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Abstract, A finite-amplitude standing Alfvén wave of circular
polarization can excite MHD parametric instabilities in a low-3
plasma. In the presence of a standing Alfvén pump wave, two
independent gratings associated with the density fiucwiations
are generated. The role of the second grating in the convec-
tive and purely growing instabilities is elucidated. The intense
auroral Alfvén-acoustic events observed in the planetary mag-
netosphere provide good experimental evidence in support of
the Alfvén parametric instabilities.
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Standing Alfvén waves have been detected in the magneto-
spheres of various planets: Earth (Fukunishi 1987; Bloch &
Falthimmar [990; Knudsen et al. 1990), Juptter (Walker &
Kivelson 1981; Glassmeier et al. 1989) and Mercury {Russell
1989). These standing Alfvén waves serve as a key electro-
magnetic coupling mechanism between the planetary magne-
tosphere and ionosphere (Southwood & Hughes 1983) as well
as between the solar wind and the planetary magnetosphere
(Harold & Samson 1992).

In the Earth’s auroral plasima, the phenomenon of Alfvén-
acoustic turbulence has been observed in connection with finite-
amplitude standing and traveling Aifvén waves (Boehm et al.
1990; Knudsen etal. 1990). Theelecuic field strengths of Alfvén
waves may exceed 100 mV/m and the largest waveforms consist
of step functions instead of near-sinusoidal waves. Moreover,
considerable density perturbations and plasma heating are seen
during these avroral events. These observed features of auroral
Alfvén-acoustic turbulence are strongly indicative of nonlinear
mode-mode coupling.

A theory was proposed recently by Chian & Oliveira (1994)
to interpret the intense auroral Alfvén-acoustic events in terms
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of the magnetohydrodynamic (MHD) parametric instabilities
driven by a standing Alfvén wave. According to this theory,
the beating of the pump and induced Alfvén waves in a low-3
plasma produces a penderomotive force which acts on the acous-
tic wave to amplify the density perturbations and cause the large
density cavities observed. It was shown that the Alfvén paramet-
ric instabilities in a low-§ plasma can be either convective or
purely growing. In addition, the MHD parametric instabilities
may lead to dissipation processes, such as the Landau damping
of the induced acoustic waves, whereby the Alfvén wave energy
is converted 1o the plasma thermal energy resulting in signifi-
cant temperature rise and energetic electron precipitation, in
agreement with the features observed during the intense avroral
Alfvén-acoustic events.

Priot to the work of Chian & Oliveira (1994), most stud-
ies of the Alfvén parametric instabilities treated the purnp as a
raveling wave (Galeev & Oraevskii 1963; Sagdeev & Galeev
1969; Lashmore-Davies 1976; Derby 1978; Goldstein 1978;
Sakai & Sonnerup 1983; Terasawa et al. 1986; Brodin & Sten-
flo 1988; Kuo, Whang & Schmidt 1989; Viiias & Goldstein
1991; Jayanti & Hollweg 19934, b). In contrast to the case of a
traveling pump, the theory of parametric processes generated by
a standing pump is much more complex since a larger number
of waves are usually excited. A standing pump wave can be de-
scribed in terms of two counterpropagating waves with the same
amplitude (Chian & Alves 1988; Chian 1991). In the presence
of a pair of oppositely directed Alfvén pumps, two independent
gratings (i.e., low-frequency density modes) may be generated
(Rizzato & Chian 1992; Glanz et al. 1993). In the work of Chian
& Oliveira (1994), for the sake of simplicity only one grating
was considered. In this paper we present a self-consistent the-
ory of the MHD parametric instabilities driven by a circularly
polarized standing Alfvén wave in a low-3 plasma. The aim
is to investigate the effect of the second grating on the MHD
parametric instabilities and to verify the regime of validity of
the one-grating theory.
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Writing the total magnetic field as B = Bg% + by + b,
where BgZ is the vniform background magnetic field, b is
the induced transverse magnetic field and bg is the Alfvén
pump field consisted of twe counterpropagating left(right)-
hand circularly polarized Alfvén waves by = b} + by, with

o(z,8) = 8x(by/2)explithoz — wot)] + c.c. and by (z,t) =
€1 (by /2)expli(—koz — wot)] + c.c., where the polarization
unit veclors €4 = (R £+ z'jr)/\/i denote left(right)-hand cir-
cularly polarized shear Alfvén (fast magnelosonic) waves, re-
spectively. For both polarizations we have, wj = ¢4 k§, where
ca = Bo/(op)/? is the Alfvén velocity. We assume all
waves propagating along the ambient magnetic field. A large-
amplitude Alfvén pump can parametrically couple to fluctua-
tions in the magnetic field b{z, t) and plasma density p(z,t). In
the presence of two oppositely directed traveling Alfvén pump
waves, two independent low-frequency density modes (i.e., grat-
ings), with the same frequency but different wave vectors, can
be induced {c.c. omitted)

