MFN= 007295

01
02
03
04
05
06
10
10
12

14
30
31
32
40
41
42
58
58
6l
64
68
76
83

90
91
92

SID/SCD

5909

INPE-5909-PRE/2051

CEA

]

as

Oliveira-Costa, Angelica de

Smoot, George F

Constraints on the topology of the universe from 2 year
COBE data

477-481

Astrophysical Journal

448

2 Part 1

En

En

<E>

DAS

SPG

<PI>

«1995>

PRE

ASTROFISICA

The cosmic microwave background (CMB) is a unique probe
of cosmological parameters and conditions. There is a
connection between anisotropy in the CMB and the
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computing their full covariance matrix. We obtain the
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Mpc for n=1. The data set a lower limit on the cell size
of 4320 h-1 Mpc at 95% confidence and 5880 h-1 Mpc at
68% confidence. These regults show that the most
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ABSTRACT

The cosmic microwave background (CMB) is a unique probe of cosmological parameters and conditions.
There is a connection between anisotropy in the CMB and the topology of the universe. Adopting a universe
with the topology of a three-torus, or a universe where only harmonics of the fundamental mode are allowed,
and using 2 years of COBE/DMR data, we obtain constraints on the topology of the universe. Previous work
constrained the topology using the stope information and the correlation function of the CMB. We obtain
more accurate results by using all multipole moments, avoiding approximations by computing their full
covariance matrix. We obtain the best fit for a cubic toroidal universe of scale 7200 h~' Mpc for n = 1. The
data set a lower limit on the cell size of 4320 h~' Mpc at 95% confidence and 5880 k™' Mpc at 68% con-
fidence. These results show that the most probable cell size would be ~ 1.2 times larger than the horizon scale,
implying that the three-torus topology is no longer an interesting cosmological modet.

Subject headings: cosmic microwave background — cosmology: theory — large-scale structure of universe

1. INTRODUCTION

One of the basic assumptions in modern cosmology, the
Cosmological Principle, is that on large-scale average our uni-
vesse is spatially homogeneous and isotropic. The apparent
isolropy on large scales is normally explained as a consequence
of spatial homogeneity, which in turn is understood as a
natural result of an “inflationary " period of the early universe
(see, e.g, Kolb & Turner 1990). An alternative approach to
explaining the apparent homogeneity is to assume an expand-
ing universe with small and finite space seclions with a non-
trivial topology (Ellis & Schreiber 1986), the * small universe”
maodel,

The “small universe,” as its name suggests, should be small
enough that we have had time to see the universe around us
many times since the decoupling time. The topology of the
spalial sections can be quite complicated (Ellis 1971); however,
it is possible 1o obtain small universe models that reproduce a
Friedmann-Lemaitre model by choosing certain simple
geometries. For example, choosing a rectangular basic cell
with sides L, L,, and L, and with opposite faces topologically
connected, we obtain a toroidal topology for the small universe
known as T>. The never-ending repetition of this T basic cell
should reproduce, at least locally, the Friedmann-Lemaitre
universe mode] with zero curvature,

The small universe model has received considerable atten-
tion in the past few years, since the topology of the universe is
becoming an important problem for cosmologists. From the
theoretical point of view, it is possible to have quantum cre-
ation of the universe with a nontrivial topology, i.e., a multiply
connected topology (ZePdovich & Starobinsky 1984). From
the observational side, this model has been used to explain
“observed ™ periodicity in the distributions of quasars (Fang &
Sato 1985) and galaxies (Broadhurst et al. 1990).

There are four known approaches for placing lower limits on
the cell size of the T° model, The first two methods constrain
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the parameter R, an average length scale of the small universe,
defined as R = (L, L,L)'". The third and fourth methods
constrain the parameter Lfy, the ratio between the ceil size L,
here defined as L = L, = L, = L, and radius of the decoup-
ling sphere y, where y = 2cH; L. The first method constrains R
assuming that it is larger than any distinguishable structure.
Using this method, Fairall {1985) suggests that R > 500 Mpc.
The second method constrains R based on “ observed ™ period-
icity in quasar redshifts, Attempting to identify opposite pairs
of quasars, Fang & Liu (1988) suggested that R > 400 h~'
Mpc and using quasar redshift periodicity, Fang & Sato (1985)
suggested R > 600 h™! Mpc. The third and fourth methods
constrain L/y using the CMB. With the third method, Stevens
et al. (1993) obtain the constraint L/y = 0.8 using the slope
information from the first year of COBE/DMR data (Smoot et
al. 1992) while, with the fourth method, Jing & Fang (1994)
obtain a best-fit Lfy = 1.2 using the correlation function from
the 2 year COBE/DMR data.

