly used values for the constants are
b � 0:2 nT/(eV cmÿ3�1=2 (or about 16 nT/

��������
nPa
p

) and
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c � 20 nT (e.g., Burton et al., 1975; Akasofu, 1981;
Feldstein et al., 1984; Pisarskij et al., 1989; Gonzalez
et al., 1989; Feldstein, 1992). It describes the time
evolution of the ring current associated function, D, as
a function of the input, Q, and of the decay term (D=s).
Due to the di�culties involved in the exact knowledge of
these factors, it has been customary to assume that they
lie within a reasonable range of values and to solve the
equation numerically, trying to get best ®ts between the
observed and computed time evolution of the ring
current energy intensity, which is proportional to the Dst
index.

In the present work we follow an analytical approach
to study the balance equation and to estimate a domain of
values for the decay time compatible with the observed
peak values of jDj. However, in order to make the
equation analytically tractable some simplifying assump-
tions need to be completed. Among them, we have
adopted simple expressions for the input functions and a
constant value for the decay time during the main phase
of the storm, sm, as also has been frequently done by
several authors (e.g., Burton et al., 1975; Feldstein et al.,
1984). Nevertheless it is interesting to see that, regardless
of such simplifying assumptions, and within the intrinsic
limitations of the analytical method, the computed D
value resembles fairly well the observed one, at least for
the events to which this approach has been applied (see
Sect. 3 and theAppendix). Such results are encouraging in
order to pursue an analytical approach such as the one
explored here, at least with a similar importance to that
given in the literature to more elaborate numerical
techniques.

Diverse types of functions of the interplanetary
plasma parameters have been postulated to represent
the input function Q (e.g., Gonzalez et al., 1989;
Pisarskij et al., 1989). Basically, all of them depend on
the amplitude of the negative z component of the
interplanetary magnetic ®eld or southward ®eld, Bs. In
the present study we consider the input power as being
proportional to the recti®ed azimuthal electric ®eld,
Ey � vBs (v is the solar-wind bulk velocity, and Bs is
equal to Bz for negative Bz and zero for positive Bz).

One possible way of solving Eq. (2) is to treat it as a
linear system problem (e.g., Jenkins and Watts, 1968;
Bendat and Piersol, 1971, 1980). The advantage of using
this approach is merely formal, since it introduces in a
natural way the optics of the linear ®ltering technique
commonly used in this type of analysis (e.g., McPherron
et al., 1986). As is known, the solution for a linear
system (output function), in this case D, results from the
convolution of the input signal, Q, with the impulse
response function of the linear prediction filter. The latter
is a characteristic of the system that, in this particular
case, is an exponential decay function of time, a
constant equal to s. The following result is obtained

D�t� � eÿt=s
h
D�0� �

Z t

0

Q�z�ez=s dz
i

�3�

where we have taken the origin of time as the starting
moment of the energy-input impulse. In Eq. (3) we have

disregarded the time lag that should normally appear in
the output signal. However, since the e�ect of this lag is
just a shifting in the ring-current response, there is no
need to consider it in an explicit way.

In Sect. 2a, b we consider two simple cases for the
input function, Q, that can be analytically integrated.
They are the rectangular and the triangular input
function cases. Then, in Sect. 3, we try to ®t to one of
these models two selected intense storms. In the
Appendix we show the results of a numeric integration
of Eq. (3) and the resulting D�t� output for di�erent
values of s are compared to the observed storm
evolution, so that the input functions and the values of
s that best reproduce this evolution can be estimated.

2a Response of D(t) to a rectangular function

Let us consider ®rst the case for which the input
function, Q, has a rectangular shape, with a negative
constant value during a given time interval and is equal
to zero outside it. This ideal input would resemble the
limiting case for a disturbing interplanetary ®eld that
according to Gonzalez and Tsurutani (1987), is able to
produce an intense storm, namely, a southward inter-
planetary magnetic ®eld Bz < ÿ10 nT acting over at
least 3 h. In general, we de®ne this rectangular input as,

Q�t� � Qo; if 0 � t < T ;
0 otherwise.

n
�4�

where Qo is a negative constant and T is the duration of
the input.