(0

where k) = +k and k; = F2ko % k. In this paper, we con-
sider the decay-type wavevector kinematics (by — b + p), as
illustrated in Fig. 1. The wave coupling involves the follow-
ing four wave triplets. Firstly, the forward pump b interacts
with the first grating p (w*, k) to generate the b}-driven Stokes
Aifvén mode b = bY (wy — w*, kg — k). Secondly, the back-
ward pump by interacts with the first grating p}{w*, k) =
pt(—w, —k) to generate the by -driven Stokes Alfvén mode
b = b (wy + w, —ko + k). Thirdly, the b* -mode can also be
generated by the coupling of the backward pump by with the
second grating p>(w*, —2kg + k). Fourthly, the b, can also be
generated by the coupling of the forward pump bf with the
second grating p3(w”, —2ko + k) = po(~w, 2ky — k).

The parametric interaction of the magnetic field and density
fluctuations is described by a set of coupled wave equations de-
rived from the MHD equations (Lashmore-Davies 1976; Gold-
stein 1978; Jayanti & Hollweg 1993a; Chian & Oliveira 1994).
In the present paper, we treat the limit of low-5 (5 = czs/cﬁi &
1, where the acoustic velocity cs = (Py/v00)'/2), which is a
valid assumption for the planetary magnetospheres (Fukunishi
1987). For 8 <« 1, the high-frequency magnetic field Auctu-
ations arc resonant Alfvén waves, whereas the low-frequency
density waves can be either resonant (Re[w] = wg = cgk)
of nonresonanl (wy # ¢gk) acoustic modes. The setf-consistent
theory of the MHD parametric instabilities driven by a circularly
polarized slanding Aifvén wave in a low-3 plasma is governed
by the following Fourier-transformed coupled wave equations
(assuming |bg} > |bL |, [b5])

pz,t) = % explitkyz — wt)} + % explitkaz — w)),

+ wzk: e wp—
Dot = —2£np0(p. b — p3bg ) (2)
—— wikt -
DIos = “m:Tpo(mbo — pabg), | (3)
K2 e e |
DIPI = m(bob-_ + bD b+ ), (4)
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Fig. 1. Coupling diagram for the MHD parametric instabilities involv-
ing two gratings: &; and by are the Alfvén pump waves; b* and b5 are
the Alfvén daughter waves; p; and p; are the two independent acoustic
waves {gratings).

K} ep g
szl = ﬁ(ba b+ +b0 b"-_ )s

(5)
with the dispersion functions given by

DI (! k) = (wo — w*) — (ko — k), (6)
Dy (wy k) = (wp +w)? — ko ~ k)2, Q)
Dy(w, k) =uw? — &K, (8)
Dy(w, ko) = w* — c5k3, 9)

where k2 = ~2kg +k, kI = -k =k —k, wt =w ~ w* and
wy = wo+w. From (2)—(9), we obtain the nonlinear dispersion
retation

A
D\D;DLD = £ (k* Dy — KEDyXD. + DY), (10)
where A = —(wdk?k* |bo|?)/(Bpopoko) and since we are con-
sidering a standing pump we set b} = by = by.

In general, (10) is rather difficult to analyze analytically,
However a good insight of its solutions can be obtained by mak-
ing the resonant approximation for &% and b7, and assuming p»
a nonresonant mode (i.e., D2 # 0). Under these assumptions,
(10) becomes
(w? — EkPw? — 62y = W, (1
where the linear detuning factor § = w4 — wy, wa = —cak? =
caky and W= (1 — rp)A fwa with '

m _ kiD
== ==, 2
o= o = %D (12)
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Fig. 2. Numerical solutions of the nonlinear dispersion relation for the

one-grating theory (x-curves) and two-gratings theory (dotted curves);
A=s10"and f=4 x 107,

