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ABSTRACT
We show that the interaction of a gravitational wave with a spherical resonant-mass antenna changes

the antennaÏs shape to that of an ellipsoid. These changes in shape always determine the direction of the
incoming wave and may provide information on the waveÏs polarization. We present a new approach for
determining the position of astrophysical sources of gravitational waves which involves fewer calcu-
lations than in earlier methods. We also show how the measured quantities relate to the energy density
of the wave.
Subject headings : gravitation È instrumentation : detectors È relativity È waves

1. INTRODUCTION

The detection of gravitational waves is of interest to
physicists and astrophysicists because of its broad implica-
tions : in testing the general theory of relativity, verifying the
existence of black holes, Ðnding the masses and abundance
of neutron stars and black holes, ““ probing ÏÏ the densities
and viscosities of neutron stars, allowing new frontiers for
astronomy and astrophysics, discovering new physics, and
developing new technologies (cryogenics, SQUIDs, etc).
Detectors are now in operation, and others are being built
or projected Pizzela, & Ronga(Blair 1991 ; Coccia, 1995).

Since the pioneering work of Joseph Weber in the 1960s
the detectors based on resonant antennas have improved
signiÐcantly. Recently a new geometry for this kind of
antenna was proposed : the truncated icosahedron (Johnson
& Merkowitz It is expected to be the best spheroidal1993).
resonant-mass detector, its shape allowing for omnidirec-
tionality. This antenna is designed to detect frequencies
higher than those to which interferometric detectors are
most sensitive. Together, spheroidal and interferometric
detectors are expected to cover a wide range of interesting
astrophysical sources of gravitational waves.

The interaction of a gravitational wave with the spherical
antenna can be nicely visualized by inspecting the space-
time metric in the presence of the wave : the spherical shape
changes to that of an ellipsoid. By observing changes in the
ellipsoidal shape of the antenna one can obtain information
about the waveÏs polarization. Because the spherical detec-
tor is expected to measure the Ðve independent components
of the h matrix, the shape of the ellipsoid could be com-
pletely determined.

The spherical detector can also provide information
about the position in space of the astrophysical source. This
has already been calculated & Tinto(Dhurandhar 1988 ;

et al. but we present here an alternativeMagalha8 es 1995),
approach expected to involve fewer calculations than the
previous one. Also, we present an explicit expression for the
energy density of the gravitational wave calculated from
the measured quantities which also imposes limits on h

Cand h
`

.
In we introduce the picture of the spatial distortion° 2

due to a gravitational wave as an ellipsoid. Physical impli-

cations of this approach are presented in In we° 3. ° 4
determine the propagation direction of the gravitational
wave, and in we analyze the Poynting vector for this° 5
wave and one more possible link between the linearized
theory and electromagnetism. The waveÏs polarization is
discussed in and further comments and extensions of° 6,
the work are presented in ° 7.

2. THE TIDAL ELLIPSOID

A gravitational wave far away from its source can be
considered to be the result of a very weak disturbance inhklthe Minkowskian metric gkl :

gkl\ gkl] hkl , k, l\ 0, 1, 2, 3 , o hkl o> 1 , (1)

where

g \ [gkl]\c
[1

0
0
0

0 0 0
1 0 0
0 1 0
0 0 1
d .

For a gravitational wave propagating in the z@ direction of a
convenient ““ wave frame ÏÏ (with axis x@y@z@) and using the TT
gauge Thorne, & Wheeler ° 35.4), the sym-(Misner, 1973,
metric matrix h has the form

hTT\c
0
0
0
0

0
h
`

h
C

0

0
h
C

[h
`

0

0
0
0
0
d . (2)

In principle this disturbance varies with space and time
x)], but we will omit this explicit dependence[hkl\ hkl(t,for the sake of simplicity.

The metric tensor is known to relate the covariantgkland contravariant components of any vector d. In particu-
lar, the squared modulus of d (which is also a proper dis-
tance from the spacetime origin) is given by

o d o2\ ;
k/0

3
xkxk\ ;

k,l/0

3
xkgklxl . (3)
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FIG. 1.ÈThe relative positions between the wave proper frame (x@y@z@)
and the diagonal frame (xAyAzA).