In this case, a simple analytical result can be obtained
for D�t� from Eq. (3). For t < T , we have

D�t� � eÿt=sD�0� � Qos 1ÿ eÿt=s
h i

�5a�
and for t � T ,

D�t� � D�0�eÿt=s � Qos eÿ�tÿT �=s ÿ eÿt=s
h i

: �5b�
Evidently, from the point of view of the geomagnetic-
storm evolution, Eq. (5a) corresponds to the main
phase, while Eq. (5b) describes the recovery phase of the
storm. In the case of a purely rectangular input function,
the peak value of D and characteristic times can also be
easily computed. The peak value of D occurs at the
instant t � tp � T and is given by

jDp�s�j � jD�T �j � eÿT=sD�0� � Qos�1ÿ eÿT=s��� �� �6a�
or its equivalent,

Dp�s�
Qo

���� ���� � jy�s�j � eÿT=syo � s�1ÿ eÿT=s� �6b�

where y�s� � Dp�s�=Qo and yo � D�0�=Qo:

Figure 1a, b gives two examples of the behavior of D
as a function of t, where D�0� � 0, for two di�erent sets
of values of T and s. The upper panels of these ®gures
show the ideal rectangular input function, normalized to
the (0±1) range, while in the lower panels there are plots
of the resulting values of D�t�=jQoj versus t. In this ®gure
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we also show the following characteristic times: (1) tp,
interval of time for the development of main phase, (2)
w, width at the half height of the storm evolution curve,
(3) w1, interval of time lasting from the moment in the
main phase for which jD�t�j reaches half the value
corresponding to the peak �jDp=2j�, until the occurrence
of the peak, and (4) w2, time interval lasting from the
occurrence of the peak and the moment during recovery
phase for which jD�t�j decreases to half of the value at
the peak. For the rectangular function input these
characteristic times are given by

tp � T ; �7a�
w � s ln �1� eT=s� ; �7b�

w1 � T � s ln
1

2
�eÿT=s � 1�

� �
; �7c�

w2 � wÿ w1 � s ln
2�1ÿ eÿT=s�
eÿT=s ÿ 1

� �
ÿ T : �7d�

FromFig 1a, b andEqs. (6a), (6b)we can see that both the
shape and the peak value of D�t�, Dp, depend on the
relative values of T and s. For s > T , a sharper increase is
observed in the computed jD�t�j during the main phase,
compared to the case with s < T . The behavior of the
ratio jDp=Qoj, and characteristic times of the computed
corrected index as a function of s, is shown in Fig. 2. The
upper panel of Fig. 2 gives jy�s�j (Eq. 6b, with the constant
yo � 0, as derived from the assumed condition D�0� � 0),
while the lower panel gives tp, w and w1 (Eq. 7a±c), also as
functions of s. We discuss later how this type of curve can
be used to ®nd the value of s for a given storm, once the
ratio jDp=Qoj is known. For this, however, some assump-
tion about the input function, Q, has to be made, as
shown in Sect. 3.

2b Response of D(t) to a triangular function

The other simple case that we consider for the input
energy is the triangular function de®ned as,

Fig. 1. a Behaviors of the rectangular
normalized input function Q�t�=jQoj ac-
cording to Eq. (4) in the text (upper panel),
and of the corresponding response func-
tion D(t) also normalized in jQoj according
to Eq. (5a,b)(lower panel). The adopted
values of T and s are, respectively 9 and 3
h. The values of the characteristic times
tp; w; w1 and w2 (see text), are also shown
in the plot. b The same as a, except for
T � 3 h and s � 9 h
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Q�t� �
Qo
T1

t; if 0 � t < T1;
Qo
T2
�T1 � T2 ÿ t� if T1 � t < T1 � T2;

0 otherwise.