As pointed out by Zel'dovich (1973), the power spectrum of
density perturbations is continuous (i.e, all wavenumbers are
possible) if the universe has a Euclidean topology, and discrete
(i.c., only some wave numbers are possible} if the topology has
finite space sections. Many years later these ideas were related
with the expected CMB power spectrum (Fang & Mo 1987;
Sokolov 1993; Starobinsky 1993}, mainly after the quadrupole
component had been detected by COBE/DMR,

Our goal is to place new and accurate limits on the cell size
of a small universe using the harmonic decomposition tech-
nique to obtain the data power spectrum (Gorski 1994) and
likelihood technique (Bunn & Sugiyama 1994) to constrain
L/y. The method that we use to constrain the parameter L/y is
quite different from previous work. The method adopted by
Stevens et al. (1993) constrains the cell size based on the power
specirum of the CMB; they graphically compare the power
spectrum of the standard model with the power spectrum
expected for the small universe, normalizing to the ! = 20 com-
ponent. Jing & Fang (1994) adopt a different approach: they
constrain the cell size using the correlation function of the
CMB and making the approximation that bins of the corre-
lation function are uncorrelated. Our analysis, however, is
exact. We compute the full covariance matrix for all multipole
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components and use this covariance matrix to make a yx? fit of
the power spectrum extracted from the 2 years of COBE/DMR
data to the power spectrum expected for a small universe with
different cell sizes L. For simplicity, we limit our calculation to
the case of a T? cubic universe. We present, in the next sec-
tions, a description of the power spectrum expected in a T2
cubic untverse model and the likelihood technique used to
constrain L/y.

2. POWER SPECTRUM OF THE T UNIVERSE MODEL

If the density fluctuations are adiabatic and the universe is
spatially flat, the Sachs—Wolfe fluctuations in the CMB are
given by

Tow=-38r ke )

(Peebles 1982), where x is a vector with length y = 2cH;! that
is pointed in the direction of observation (0, ¢), H, is the
Hubble constant (written here as 100 # km s™* Mpc~') and 4,
is the density fluctvation in Fourier space with the sum taken
over all wavenumbers k.

It is customary to expand the CMB aniostropy in spherical
harmonics

aT an [l .

-'1-—'“ (09 ¢) = E Z Appy Yllu{x) > (2)
=0 m=—I

where a;, are the spherical harmonic coefficients and # is the

unit vector in direction x. The coefficients g,,, are given by

Qg = —om 2 = Z 2 3 ik Y(R) , 3)

where j; are spherical Bessel functions of order !, If we assume
that the CMB anisotropy is a Gaussian random field, the coef-
ficients a,, are independent Gaussian random variables with
zero mean and variance

(| im|*) = 167 Z )4 Jf{k ) @

{(Fang & Mo 1987; Stevens et al, 1993). Assnming a power-law
power spectrum with shape P(k) = |5, |* = Ak", where A4 is the
amplitude of scalar perturbations and n the spectral index, it is
possible to perform the sum in equation (4), replacing it by an
integral, and to obtain

L9 — ny/2ITH + (n — 1)/2] ©
I3 + ny2ITH + (5 — n)/2]
(see, e.g., Bond & Efsthation 1987). In the literature, the

average over the canonical ensemble of universes {|a, |*> is
usually denoted by

i al‘mI2> =C,

= lanl®, (6}

where the power spectrum C, is related to the rms temperature
fluctuation by }6T/T 12> = 2 (21 + 1)C)fdn.

Note that in a Euclidean topology the Sachs—Wolfe spec-
trum C, is an integral over the power spectrum; however, in the
T2 universe this is not the case. In this model, only wavenum-
bers that are harmonics of the cell size are allowed. We have a

discrete & spectrum
2n
k? =
(2w @

Vol. 443

(Sokolov 1993), where L, L,, and L, are the dimensions of the
cell and p; are integers. For simplicity, assuming L = L_ =
L, = L, and the same power-law power spectrum cited before,
equation (4) can be written as

16% e
b e I G T

Px Py P2

where p? = p? + p? + pl. According to equation (8), the ith
multipole of the CMB temperature is function of the ratio L/y.
This shows that the more multipole components we use in our
fit, the stronger our constraints on the cell size will be.
However, we cannot use an infinite rumber of multipole com-
ponents. The maximum number of multipole components, ..,
will be limited by two things: the limit where the map is noise
dominated and the limit where we can truncate the Fourier
series without compromising the harmonic decomposition
technique {see Gorski 1994),

