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ABSTRACT

The gravitational capture is a very
interesting phenomenon that allows a
spacecraft that is in a hyperbolic orbit
around a celestial body to be transferred to
an elliptic orbit without the use of any
propulsive system. One of the objectives of
this paper is to study the problem of
gravitational capture in the restricted three-
body problem. We study the importance of
several of the parameters involved for a
capture in the Earth-Moon system, with
emphasis in the time required for the
capture. To make this study, a large number
of ftrajectories starting close to the
secondary body are numerically integrated
backward in time. The initial position and
velocity of the spacecraft are changed and it
is verified if an escape occurs for every
trajectory. From the results it is possibie to
study the balance between the time required
for the capture and the AV saved for each
maneuver. The existence of "windows" with
short time for capture, that are very sharp
for values of C3 close to the minimum (& -
0.2) are found. The second part of this paper
has the goal of developing a set of analytical
equations based in the third body
perturbation, using the Planetary equations.
It is shown that the gravitational capture
does not exist in models using average
techniques, what confirms the temporary
character of this phenomenon.

Copyright © 1997 by the International Astronautical
Federation. All rights reserved.

INTRODUCTION

The phenomenon called
gravitational capture is a very interesting
characteristic of some dynamical system,
like the three- or four- body system in
celestial mechanics. It is under investigation
for some time now, specially by Yamakawa
and colleagues"m and the group formed by
Belbmnq‘,sm a1 millzler, Krish and
Hollister ™" """, The basic idea is that a
slightly hyperbolic orbit (with a residual
positive energy) around a celestial body can
be transformed in a slightly elliptic orbit
(with a residual negative energy) without
the use of any propulsive system. The only
forces responsible for this capture are the
gravitational perturbations from one or
more other bodies. One of the most
important applications of this property is the
construction of trajectories to the Moon. In
this maneuver, a spacecraft leaves a parking
orbit around the Earth on its way to the
Moon, makes a swing-by with the Moon to
go to a distant region and then, using the
perturbations of the Sun and the Earth, it
comes back to the Moon for a gravitational
capture. This capture is only temporary, but
an impulse can be applied during this
temporary capture to make it permanent.
The advantage is that this impulse as a
magnitude smaller than the one required for
a standard maneuver without the
gravitational capture, and it means that
there is & saving in the fuel involved in this
special type of maneuver.



In this paper we study the
importance of several of the parameters
involved for a capture in the Earth-Moon
system, specially the time required for the
capture.

The second part of this paper has the
goal of developing a set of analytical
equations based in the third body
perturbation, using the Planetary equations.
Single and double-average techniques are
also considered. It is shown that the
gravitational capture does not exist in
models using average techniques, what
confirms the temporary character of this
phenomenon.

MAT TICAL MODEL

The model used in this part of the
paper is the well-known planar circular
restricted three-body problem. This model
assumes that two main bodies (M| and M3)
are orbiting their common center of mass in
circular Keplerian orbits and a third body
(M3), with negligible mass, is orbiting these
two primaries. The motion of M3 is
supposed to stay in the plane of the motion
of M; and M2 and it is affected by both
primaries, but it does not affect their
motion'’. The standard canonical system of
units associated with this model is used (the
unit of distance is the distance between M,
and M3, and the unit of time is chosen such
that the period of the motion of M3 around
My is 2xn). Under this model, the equations
of motion are;
x-—a.lj. = 92

X2y = 1
y ox ox (1)
ou oQ
VAH2K = yomem = —° 2
y+2x =y 3y 3y (2)

where Q is the pseudo-potential function
given by:
1/ 5 (1-p) n
Q==(x*+y)+—+— 3
9 S0 +¥) =L O
and x and y are two perpendicular axes with

the origin in the center of mass of the
system, with x pointing from M, (that has
coordinates x = -u, y = 0) to M> (that has
coordinates x = 1-p, y = 0).

The equations of motion given by
(1-3) are correct, but they are not suitable
for numerical integration in trajectories
passing near one of the primaries. The
reason is that the positions of both primaries
are singularities in the potential U (since 1)
or ry goes t0 zero, or near zero) and the
precision of the numerical integration is
affected every time this situation occurs.
The solution for this problem is the use of
regularization, that consists of a substitution
of the variables for position (x-y) and time
(t) by another set of variables (©1, @, 1),
such that the singularities are eliminated in
these new vanables.