8<: �8�

where, again, Qo is a negative constant.
With this expression for Q�t�, solution for Eq. (3)

becomes,
for 0 � t < T1,

D�t� � D�0�eÿt=s � Qos
t ÿ s

T1
� s

T1
eÿt=s

� �
�9a�

for T1 � t < T1 � T2,

D�t� � D�0�eÿt=s � Qos
T1 � T2 � sÿ t

T2

�
� s

T1
eÿt=s ÿ s

T1
� s

T2

� �
e�T1ÿt�=s

� �9b�

and, for t > T1 � T2,

D�t� � D�0�eÿt=s � Qos
s
T1

eÿt=s
�

ÿ s
T1
� s

T2

� �
e�T1ÿt�=s � s

T2
e�T1�T2ÿt�=s

�
:

�9c�

An example of this type of input is given in Fig. 3.
The upper panel of this ®gure shows the input function,
de®ned by T1 � 3 h, T2 � 7 h. The lower panel shows the
output function for s � 5 h, according to Eqs. (9a)±(9c).
The characteristic times tp, w, w1 and w2 introduced in
Sect. 2a are also shown in this plot. As observed in this
®gure, the analytical response for the ring current to a
triangular input function is smoother than for the
rectangular input, as expected from the fact that there is
a smoother drop to zero of the input function for this
case.

Due to the complexity of the curves given by Eq.
(9a±c), their peak values have been determined in a
numerical way. Then, similar curves to those shown on
Fig. 2 can be plotted for jy�s�j � jDp�s�=Qoj and

characteristic times. The only di�erence is that for this
case tp is no longer a constant but varies slightly with s.
The fact that the function Dp=Qo � f �s� is completely
determined once the input is approximated by either
the rectangular or triangular functions, has been the
basis for the estimation of s in this study. However, as
discussed in the next section, the variable Qo is directly
related to the e�ciency in the energy transfer to the
ring current and, since this e�ciency is not known a
priori, this parameter should be determined along
with s.

3 Analytical solution of the balance equation for two
selected intense storms

In this section we consider the analytical solution of the
balance equation for two selected intense storms that
occurred between August, 1978 to December, 1979, for
which the ISEE-3 interplanetary data are available. The
events are those corresponding to November 25±26,
1978, and March, 10±11, 1979, and constitute respective
examples of the rectangular and the triangular approx-
imations proposed in the previous sections. As men-
tioned, in order to predict the function D�t� from the
analytical integration of the energy balance equation,
some assumption about the actual input power to the
ring current, and consequently on the value of Q, must
be made. According to Gonzalez et al. (1989), if the
input power is assumed to be proportional to Ey , the
following expression can be used for Q,

Q � ÿa� 50�Ey � nT/h �10�
where �Ey � is the numeric value of the modulus of the
recti®ed electric ®eld jEy j given in mV/m, and a is a
factor of e�ciency that has been estimated in previous
studies to vary between 0.1 and 0.3 (Gonzalez and
Mozer, 1974; Gonzalez et al., 1989). In this analysis it is
assumed that a is parametrized with the values 0.1, 0.2,
0.3 and 1.

Fig. 2. Upper panel variation of the normal-
ized peak value of D(t), jy�s�j � jDp�s�=Qoj;
for the rectangular function of Fig. 1 as a
function of s (Eq. 6b), for yo � D�0�=Qo � 0:
Lower panel variation of the characteristic
times tp (a constant for the particular case of a
rectangular input function), w and w1; as
functions of s
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Table 1 summarily describes the main features of the
two selected intense storms. The ®rst and second
columns of Table 1 give, respectively, the event identi-
®cation and the main features of the observed D�t�.
Since for both storms the levels of D before and after the
storm are approximately constant (� Do � D�0�), these
values have been adopted as the zero level for each
storm. Dp is the absolute peak corresponding to each
storm so that the e�ective peak of D is given by Dp ÿ Do.
The characteristic times tp, w1 and w2 de®ned in Sect. 2,
are also indicated. The third column shows the param-
eters for appropriate input functions (rectangular or
triangular approximations), and the fourth column
shows the peak values of Ey , Eyo , which lead to the
respective values of Qo in Eqs. (4) and (8) derived from
Eq. (10).