Notice that in the Minkowskian space o d o2 \ [t2] x2.
This means that for a Ðxed instant point particlest \ t0located at the same distance from another atr2\ o d o2] t02the origin will describe a sphere in that space.

In order to visualize the e†ect of the gravitational wave
on the relative positions of these particles we will change
our point of view, rotating the x@ and y@ axes relative to the z@
axis according to an angle j such that, for a certain instant

FIG. 2.ÈAn illustration of the displacement of a set of free test particles
by a gravitational wave traveling in the zA direction. The particles are
initially arranged in three orthogonal concentric rings. Each undeformed
ring of particles is projected onto a plane. Their subsequent gravitational
displacements are shown by the lines, which all lie in a plane normal to the
direction of propagation.

t \ t0,

tan j \
Sh

t
[ h

`
(t0)

h
t
] h

`
(t0)

,

with

h
t
4 Jh2̀ (t0)] h

C
2 (t0) . (4)

We will call this rotated reference frame the instantaneous
diagonal frame and label its axes by xAyAzA (see TheFig. 1).
reason for the name diagonal is simple : under this rotation
g is diagonal since h is given by

hA \c
0
0
0
0

0
h
t

0
0

0
0

[h
t

0

0
0
0
0
d

(with frame x@y@z@) and

o d o2 \ [tA2 ] (1 ] h
t
)xA2 ] (1 ] h

t
)yA2 ] zA2 . (5)

Because we recognize that for a Ðxed instanth
t
> 1 tA \ t0the above equation describes an ellipsoid in the xAyAzA

space ; it implies that particles located at the same distance
r2 from each other at the origin will describe an ellipsoid, in
contrast with the sphere they described before the waveÏs
arrival. We can call it the tidal ellipsoid, since gravitational
waves produce tidal accelerations between particles. Tidal
ellipsoids are also known in the Newtonian context

& Ruffini , ° 1.9) : a very small drop of water(Ohanian 1994
with little surface tension would take the shape of an ellip-
soid in the presence of a classic gravity Ðeld ; this classic
tidal ellipsoid could have its shape changed in all directions.
On the other hand, from we conclude that theequation (5)
relativistic tidal ellipsoid does not change in the zA direc-
tion, the direction of propagation of the gravitational wave ;
this is a natural consequence of the transversality of the TT
gauge.

The orientation of the ellipsoid in the lab frame is easily
found from the transformation that takes h into its diagonal
form, hA. The eigenvectors of h are parallel to the three
principal axes of the ellipsoid, and also the three orthogonal
axes of the diagonal frame. One of the three eigenvalues of h
is zero, and its eigenvector is parallel to the waveÏs propaga-
tion direction, as can be seen by inspection of equation (5).
The other two eigenvalues have the same moduli and
opposite signs, clearly distinguishing them from each other.

3. OTHER PHYSICAL EFFECTS DUE TO THE TIDAL

ELLIPSOID

The force exerted by a gravitational wave on a particle
with mass M can be given by the expression

Fi\ M
4

+i ;
j,k/1

3
xj h�

jk
xk , i \ 1, 2, 3 ,

as long as the relevant distances involved are much smaller
than the gravitational wave wavelength (see et al.Misner

° 37.2). From this equation we can Ðnd the work done1973,
by a gravitational wave to move this particle from the
origin to a certain point P :

P
0

P
Fdx \M

4
d2
dt2 ;

j,k/1

3
x
P
j g

jk
x
P
k ,
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where is given by Because we assume thatg
jk

equation (1).
the variables xA are independent, we conclude that the work
done by the wave is related to how the shape of the tidal
ellipsoid varies with time. This can be better understood by
visualizing the spherical distribution of free particles in
space. When the gravitational wave passes, it ““ works ÏÏ on
the distribution by changing its shape to that of an ellipsoid
(Fig. 2).