PRELIMINARY NUMERICAL RESULTS
To quantify the "gravitational
captures”, this problem is studied under
several different initial conditions. The
assumptions made for the numerical
examples presented in the first part of this
section are (some of them i€ changed later,
to generalize the resuits):
i} The system of primaries used is the Earth-
Moon system (some fictitious systems is
used later to generalize the results);
ii) The motion is pianar everywhere,
because the capture out of plane cannot
achieve larger savings®;
iii) The starting point of each trajectory is
100 km from the surface of the Moon (rp =
1838 km from the center of the Moon).
Then, to specify the initial position
completely, it is necessary to give the value
of one more variable. The variable used
here is the angle a, an angle measured from
the Earth-Moon line, in the counter-
clockwisé direction and starting in the side
opposite to the Earth (see Fig. 1) (different
values of 1, is used later to generalize the



resuits);
iv) The magnitude of the initial velocity is
calculated from a given value of

C3=2E=V2—2Tu, where E is the two-

body energy of the spacecraft with respect
to the Moon, V is the velocity of the
spacecraft, pt is the gravitational parameter
of the Moon and r is the distance between
the spacecraft and the center of the Moon.
The direction of the velocity is assumed to
be perpendicular to the line spacecrafi-
center of the Moon and pointing to the
counter-clockwise direction for a direct
(posigrade) orbit and to the clockwise
direction for a retrograde orbit (see Fig. 1),
v) To consider that an escape occurred, it is
requested (following the conditions used in
Refs. 1, 2 and 3) that the spacecraft reaches
a distance of 100000 km (0.26 canonical
units) from the center of the Moon in a time
shorter than 50 days. The wvalue for the
distance cames from the equation for the
limit = (2u1)'?, that is well explained in Ref.
2. Fig. 1 shows the point P where the escape
occurs. The angle that specifies this point is
called the "entry position angle” and it is
designated with the letter B. There 1s also a
check to verify if a crash into the Moon did
not happen.

Then, for each initial position, the
trajectories are numerically integrated
backward in time. Every escape in
backward time corresponds to a
"gravitational capture” in forward time. The
time-of-flight until an escape occurs is
obtained. The stopping criteria for the
numerical integration is the one that comes
first among the three possibilities: the time
is longer than 50 days; the distance from the
Moon is longer than 100000 km or the
distance from the Moon is smaller than
1738 km (the Moon radii). The numerical
simulations are performed in an IBM-PC
Pentium 100 MHz using the Microsoft

Fortran Powerstation 1.0. The numerical
integration method used is the Runge-Kutta
of fourth order. Then, the resuits are
organized and plotted in several figures.
The time-of-flight for escape in all those
figures is expressed in canonical units, what
means that 1 unit of time is equivalent to
4.46 days. The next subsections show the
results in detail.

SPHERE OF
INFLUENCE

TO THE /)

MOON

Fig. 1 - Variables to specify the initial
conditions of the spacecraft.

Influence of the Parameters in the Time
Required For the Capture

In this section, the numerical tools
developed in this paper are used to study the
influence of the parameters that govern this
problem. Those parameters are: the system
of primaries involved, specified by the
parameter u; the distance from the
spacecraft to the secondary body in the
moment that the impulse is applied to
complete the maneuver (1), the energy C3
of the spacecraft at this moment; the
direction of the velocity at this point (it is
assumed to be perpendicular to the radius
vector, but it is free to be posigrade or
retrograde); and the departure angle o (see
Fig. 1). The simulations showed the results
described below. This research is a



continuation of previous work performed by
the authors'*'?

i) Effects of the mass parameter.
Several simulations were made to study the
influence of the mass parameter in the time
required for the capture. This particular
parameter brings a new difficult into the
problem. The value of the maximum
savings increase very much when the mass
parameter increases. So, studying this
problem for a fixed value of C3 ~ -0.2 (that
is close to the maximum saving for p =
0.01) makes the time required for the
capture to be close to zero for different
values of p (u = 0.3, 0.5, etc.). Then, the
method used in this paper to solve this
problem is to find and use a value of C3 that
is close to the limit (minimum value that
allows a gravitational capture) for a given p.
Then, the comparison i1s made using a fixed
value of r, = 0.004781477 in canonical
units, a posigrade direction for the velocity
and the value of C3 that is the one that gives
the maximum saving for a given u. The
results showed that there is no general trend
for the variation of this parameter. There are
very large oscillations in the time required
and, for every value of a, there is a different
value of the mass parameter that holds the
minimum time. This oscillatory behavior is
due to the necessity of changing the values
of C3, as explained in the beginning of the
present section. The effect of this parameter
is studied only to make this paper more
complete and it is not a key parameter for
practical applications, because in a real
mission the system of primaries is always
fixed in advance.