After having modeled the input by one of the two
analytical approximations, it is possible to plot
jyj � jDp=Qoj versus s taking the e�ciency factor a as
a parameter. For the square function approximation,
this relationship was computed from Eq. (6b), whereas

for the triangular approximation a numeric computa-
tion was performed. Figures 4a and 5a, which refer to
event 1 (November 25±26, 1978) give an example of the
approach used for rectangular approximation. The
ISEE-3 data have a resolution of 5 min and the hourly
Dst values are similarly interpolated to 5min. The
observed variations of D�t� computed for each point
from Eq. (1), with the constants b and c given in the
introductory section, is shown by the light curve in the
upper panel of Fig. 4a. In the lower panel of Fig. 4a the
azimuthal electric ®eld, Ey � vBs, computed from the
ISEE-3 data is also given by the light curve. The
analytical approximation of Ey , chosen as the rectangu-
lar function with T � 5:4 h, is given by the heavy curve
in the lower panel of Fig. 4a. Figure 5a shows the plot of
jy�s�j � jDp�s�=Qoj (Eq. (6b)) in the upper panel, and
that of the characteristic times, tp, w and w1 (Eqs. (7a)±
(7d)) in the lower panel, all as functions of s. Using Eq.
(10) with Eyo � 7 mV/m (see Table 1) and taking a � 0:1
and a � 0:3, as examples, two values for Qo are
obtained. With these two values, one can enter at the

Fig. 3. The upper panel shows the triangu-
lar normalized input function, Q�t�=jQoj;
obtained for T1 � 3 h and T2 � 7 h (Eq. 7).
The lower panel shows the corresponding
response function, also normalized in jQoj;
for s � 5 h. As in Fig. 1, the characteristic
times tp, w, w1 and w2; are shown in this
plot

Table 1. Description of the events

Event Storm Approximate Eyo

features input function [mV/m]

November 25±26, 1978 Dp = )175 (�10) nT Rectangular shape 7 (�1)
Do = )50 nT T = 5.4 h

(1) tp = 5.7 h
w1 = 3.3 h
w2 = 6.4 h

March 10±11, 1979 Dp = )158 (�14) nT Triangular shape 7 (�1)
Do = )30 nT T1 = 6.2 h

(2) tp = 7 h T2 = 3.4 h
w1 = 1.6 h
w2 = 5.0 h

In the ®rst and second columns, the two events are identi®ed and
summarily described. Dp is the value of the observed peak and Do is
the approximate value of D a few hours before and after the storm.
tp, w1 and w2 are the characteristic times de®ned in the text (notice

that w = w1 + w2). The third column describes the model adopted
for each approximating function (see text). The fourth column gives
the peak azimuthal electric ®eld, Ey o, for the assumed model and its
estimated error
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ordinates of upper panel of Fig. 5a (dotted lines) and
®nd that the corresponding values of s are, respectively,
6.3 and 1.2 h. In the same way, the lower panel of Fig.
5a, allows estimation of the predicted values of the
characteristic times for each case, but the validity of this
will be discussed later. The curve computed through Eq.
(6b) for the ®rst case (a � 0:1; s � 6:3), is shown by the
heavy line in the upper panel of Fig. 4a.