A more complicated but similar e†ect happens in a solid
sphere that resonates with the gravitational wave. For
example, when a gravitational wave with the ““]ÏÏ polariza-
tion and traveling in the direction of a(h

x{x{\ h
t
, h

x{y{\ 0) zü
frame Ðxed in the antenna (the lab frame) reaches the solid
sphere, the displacement of a point on the sphere surface
relative to the origin of this frame (assumed in the sphereÏs
center of mass) is proportional to where xd \ h

t
(o x o[ o y o),

and y are the coordinates of the point in the lab frame.
Notice that there is no oscillation in the direction, aszü
expected. The wave distorts the sphere such that the solid
assumes the shape of an ellipsoid, similarly to what happens
to the free particles of This distortion is, however,Figure 2.
extremely small because is also small.h

t

4. DETERMINATION OF THE WAVEÏS DIRECTION

In the absence of noise et al. or even in(Magalha8 es 1995),
the presence of some noise & Johnson(Merkowitz 1995),
the wave amplitudes i, j \ 1, 2, 3, are expected to beh

ij
,

measured by a spherical detector. We may then use the
eigenvalue equation & Tinto(Dhurandhar 1988)

hn \ 0n

to determine the waveÏs propagation direction, assumed to
be the same as that of n, the Cartesian unit base vector that
points toward the direction of the zA axis of the diagonal
frame ; again, the zero eigenvalue assures that there is no
perturbation in the direction n. This equation is valid in the
diagonal frame and can be easily proved valid in any refer-
ence frame rotated from this frame according to a certain
rotation matrix M.

In the lab frame the vector n is given by (see Fig. 3)1

n 4

1nx

ny

nz

2
.

Five of the components of the wave tensor (h
xx

, h
xy

, h
xz

, h
yy

,
and can be obtained from the coefficients of the sphereÏsh

yz
)

Ðve normal modes & Paik The component(Wagoner 1977).
can be obtained from the equationh

zz
h
zz

\ [h
xx

[h
yy

,
valid in the TT gauge.

The eigenvalue equation implies the three following
equations :

h
xx

nx ] h
xy

ny ] h
xz

nz \ 0 , (6)

h
yx

nx ] h
yy

ny ] h
yz

nz \ 0 , (7)

h
zx

nx ] h
zy

ny ] h
zz

nz \ 0 , (8)

Because the matrix h has null determinant, the system of
equations is undetermined : one of the equations(6)È(8)

1 Because we are dealing only with instantaneous observations, from
now on we will work only with vectors and matrices in three dimensions
instead the usual four dimensions of metric theories of gravitation.

FIG. 3.ÈPosition of the vector n and the wave proper frame (x@y@z@)
relative to the lab frame (xyz).

depends on the other two. But two independent equations
suffice to determine the gravitational wave propagation
direction, given by the angles h and / of the spherical coor-
dinates of the lab frame,

sin /\ ny

J(nx)2] (ny)2
,

cos /\ nx

J(nx)2] (ny)2
,

tan /\ ny

nx
, (9)

tan h \J(nx)2] (ny)2
nz

\ ny

n
z

1
sin /

. (10)

For instance, suppose we choose the two equations

;
i/1

3
h
ki

ni\ 0 and ;
i/1

3
h
li
ni\ 0 ,

where k and l may be either x, y, or z. By combining them
we Ðnd that the components of n in the lab frame obey the
relations

ny\
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lx
h
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h
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h
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h
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B
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Using the above equations in and weequations (9) (10),
have
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h
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.
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A similar but incomplete result was found previously by
& Tinto In their work they used onlyDhurandhar (1988).2

the Ðrst two of the equations to Ðnd the waveÏs direc-(6)È(8)
tion of propagation. But these two equations alone do not
lead to a well-determined result when the wave is propagat-
ing, for instance, in the x direction, since they yield
tan /\ tan h \ 0/0 in this case ; instead, equations and(7)

would be more appropriate, resulting in tan /\ 0 and(8)
tan h \ O, as it should be.