it) Effects of the r,. To study the
importance of this parameter, simulations
were made for the Earth-Moon system (u =
0.0121285627) and for the posigrade
direction of the velocity. The parameter r,
was varied in a wide range of values (1800
km < r, € 22000 km) for several values of

C3. Several simulations were performed.
The first fact noted is that the results for
1800 km < 1, < 7000 km are very similar to
each other. It means that changing this
parameter in a range of values close to the
Moon does not give a significant impact in
the time required for the capture. Increasing
this parameter to r, > 12000 km it is
possible to see an increase in the time-of-
flight. The amount of this increase changes
according to the value of o In the
maximurm cases, it reaches the level of three
times larger than the value obtained with
lower values for r, This situation occurs
when o is between 50° and 200°. So, the
general conclusion is that the increase of 1,
has the effect of increasing the time for
capture, but this effect is visible only for r,
2 10000 km,

iii) Effects of the departure angle a.
This is a very important parameter in this
problem, because it has a strong impact in
the savings obtained for the manecuver.
Simulations to measure the time-of-flight as
a function of o were made for several
values of C3 in the range -0.2 < C3 < 0. Fig.
2 shows the results obtained for C3 = -0.14.
This figure was build using a step of 0.1° in
a, and it is representative of the others. The
radial distance represents the time and the
angular variable represents a. The ratio
between the higher and the lower values is
of the order of ten. The minimum times
belong to the regions 120° < o < 180° and
300° € o £ 360° Those results bring the
most important conclusion of this section.
They show that it is possible to obtain a
minimum time-of-flight that are ten times
shorter than the maximum without any
reduction’ in the savings, since C3 is kept
constant. The only task that has to be
performed is to find the value of o that
allows those savings in time. This
information can be obtained from the Fig. 2.



180°

270°
Fig. 2 - Effects of the departure angle.

iv) Effects of the direction of the
velocity. Several simulations were made
keeping constant the mass parameter (u =
0.0121285627) and the periapse distance (1,
= 1838 km) and changing the values of C3
(-0.2 £ C3 < 0) for posigrade and retrograde
orbits. The orbit is called posigrade when
the initial velocity is counter-clockwise and
retrograde when it is clockwise. The
simulations showed that, for values of C3 in
the first half of the interval considered (-0.1
< C3 £ 0), in the majority of the domain
(values of o) the time-of-flight required for
the capture is almost independent of the
direction of the velocity. A sigmficant
difference occurs only in very specific
positions (30° < o < 70° and 220° £ & <
260°) and, in those cases, the posigrade
orbits have a smaller value for the time-of-
flight. But, for the most important cases (C3
about -0.2) where the savings are close to
the maximum, there are significant
differences in the time required for the
capture for almost all the values of a. By
examining in detail the results, it is possible
to conclude that the posigrade orbits require
a smaller time for the capture for all values

of a. The ratio of those times (time required
for the retrograde orbits divided by the time
required for the posigrade orbits) can reach
three in the region 130° < o < 180° The
posigrade (direct} orbits holds all the
minimums. When C3 approach the value of
-0.2, the occurrence of retrograde orbits
decreases faster than the occurrence of
posigrade orbits. In this situation, the
posigrade orbits dominate the plots and they
are the only choice in a large portion of the
domain. In the small parts of the domain
that have retrograde orbits, the difference in
the time for capture increases.

v) Effects of C3. This is also a very
important topic of investigation. To perform
this research, simulations were made
keeping p = 0.0121285627 and the direction
of the velocity posigrade. Then, a set of
simulations were performed in the whole
interval 0° < o < 360°. This study wants to
quantify numerically the balance that exist
between consumption of fuel and time
required for the maneuver. The approach to
solve this problem is the foliowing. A value
of C3 is fixed and then a plot of the time-of-
flight versus o is made. From this
simulation, the minimum value of the time-
of-flight is found. Repeating this process for
several values of C3 it is possible to build a
large table (omitted here), that shows the
maximum magnitude of C3 obtained for
every value of time-of-flight. The values of
o and AV saved (in canonical units) can
also be shown in this table, Fig. 3 shows
those results in a graphic form for r, = 1838
km. The expected result that an increase in
the savings obtained causes an increase in
the time-of-flight is quantified in the plot.
Several others simulations changing the
values of r,, not shown here, were made and
it was possible to conclude that r, is a
parameter that has little effect in this
problem. It is also possible to conclude
from the results that the regions where the



minimum are found are always in the region
close to the interval 309° < o < 345°.