A completely similar approach has been made for the
case of a triangular approximation using Eq. (9a±b).
Figures 4b and 5b, which correspond to event of March
10±11, 1979, exemplify this. The values adopted for T1

and T2 are respectively 6.2 h and 3.4 h (See Table 1).
Considering again a � 0:1 and a � 0:3, the respective
values of 14 h and 1.5 h can be obtained for s. We show
the result obtained for a � 0:1 by the heavy line in the
upper panel of Fig. 4b. However, we can see that for this
event the ®tting of the computed D�t� improves using a
di�erent value of s for the recovery phase (in the plot the
adopted value for the recovery phase was sr � 8 h). As
will be discussed later, the reason for this is that values
of s obtained by the analytical approach are basically
derived for the main phase and do not necessarily adjust

well for the recovery phase. In fact, as is shown by the
numerical analysis of the Appendix, the values of s for
the recovery phase seem to change drastically compared
to those of the main phase. The results obtained for the
main phases of both events for a � 0.1, 0.2, 0.3 and 1 are
summarized in Table 2. The values of s and w1 are given
in hours. The numbers in parentheses are the errors in s,
estimated according to the expression

jDsj � 1

jdy=dsj jDyj �11�

where jDyj can be found from Dy
y

��� ��� � DDp

Dp

��� ���� DQo
Qo

��� ��� and
dy=ds can be numerically computed from the plot y�s�
versus s. Since the values of dy=ds become smaller as s
increases, the errors increase with s.

It should be noticed that the use of some of the
observed characteristic times, tp, w, w1 and w2

(=wÿ w1), would provide additional equations to our
equation system in order to ®nd a and s simultaneously.
However, the following considerations apply. In ®rst
place, it is seen that the computed w2, and consequently
w, depend on the value of the decay time in the recovery

Fig. 4. a The intense geomagnetic storm of
November 25±26, 1978. Lower panel: The light
line gives the interplanetary azimuthal electric
®eld, Ey � vBz, as inferred from the ISEE-3
data. The heavy line shows the rectangular
approximation adopted for this event (Table 1).
Upper panel: the light line gives the observed
ram-pressure corrected Dst index, D(t) (Eq. 1
with the values of b and c given in the text) and
the heavy line is the result of the analytical
approach based on the approximated rectan-
gular function of the lower panel (see also Fig.
5a). The parameter a is assumed to be 0.1 and
s � 6.3 h both for the main phase, and recovery
phase. The dashed line gives the adopted zero
level value for D(t). b Similar to a but for the
intense storm of March 10±11, 1979. For the
computed D curve (heavy line of the upper panel)
a is also assumed to be 0.1 and two values of s
were selected, sm � 14 h for the main phase and
sr � 8 h for the recovery phase
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phase, sr, which can be di�erent from the value of s
derived by the analytical model for the main phase. tp and
w1 in principle do not depend on the value sr, but the fact
that for large values of s they tend to be independent of it
(See Eq. (7b) and Fig. 2 for the rectangular input, and
Fig. 5 for the triangular input), a�ects the procedure.
Furthermore, the observed values for w1 are very
sensitive to the errors introduced by the lack of resolu-
tion in the Dst curve. In the case of event 1, the
comparison of the values of w1 given in Tables 1 and 2,
points to 0.1 as the most probable value of a: Even
though the situation is not so clear for event 2, judging
from the values of the associated standard deviations
obtained in the Appendix (Table 3), a � 0:1 seems to give
the best ®t also for this case. However, due to the
discussed uncertainties involved in the use of the char-
acteristic times, we prefer to keep the results of Tables 2
and 3 (described in the Appendix) parametrized in a:

4 Summary and conclusions

We present an analytical way of integrating the balance
equation to obtain the variation of the pressure
corrected Dst index, D, during intense geomagnetic
storms (Eq. 2), based on two simplifying assumptions.
One of the assumptions is that the ring-current decay
time is constant during the main phase of the storm
(s � sm � const:), as has frequently been assumed in the
literature, and the other that the input function of the
equation, Q�t�; can be approximated by simple rectan-
gular or triangular shapes. The input function is
considered to be proportional to the recti®ed azimuthal
electric ®eld Ey � vBs; through an e�ciency factor, a;
which has been parametrized as a= 0.1, 0.2, 0.3, 1.0
(Eq. (10)). Under these assumptions it is possible to
derive a unique function relating the ratio Dp=Qo (where
Dp and Qo are respectively the peak values of D and Q)