Using equauon (8), we calculated the expected power spec-
trum for a T universe with different cell sizes L/y from 0.1 to
30,n=1and {,, =30, where i, = 30 is the limit at which
we truncate our data power spectrum. In Figure 1, we plot
it + B)C, versus f and normalize all values to the last multipole
component / = 30, Note that for very small cells {L. < y), the
low-order multipoles are suppressed. The power spectrum for
small cells (as L/y = 0.1, 0.5, or 1.0} shows the presence of
“bumps ™ that disappear as the cell size increases (L/y = 1.5).
The power spectrum finally becomes flat for large cell sizes
(L/y z 3.0). These “bumps™ can be explained if we remember
that only the harmonics of the cell size are allowed to be part of
the sum in equation (8). When the cell size is small there are
fewer modes of resonance, and no modes larger than the cell
size appear in the sum in equation (8). As the cell size increases,
the sum approaches an integral and the T power spectrum
becomes flat.

‘We restrict our analysis to n = 1. This assumption, however,
does not weaken our results, since the 7> model with other
n-values tends to fit the data as poorly as with n = 1. For
instance, we obtain the maximum likelihood at the same ratio
Lfyfor n = 1 and n = 1.5. This happens because the “ bumps,”
and not the overall slope, are responsible for the disagreement
between the model and the data.

3. DATA ANALYSIS

Each DMR sky map is composed of 6144 pixels and each
pixel i contains a measurement of the sky temperature at posi-
tion x,. Considering that the temperatures are smoothed by the
DMR beam and contaminated with noise, the sky tem-
peratures are described by

T
( - ) T G By Vinl®) + 1, ©)

where B, is the DMR beam pattern and n, is the noise in pixel i.
We use the values of B, given by Wright et al, (1994a), which
describes the actual beam pattern of the DMR horns, an
lmperfect Gaussian beam. We model the quantities n; in equa-
tion (9) as Gaussian random variables with mean {n, ) 0 and
variance (mn;) = o} 6,1, assuming uncorrelated pixel noise
(Lineweaver et al. 1994}

When we have all sky coverage, the a,,, coefficients are given

by
ay, = I (g) Y¥(R)dQ . {10)
dn



cut represents a loss of about 34% of all sky pixels and destroys
the orthogonality of the spherical harmonics. Replacing the
integral in equation (10) by a sum over the number of pixels
that remain in the sky map after the Galaxy cut, N ;,, we define
a new set of coeflficients by

( ) Y!m |) )

=w i
i=1

where the normalization is chosen to be w = 4n/N ;. Substi-

tuting equation (9) into equation (11), we obtain

(11)

,z ahmlBh"’lhmm. + W f n Ylm(x ) ] (12)
mmy
with covariance
<blmb?’m'> = ‘Z "’ii,m."’i'nn-manﬁ
FWSSVLENLG), 03
where
U ) CTE Y (14)
Defining our multipole estimates as
DMR = b=
P =T L etk ﬂﬂ
their expectation values are simply
DMER
€ =5 T b (16)
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Fic. 1.—Expected power spectrum for the T2 universe mode! with n = 1 for different cell sizes with Lfy from 0.1 10 3.0
In the real sky maps, we do not have all sky coverage. Because and their covariance matrix M is given by
of the uncertainty in Galaxy emission, we are forced to remove
all pixels between 20° below and above the Galaxy plane. This M, = 2 E (b bl . an

21+ DRF + 1) &

The CPM® coefficients are not good estimates of the true multi-
pole moments C;. However, they are useful for constraining
our cosmological parameters.

The likelihood and the ¥? are, respectively, defined by

—2In% =y* + In| M| (18)

and
P=C"M"'C, (19)

where C7 and C are I, -dimensional row and column veciors
with entries C, = C‘Dmaal (CPR™y and M is the covariance
matrix as dcscrrbed in equation (17) with dimensions .,
x I.... Here CP"™ denotes the CP¥R-coefficients actually
extracted from the data.
Because the perturbations depend on an unknown constant
A, the power spectrum normalization, we have to constrain
two parameters at once. In practice, the calculation is done by
fixing the ratio L/y and changing the normalization by a small
factor. We multiply the first term on the right-hand side of
. equation (13) by this factor and calculate a new covariance
matrix. Repeating this procedure for each cell size, we finally
get a likelihood grid that constrains the ratio Lfy and the
normalization parameter.