0.20 - 8

e
[y

C3 {canonical units)
=S
=)
Q“Uﬂumwa

0.05

0.00 Hrr—r=rfrrr—rr—
65 10 15 20 25 30 35

Time (canonical units)
Fig. 3 - Effects of C3.

THE DI IN CTION

This section has the goal of
developing an analytical study of the
perturbation caused in a spacecraft by a
third body involved in the dynamics. The
assumptions are the same ones made in the
restricted three-body problem.

The main body with mass m, is
fixed in the center of the reference system
x-y. The perturbing body with mass m' is in
a circular orbit with semi-major axis a' and
mean motion n' (given by the expression
n?a®=G[m,+m’]) in the plane of the
figure. The massless spacecraft m is in a
generic three dimensional orbit which
orbital elements are: a, e, i, @, Q and the
mean motion is n (given by the expression
n’a’ = Gm,).

In this situation, the disturbing
potential that the spacecraft has from the
action of the disturbing body is given by:

1)

Re merrnnr—————ou-—
Jrz +1? =21r' Cos(S)

Using the traditional expansion in
Legendre polynomials (assuming that r' >>
1) the following expression can be found:

R =—‘f.~z(;)n P, (Cos(s))

n=2

Simulations are made using the
equations of motion obtained directly from
those equations. The results are shown later
in this paper.

The next step is to average those
quantities over the short period satellite as
well as with respect to the distant perturbing
body. The standard definition for average

n
used in this research is (f)=-i:—t-f(f)dM,
0

where M is the mean anomaly, that s
proportional to time.

After performing the average over
the perturbed body, we have:

B8 e 2

R w'a’n? (_{)" 15ae(4 +3¢?)
3T 22 \r 8 o
25¢’e(3+4e?) . 750p%e{e’ - 1)]

- 8 8

13 124

=  3p'a¥n
R4 64 ()]
.+Hle? +18e‘)+35a (1+12¢? +8e*) - 10p2(4 - ..
*—3¢*) + 7022 (1 + 5¢? - 6e*) + 35p*(e? - 1)

={(8+40¢? +15¢*) - 100.2(4+...

Here a= (I3.f') and B=(Q f'),
where ' is the unit vector pointing from the



central body to the disturbing body and P
and Q are the usual orthogonal unit vectors,
functions of (i, @, Q), in the plane of the
satellite orbit, P pointing towards the
periapse.

Considering the special case of
circular orbits for the disturbing body and
performing the second average with respect
to the disturbing body to eliminate the
variable M, we have the results shown in
Table 1.

Table 1 - Disturbing Functions up to P,.

LI ¥

(Ry) =525 (2+ 3¢ N3Cos™ (i) ~1) + 15¢"Sin* ()Cos(20)] (4)

<R_3) =0 (5)
2.4

(R,) = %‘a—aﬁ [144 +720e* +270e* +(320 + 1600¢* + 600¢*)Cos{2i) + (560 + 2800e? + 1050e* )Cos(4i)+...

...+(1680¢? + 840¢* )Cos(20) + 4410e* Cos(4e) + (2240e? +1120e* }Cos(2i)Cos(20)+...
...+(3920e? +1960¢* }Cos(4i)}Cos(20) + 5880e* Cos(2i)Cos(4e) + 1470¢* Cos(4i)Cosl40)]  (6)

The Equations of Motion

After  calculating  (R,)= Rs,

(E) =R; and <ﬁ4) = R4, the next step is to
obtain the equations of motion of the
spacecraft. They come from the Lagrange's
planetary equations (Taff, 1985) in the form
that depends on the denvatives of the
disturbing function R with respect to the
Keplerian elements.

Our first result in this section is the
integration of the equations of motion
generated by making R =Ry, R=R; + R4
and R = R; + R; + Ry, successively. Figs. 4
to 6 show the results for the behavior of the
semi-major axis and the eccentricity. It is
clear to see that the semi-major axis always
increases, what indicates that the
gravitational escape in reverse time (and the
capture in forward time) occurs. The speed
of the process increases when more terms
are considered in the model. The
eccentricity oscillates with large amplitude.
The others orbital elements were also
computed, but they are omitted here to save

space. In general, MO always increases and
the argument of the periapsis oscillates, but
has a tendency to increase in the long term.