Fig. 5. a Like Fig. 2, this ®gure shows the
variation of jy�s�j � jDp�s�=Qoj (upper panel) and
characteristic times (lower panel) as functions of s;
but for a rectangular input function, with T � 5:4
h (see Fig. 4a and Table 1). The horizontal dotted
lines of the upper panel correspond to y=3.57 and
y=1.19 derived for this event (Eq. 9), when
a � 0:1 and a � 0:3 respectively. The inter-sec-
tions of these lines with the curve jy�s�j give the
roots s=6.3 h and s=1.2 h. The inference of the
corresponding characteristic times can be made
from the curves of the lower panel. The practical
meaning of this inference is discussed in Sect. 3
(see Table 2) b Similar to a but for event 2. The
curves for this case are derived from the triangu-
lar approximation adopted for this event, with
T1 � 6:2 h and T2 � 3:4 h (see Fig 4b and Table
1). For a � 0:1 and a � 0:3 the respective roots
found for the delay time are s � 14 h and s � 1:5
h (see Table 2)
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and s; for each value of a: This function allows one to
determine the expected s for a given value of a:

This method was used for two of the 10 intense
storms in the interval covered by the ISEE-3 observa-
tions, namely those of November 25±26, 1978, and
March 10±11, 1979, which look to be isolated events and
do not have large data gaps. For these two events the
rectangular and triangular approximations seem to be
respectively appropriate. The values of s for the main
phase of these storms, sm; were estimated in the way
described in Sect. 3 (see Table 2). These estimations are
taken as starting values for the ®t presented in the
Appendix, where instead of using the mentioned ap-
proximations, a numeric integration of the balance
equation, based on the ISEE-3 data, is made. Varying sm
in the neighbourhood of the previously obtained
approximate value, di�erent curves for the computed
value of D�t� were obtained. The criterium of a
minimum standard deviation �r� of these curves from
the observed corrected Dst index was used, to ®nd the
most probable values of s as a function of the parameter
a: The values of sm and rm resulting for the main phase
of the storms, for a= 0.1, 0.2 and 0.3, are given in Table
3. Since, as seen in the previous section, the ®t done for
the main phase was not necessarily the best for the
recovery phase, an independent adjustment was made
for this phase, with the resulting values, sr; shown also
in Table 3 along with the respective standard deviations,
rr:

The results obtained in the present analysis for the
decay time parameter are limited by the assumption
concerning the source of the energy rate input. This
assumption is basically that this input is proportional to
Ey ; with a given e�ciency factor a (Eq. 10). Under this
hypothesis, and assuming that s is constant during the
main phase, it is possible to establish a threshold for the
domain of s such that the balance equation is satis®ed.
For the two cases considered, the computed values of sm
vary from a few hours (for a � 0:1) to fractions of an
hour (for a � 1). Orders of magnitude of several hours

have been suggested by some authors (e.g. Burton et al.,
1975; Feldstein et al., 1984; Pudovkin et al., 1985;
Detman et al., 1994), but also of fractions of an hour by
others (e.g. Vasyliunas, 1987; Gonzalez et al., 1989).
Although in this study we cannot give a ®nal answer in
favor of one or the other alternative, the results tend to
point towards the direction of a � 0:1 and, consequent-
ly, to values of sm of the order of several hours. On the
other hand, the adjustment done for the recovery phase,
which is practically independent of a, yields values of sr
of the order of several hours, but with a less pro-
nounced range of variability as compared to that
corresponding to the values of s for the main phase.
As a consequence, depending on the adopted values of
a, sr can be smaller (for a � 0:1) or larger (for a > 0:1)
than sm (see Table 3).