The complex parameter v, measures the ratio of the contri-
bution of two gratings p; and p; in the wave interactions. In
the limit v, — 0, (11) recovers the one-grating theory (equa-
tion (7) of Chian & Oliveira 1994). Note that in that paper, W
should be defined as W = Afw4 with A as given above. Sim-
ilar to the one-grating theory, (11) shows that both convective
{wr = Re[w] # 0)and purely growing (wg = 0)instabilities can
be produced. For the convective instabilities, an analysis of (12)
indicates that |r,| < 1 which implies that the second grating
has negligible influence on the wave coupling in this regime and
the one-grating theory is applicable; under these circumstances,
W — Ajwa > 0and § < 0. For the purely growing instabili-
ties W > Oand 6 > 0; in this case 7, increases monotonically
with 6 and lies in the interval 0 < r, < 1 in the unstable region
of the spectrum. Since (11) only differs from the one-grating
theory by a factor of 1 — r, in the expression for the pump in-
tensity W, by comparing with the results of Chian & Oliveira
(1994), we conclude that the effect of the second grating is to
decrease the growth rate and increase the dissipative threshold.
Setting w = 4I" (T" is the growth rate) in (11), we have
(T% + &E*)I? + 6% = 6W, (13)
which shows that the purely growing instabilities occur in the
interval
woA

0<da—=(I-r,),

35 (14)

where A = b3/BZ. A comparison of (14} with the one-grating
theory indicates that the corresponding unstable bandwidth is
reduced by a factor of 1 — r,, due to the influence of the second
grating.

We now discuss the general behavior of (10), with the reso-
nant approximation for b* and b, but without the nonrescnant
restriction for the second grating p, imposed above. Introduc-
ing the normalization w — w/fwy, § — §fug, k — kfky and

Fig. 3. The plot of the maximum growih rate T, 0. 25 a function of 8
and A in the convective regime (6 < 0),

ky — ki /kg, (10) then becomes

W = AR — AR ~ 60 = it - o)
~k3w* - k7).

Numerical solutions of (15), using the values of parameters ap-
propriate for the planetary magnetospheres, are shown in Figs
2-4. Figure 2 compares the solutions of the one-grating the-
ory (x-curves) and the two-gratings theory (dotted curves) for
A =10"% and 8 = 4 x 10~*. Figure 2(a) shows that Re[w] is
essentially the same for both theories. It can be seen that, for
small &’s the second grating p, has small effect on the purely
growing (6 > 0) instability, which is confirmed by the param-
eter |r,| being very small (|r,| < 1) in this region. However,
for larger 6’s, |r,| increases monotonically with §, reaching its
maximum value at the upper boundary §, of the unstable region.
Figure 2(b) shows that, due to the second grating, the unstable
bandwidth of the purely growing instability is reduced (its up-
per boundary moves from the upper limit 6y, of the one-grating
theory, to 42) in agreement with (14). Figure 2(c) indicates that
the second grating has small influence on the convective insta-
bility (§ < 0) since |r,| < 1 in the entire unstable convective
regime. The numerical solutions demonstrate that the second
grating lowers the growth rate throughout the unstable regions,
as anticipated in the earlier discussion. It is important to point
out that the second grating introduces a new convective unsta-
ble region, to the right of the purely growing region (§ > §3),
which enlarges the overall bandwidth of the instabilities as seen
in Fig. 2b. An overview of the variation of the maximum growth
rate 'y g, as a function of the pump intensity A and plasma 3
is plotted in Figs. 3 and 4. In both convective and purely grow-
ing instabilities, for a given @, T eqex increases as A increases;
whereas for a given A, I'y, ., decreases as 3 increases.

The self-consistent theery of the MHD parametric instabil-
ities driven by a standing Alfvén wave presented in this paper
confirms the existence of the convective and purely growing
instabilities previously identified by the one-grating theory of

(15)
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Fig. 4. The plot of the maximum growth rate Iy, a3 a function of 3
and A in the purely growing regime (§ > 0).

Chian & Oliveira (1994). The second grating is shown to have
the following effects on the instabilities: (1) decrease of the
growth rate, (2) increase of the dissipative threshold, (3) reduc-
tion of the unstable bandwidth of the purely growing instability,
and (4) addition of a second convective unstable region. The
one-grating theory is shown to give a fairly accurate description
of the convective instability, for which the role of the second
grating is not important. The results of this paper render further
support to the theoretical interpretation of the intense auroral
Alfvén-acoustic events proposed by Chian & Oliveira (1994).
The observed features of the auroral Alfvén-acoustic turbulence,
as mentioned in the introduction, are in good agreement with
the characteristics of the Alfvén parametric instabilities. To con-
clude, we wish 1o remark that there is increasing observational
and theoretical evidence that the auroral region of the planetary
magnetosphere is very rich in nonlinear mode-mode coupling
processes such as discussed here and in other related works
{Chian, Lopes and Alves 1994a, b; Lopes & Chian 1995). Hence,
the auroral plasma has proved to be an ideal laboratory for un-
derstanding the intriguing complexity of plasma turbulence.
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