In order to illustrate the above method, suppose the fol-
lowing h matrix was obtained in the lab frame :

h \
3 2.37 0.75 [1.14

0.75 [1.87 [1.85
[1.14 [1.85 [0.5

4
. (11)

By choosing, for instance, the Ðrst and third rows of this
matrix we Ðnd tan /D [1 and tan h D ^0.99, which
imply (h, /) D (n/4, 7n/4) or (h, /)D (3n/4, 3n/4), as it
should be.

2 Notice that the angle / in their eq. (34a) is actually the angle / we use
in this paper plus n/2.

Instead of solving the eigenvalue equation analytically we
may obtain the direction of an astrophysical source from
the direction of the eigenvector n with null eigenvalue when
h is in its diagonal form. Using the values given in equation

as an example, the diagonal form of h is(11)

hA \
33.16

0
0

0
0
0

0
0

[3.16

4
.

The eigenvector that corresponds to the zero eigenvalue of
hA is found to be

n \
3[0.5

0.5
[0.7

4
,

thus agreeing with the previous result (see This pro-Fig. 4).
cedure could have followed not only from the eigenvalue
equation approach but also from the tidal ellipsoid picture,
since the principal axes of the ellipsoid become evident in
the diagonal frame.

Although both ways presented above may be used to
determine the direction of the astrophysical source, they

FIG. 4.ÈThe vectors A, B, and C are coplanar and perpendicular to the waveÏs propagation direction, which is parallel to nA
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normally involve a considerable amount of algebra. We
have devised a di†erent approach to obtain the waveÏs
direction of propagation. Notice that if we deÐne the
vectors

A 4 (h
xx

, h
xy

, h
xz

) \ ;
j/1

3
h
xj

eü j , (12)

B 4 (h
yx

, h
yy

, h
yz
) \ ;

j/1

3
h
yj

eü j , (13)

C 4 (h
zx

, h
zy

, h
zz
) \ ;

j/1

3
h
zj

eü j , (14)

where are the contravariant unit vectors that describe theeü j
lab frame when the wave is present, equations can be(6)È(8)
rewritten as

A Æ n \ B Æ n \ C Æ n \ 0 . (15)

The vectors A, B, and C are thus coplanar and perpendicu-
lar to the gravitational waveÏs propagation direction.
Notice that these vectors are deÐned in terms of the com-
ponents of the h tensor in a certain reference frame, so their
magnitudes will change if the frame is changed. Equations

also implies that the vectors(15)

I 4 A Â B , J 4 B Â C , K 4 C Â A , (16)

will be parellel to n.
The vectors A, B, and C provide a very practical and

pictorial way to determine the waveÏs direction of propaga-
tion. For instance, the matrix given by impliesequation (11)

A \ [2.37 0.75 [1.14] ,

B \ [0.75 [1.87 [1.85] ,

C \ [[1.14 [1.85 [0.5] .

By drawing the vectors A, B, C, can be con-equation (15)
Ðrmed pictorially, as we see in Therefore, the useFigure 4.
of these three vectors only, with no extra calculations, pro-
vides a very straightforward method of determining the
direction of the source.

In fact, A, B, and C are related to the di†erences between
the covariant base vectors of the curved space, (whicheü

jdescribe the lab frame after the wave arrives) and the co-
variant unit Cartesian base vectors of the Euclidean space,

(which describe the lab frame before thei
j
\ ;

k/13 g
jk

eü k
wave arrives). For instance, the vector A is related to
changes in the covariant base vector in the x-direction :

eü
x
\ ;

j/1

3
g
xj

eü j \ ;
j/1

3
(g

xj
] h

xj
)eü j \ i

x
] A F A \ eü

x
[ i

x
.

Similarly, B is related to changes in the y-direction, and C to
those in the z-direction.

The tensor h is commonly referred to as the gravitational
wave ““ strain,ÏÏ and the above relation makes clear the simi-
larity between this tensor and the strain tensor of elestic
mechanics : the components of h give the amount of the
distortion of the axes of the lab frame relative to their posi-
tions when the space is Minkowskian, as we see in Figure 5.