08¢ —
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Fig. 4a - Semi-major axis vs. Time (R =R;).
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Fig. 4b - Eccentricity vs. Time (R =R;).
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To make a comparison, the
numerical integration is performed for the
full system (with. no truncation) and the
results are shown in terms of the Keplerian
elements. Fig. 7 shows those results, It is
immediate to conclude that the speed of the
process is a lot larger, indicating the
transitory character of this phenomenon.

The next step is to obtain the
derivatives of R for the averaged models.
For the second-order model the assumption

R =R, is made and it is possible to obtain
the following expression for the derivatives:

R, _9R, _, -
da o2
aR,

_a_el=l(-[6-e»(3-oos (Y= 1) + 30.¢ sin€i)-cos (2»»-)](3)

Q:R_.?_.—.J-K‘sin(}i)- (-2 ~3e'+ 5-e2-oos(2-m )) 9)
i
OR; _ _30K-e%sin(i)*sin(20)

P (10)

142 12 1
an m
where K =& and p'= —
m +m0
o0 —
400 —
% a0
‘wa
oo T T T T T ! 1
080 080 00 o

140
Time (canonical Units)

Fig. 7a - Semi-major axis vs. Time

(Numerical).
1.00 —]
o.sa—‘
£
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o0 —
084 | S R B O R
«0.80 .80 £.20

.40
Time (Canonical Units}

Fig. 7b - Eccentricity vs. Time (Numerical).



The equations of motion are then
obtained using the Planetary equations.
For the fourth-order model the

assumption made is R=R,+R, (since

R, = 0. Then it is necessary to obtain the
partials shown in Table 2.

Table 2 - Partials for the Disturbing Functions of P,.

1440¢ + 1080¢° 1 (3200 + 2400¢%)-cos (2) + (56006 + 4200€*)-cos (4.i) .
aﬁ? + 233601: + 3360:?005( 20}+ 17640¢°.cos (4a)..
c0s(2-)c08(2-0) + (7840 ¢ + 7840.¢%) -cos(4 ) -cos(2-0) .
+23520e”-c08(2i)-cos (40 ) + 5880¢°-c08 (4i)-cos (4-0)

—=K217,

3
e 4480 e + 4480 ¢

K 5880e4<sin(4i)-cos(4-m )

r

IRy

o =2K2) +560c0s(24) cos(2-a )-e* + 1960 cos(4.i)-cos(2-0 )€ ...
+980 cos(4.0)-cos(20 )-o* + 2940 cos(2 i) cos(40) ...

L+ 735¢* cos(4i)cos(d40)

9n'? a*

here K2 = —2 2.
wher 65536a"

Then, the right-hand sides of those
equations are added to the right-hand sides
of the equations of motion to form de
derivatives for the disturbing function with
respect to the Keplerian elements. This
result is then used to generate the equations
of motion.

An important property of the
averaged methods is that the semi-major
axis always remains constant, This fact
occurs because, after the averaging, the
disturbing function does not depend on M,
and the Planetary equations show that under

this circumstance %:-=0. This is a proof

== 2(320+ 16006% + 600 ¢*)-sin(2:i) + 4-(560+ 2800e? + 1050¢")-sin(4i) ..
She-K2| 2 (2240€% + 1120€")-sin(2:i)-cos(2.0 ) + 11760¢" sin(2)-cos(d-v ) ..

72+ 360€” + 135¢* + 160cos(2 i) + 800 cos(2i)-¢* + 300 e* cos(2:i) ...
+280 cos(4i) + 1400e?.cos(4i) + 525¢” cos(4 1) + 840cos(20 )¢ ..
— +420c0s(20 )-¢' + 2205¢* cos(4.0 ) + 1120c0s(2i)-cos(2n )€ ..

that the gravitationa! capture does not occur
in any of those averaged models.

7 - CONCLUSIONS

This paper studied the "gravitational
capture” in the restricted three-body
problem. A detailed and new study of the
time-of-flight required for the gravitational
capture was performed. The importance of
each individual parameter was studied in
detail. The existence of "windows" with
short time for capture, that are very sharp
for values of C3 close to the minimum (= -
0.2) were found. Some “blank regions”,
where the gravitational capture is not
possible, were also found. Optimal



problems, like finding trajectories that ends
in gravitational capture with minimum time
of maximum savings can also be solved
using the results available in this paper.
Those results are important to mission
designers willing to use this type of
maneuver in real missions. Then, we
performed a study using the equations of
motion given by the planetary equations.
We used an expansion in polynomials of
Legendre up to order four. We found that
the gravitational escape exists in models
that do not have average, but the process is
a lot slower. When any kind of average is
made (single or double) the gravitational
escape does not occur anymore.
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