4. RESULTS

In Figure 2, we show the angular power spectrum CP™
extracted from the data. We use a two-year combined 53 plus
90 GHz map, with Galaxy cut of 20°, monopole and dipole
removed. We plot {{f + NCPM® versus | from { =2 to I = 30,
with bias ((CPM*Y — C)) removed and error bars given by the
diagonal terms of the covariance matrix M. In computing the
bias and error bars, we assume equation (5) with n = 1. The
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Fi5. 2—Power specirum of the 2 year combined 53490 GHz COBE/DMR. dala with bias removed and the error bars given by the diagonal terms of the

covariance matrix M.

shape of this power spectrum and its multipole values are con-
sistent with values reported by Wright et al. (1994b), and for
1> 15 the power spectrum is basically dominated by noise.

We computed the likelihood function £(Lfy, o), using it to
constrain the ratio L/y and the normalization ¢,., whete 0. is
the rms variance at 7°. For the data set described above, we
found the maximum likelihood at (L/y, ¢4) = {1.2, 37.4 4K). In
Figure 3, we plot the likelihood function $#(L{y, ¢4.). Notice
that the likelihoods cannot be normalized because they do not
converge to zero for very large cell sizes, ie., the volume under
the likelihood function is infinite. Since the likelihoods are not
zero for very large cell sizes, we could naively consider that the
probability of the universe being smalil is essentially zero.
However, this conclusion is clearly exaggerated and based on

e
=
i

o
-]

o4

Likelihood Funciion

o
™

>4
o

the fact that we multiplied our likelihoods by a uniform prior,
and there is nothing special about adopting a uniform prior. In
order to obtain rigorous confidence limits for our analysis, we
replace the maximum likelihood fit by a minimum y* fit.

TABLE |
Lower Livits on Liy
Confidence Level
(%) Liy with C, Liy withou C,

68 s 0.98 097
L, DU 0.75 0.68
b 0 0.65
99T s 0.61 0.60

FtG. 3—The likelihood [unction #(L/y, o..} lor the T? universe model withn = 1
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FiG. 4—The probability that the T* model is consistent with the data is plotied as a function of the ratio L/y and the normalization ¢4, (bottom). Confidence
limits of 68%, 95%, and 99.7% are shown in the contour plot (iop). We found the highest consistency probability (minimum x*) at Lfy = 1.2, represenied by a cross in

the contoug plot.

We compute the chi-squared function ¥*(L/y, ¢4.) and use it
1o constrain the ratio L/y and the normalization g4.. In Figure
4, we plot the probability that the T mode! is consistent with
the data as a function of the ratio L/y and the normalization
¢ (bottom). Confidence limits of 68%, 95%, and 99.7% are
shown in the contour plot (top). We found the highest consis-
tency probability (minimum x2) at (Lfy, ¢5.) = (1.2, 49.7 uK),
represenied by a cross in the contour plot. Removing the quad-
rupole, we obtained similar results, see Table 1 for the lower
limits on cell sizes. We obtain the constraint Liy = 127 7,q at
95% confidence. We cannot place an upper limit on the cell
size: all large cells are equally probable.

5. CONCLUSIONS

The strong constrainl from our analysis comes from the
predicted power spectrum of the T2 universe; see Figure 1.
According 10 this plot, a reduction in the cell size to values
below the herizon scale should suppress the quadrupole and
low multipole anisotropies, while the suppression is negligible
il the cell is very large, at least larger than the horizon. 1t is
possible to notice these properties in Figures 3 and 4: both
favor large cell sizes. The observed presence of the quadrupole
and other low-order anisotropies automatically constrains our
cell 1o be very large. In other words, even before making the y?
fit, we expect to obtain very large cells,

We remind the reader that our analysis is for n = 1. We
made this assumption because the resuits of fitting the T2
model seems to be relatively insensitive to changes in » and the
“bumps,” not the overall slope, are responsible for the poor fit
between the model and the data. In other words, our results are
independent of any particular inflationary model.

From the COBE/DMR data, we obtain the best y? fit for a
toroida! universe with L/y = 1.2, which corresponds to a cell
size of L = 7200 k™! Mpc. A cell size below 72% of the size of
the herizon {L/y < 0.72) is incompatible with the COBE mea-
surements at 95% confidence, and a cell size below the size of
the horizon (L/y < 0.98) is ruled out at 68% confidence. Since
the T? topology is interesting if the cell size is considerably
smaller than the horizion, this model loses most of its appeal.
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