The abstract idea of h as a strain, related to the distortion
of reference frames, gains reality when we observe the
changes in proper distances between free particles that are
initially in a spherical distribution when the space is Mink-

FIG. 5.ÈThe Minkowskian axes of the lab frame seem to be stretchedi
xby the gravitational wave, represented here by the vector A. The com-

ponents of A are given by a row of the ““ strain ÏÏ tensor h that characterizes
the wave.

owskian : the shape of this distribution changes to an ellip-
soid in the presence of a gravitational wave. Because the
three principal axes of this new ellipsoidal distribution are
respectively smaller, bigger, and equal to the radius of the
initial spherical conÐguration, we conclude that the gravita-
tional wave stretches/shrinks the distances between the par-
ticles. Mathematically this result can be shown by rewriting

as for simplicity)equation (5) (t04 0

o d o2\ (xA2] yA2] zA2) ] h
t
xA2[ h

t
yA2

\ o d oMink2 ] h
x_x_xA2] h

y_y_ yA2] h
z_z_ zA2 .

Clearly, the components and of the diago-h
x_x_, h

y_y_, h
z_z_nal form of h display the stretching or shrinking (depending

on their signs) of the distances in the xA, yA, and zA direc-
tions, respectively, relative to the original Minkowskian dis-
tance Therefore, by visualizingo d oMink2 \ xA2] yA2] zA2.
the tidal ellipsoid we are able to understand in three dimen-
sions how the gravitational wave is changing the distances
between particles.

5. THE WAVEÏS POYNTING VECTOR

The intensity with which the gravitational wave distorts
the lab frame can be characterized by the determinant of the
metric tensor, Det g 4 g, since the volume of the space
changes according to g1@2 For the gravita-(Renton 1987).
tional wave this invariant quantity is equal to

g \ 1 [ h
t
2 , (17)

a result easily obtained in the diagonal frame. In this frame
we have 0, 0), BA \ (0, 0), and CA \ (0, 0, 0),AA \ (h

t
, [h

t
,

resulting in

IA \ AA Â BA \ [h
t
2 n , JA \ KA \ 0 . (18)

The vector IA carries two important parameters of the wave :
its propagation direction (n) and the intensity with which it
changes the volume of the initially Minkowskian space,

(see These characteristics suggest that IA[h
t
2 eq. [17]).

could be related to some kind of Poynting vector for the
gravitational wave. In the lab frame its modulus can be
calculated using and we Ðndequation (17),

IA \ [h
t
2\ h

xx
h
yy

[ h
xy
2 ] h

xx
h
zz

[ h
xz
2 ] h

zz
h
yy

[ h
zy
2

\ I Æ eü
z
] K Æ eü

y
] J Æ eü

x
. (19)

The relationship between IA and the Poynting vector of a
gravitational wave, becomes clear in the monochromaticS

g
,
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FIG. 6.ÈChanges in the shape of the spherical antenna when a gravitational wave emitted by a binary system arrives. (a) When the direction of
propagation is perpendicular to the plane of the orbit, the antennaÏs ellipsoidal shape rotates in time with an angular velocity equal to the orbital angular
velocity ; (b) when the plane of the orbit is parallel to the waveÏs propagation direction, the ellipsoidal shape changes according to a linearly polarized wave.

case. In fact, in a nearly inertial frame of the linearized
theory the energy density of a gravitational wave is given by

T00\ c2
32nG

;
i, j/1

3
Sh5 ijh5 ijT ,

(see et al. ° 35.7), where c is the speed of light,Misner 1973,
G is the gravitational constant, the angle brackets denote an
average over several wavelengths, and the dot implies a time
derivative. In the diagonal frame the gravitational Poynting

vector will thus be

S
g
\ cT00 n \ c3

16nG
Sh5

t
2Tn \ c3

32nG
SB0 A Â A0 AT .

This result is analogous to the one found in the electromag-
netic theory (see et al. ° 5.6.)Misner 1973,

By measuring h during several wavelengths and using
could be easily found for any kind of gravi-equation (19) S

gtational wave. In particular, for a monochromatic signal of
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the type where A is a constant, weh
t_\A cos u(tA[ zA/c),

have

S
g
\ [ c3u2

16nG
SIAT .