The fact that a constant s leads to a good ®t for the
main phase of the storms studied implies that a single
loss mechanism would be operating, or at least be
dominant, for the ring current during this phase. On the
other hand, there seems to be a need to adopt a multiple
valued s to improve the ®tting for the recovery phase,
which indicates the presence of more than one loss
mechanisms for this phase. This conclusion is in good
agreement with those resulting from the loss processes
that have been suggested in the literature for the two
phases of the storm, involving mainly charge exchange
for the main phase and charge exchange, cyclotron
resonances and other dynamic losses for the recovery
phase (e.g. Gonzalez et al., 1994; Vasyliunas, 1996). It
should be said however that the hypothesis of a constant
decay parameter for the main phase might be limited to
the examples studied here, for which the main phase has
a simple monotonic decrease. More complex events
could present a more complex s behavior.

Finally, it is interesting to point out that the
simpli®ed rectangular and triangular shapes for the
input function used in this work could resemble the
shapes typically associated with the Bs structures of
interplanetary magnetic clouds, which are known to be

Table 2. Analytical results of the balance equation integration. The values of s and w1 that result from modeling the events of Table 1, are
given as a function of e�ciency factor a. The absolute errors in s (ds) are derived from Eq. (11). All entries are in hours

Event a = 0.1 a = 0.2 a = 0.3 a = 1.0

s (Ds) w1 s (Ds) w1 s (Ds) w1 s (Ds) w1

1 6.3 (3.7) 3.4 2.0 (0.6) 4.2 1.2 (0.3) 4.7 0.4 (0.1) 5.3
2 14 (16) 3.7 2.7 (1.0) 3.3 1.5 (0.5) 3.3 <0.3 ±

Table 3. Best-®t results from the balance equation numerical integration (see Appendix). The decay times found for the main phase
(s = sm) and for the recovery phase (sr) of the two events are given (in hours) for a = 0.1, 0.2 and 0.3. The columns labeled rm and rr give
the respective standard deviation (in nT) derived from Eq. (A1)

Event a = 0.1 a = 0.2 a = 0.3

sm (h) rm (nT) sr (h) rr (nT) sm (h) rm (nT) sr (h) rr (nT) sm (h) rm (nT) sr (h) rr (nT)

1 9.0 6.9 5.5 12.0 2.3 8.8 4.0 19.8 1.4 13.7 3.5 29.6
2 14.0 6.7 7.0 9.0 2.7 10.4 6.0 10.6 1.7 21.9 5.0 8.6
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very important causes of magnetic storms (e.g. Farrugia
et al., 1997)

Appendix

Numerical integration of the balance equation

For the two events given in Table 1, characterized for
having only small gaps and appearing to be isolated
events, a numerical integration of Eq. (3) based on the
ISEE-3 data has been done. We started using the values
of sm obtained by the analytical solutions for each of
these events (see Sect. 3 and Table 2). Then we varied
them in small amounts around those values, computing
for each case the variance given by

r2 � 1

m

X
�Dc ÿ D�2 �A1�

where Dc and D are, respectively, the computed and the
observed pressure corrected Dst index. Looking for
those values of s leading to a minimum of r2, we obtain
the results (in hours) given in Table 3, both for the main
and the recovery phases (respectively called sm and sr).
Like in Table 2, the entries are parametrized by the
e�ciency factor a. The values of the standard deviations
obtained from Eq. A1 (in nT) are also given for each
case.

Two examples of the performed ®tting are given in
Fig. 6a,b, that refer to event 2, for a equal to 0.1 and 0.3,
respectively. In these ®gures the dotted line corresponds
to the observed values for D; with the shifts in time and
zero level indicated in the legend. The solid line (Dm) is
the result of the numerical integration of Eq. (3) starting
at the beginning of the storm, with D�0� � 0 and s � sm.

Finally, the dot-dashed line �Dr� corresponds to the
numerical integration of Eq. (3), starting at the time of
the observed peak and with D�0� � Dp and s � sr.
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