6. COMMENTS ON THE WAVEÏS POLARIZATION

The gravitational wave polarization is important from an
astrophysical viewpoint. For example, a binary system of
two stars in circular orbit about one another is expected to
emit circularly polarized waves in the direction perpendicu-
lar to the plane of the orbit and linearly polarized waves in
the direction of the plane of the orbit (Forward 1971 ;

° 9.3). Assuming that in the wave frame aSchutz 1993,
right-handed circularly polarized gravitational wave has
amplitude (A is a constant)

h@\ Ra
Ae~lu(t~z@c)

J2 c
0
0
0
0

0
1
i
0

0
i

[1
0

0
0
0
0
db ,

it is easy to show that for this wave implying thatj5 \u/2,
the diagonal frame (and, consequently, the tidal ellipsoid) is
spinning about the zA axis with angular velocity equal to
u/2.

Therefore, from the behavior of the tidal ellipsoid in time
we are able to obtain information about the total waveÏs
polarization. For the binary system cited above the corre-
sponding changes in the shape of the tidal ellipsoid are
shown in Figure 6.

Although only continuous monitoring of the gravita-
tional wave will provide a more precise determination of the

values of and the value of the modulus of IA calcu-h
`

h
C

,
lated from experiment (see will impose limits oneq. [19])
the possible values of these polarization amplitudes by
means of equation (4).

7. CONCLUSION

Gravitational waves far away from their sources can be
interpreted as very weak disturbances in the Minkowskian
space-time metric. We showed that a massive sphere is dis-
torted into an ellipsoid with one principal axis unchanged,
viz., the one that is parallel to the direction of propagation
of the wave.

Since the spherical detector is expected to measure Ðve
independent components of the h matrix, changes in the
antennaÏs shape can be determined. From them we can
determine the waveÏs polarization and direction.

We have also devised a method for locating astrophysical
sources that involves fewer calculations than in earlier
methods. The geometric approach used yielded an expres-
sion for the Poynting vector of a gravitational wave that is
analogous to expression for the Poynting vector in electro-
magnetic theory.

Our investigation suggests an analogy between the tensor
h and the strain tensor of elastic mechanics. Further studies
are in progress on this issue, which are expected to be pre-
sented in a forthcoming work.

We thank Z. Geng, W. O. Hamilton, and S. M. Merko-
witz for helpful discussions. N. S. M. acknowledges CAPES
(Bras•� lia, Brazil) for their Ðnancial support. C. F. is sup-
ported by a fellowship from CNPq (Bras•� lia, Brazil.) The
research of W. W. J. was supported by NSF grant PHY-
9311731.

REFERENCES

D. G., ed. 1991, The Detection of Gravitational Waves (Cambridge :Blair,
Cambridge Univ. Press)

E., Pizzella, G., & Ronga, F., eds. 1995, Gravitational WaveCoccia,
Experiments (Singapore : World ScientiÐc)

S. V., & Tinto, M. 1988, MNRAS, 234,Dhurandhar, 663
R. L. 1971, Gen. Rel. Grav., 2,Forward, 149
W. W., & Merkowitz, S. 1993, Phys. Rev. Lett., 70,Johnson, 2367

N. S., Johnson, W. W., Frajuca, C., & Aguiar, O. D. 1995,Magalha6 es,
MNRAS, 274, 670

S., & Johnson, W. W. 1995, Phys. Rev. D, 51,Merkowitz, 2546

C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (NewMisner,
York : Freeman)

H., & Ruffini, R. 1994, Gravitation and Spacetime (2d ed. ; NewOhanian,
York : Norton)

J. D. 1987, Applied Elasticity (Chichester : Ellis Horwood),Renton, 116
B. F. 1993, A First Course in General Relativity (Cambridge :Schutz,

Cambridge Univ. Press)
R. V., & Paik, H. J. 1977, in Proc. Internat. Symp. on Experi-Wagoner,

mental Gravitation (Rome: Roma Accademia Nazionale dei Lincei), 257


