
 - 1 - 

 
 
 
 

A STUDY OF THE EFFECTS OF JUPITER IN SPACE TRAJECTORIES 
 
 
 
 

Antonio Fernando Bertachini de Almeida Prado 
Instituto Nacional de Pesquisas Espaciais –  São José dos Campos-SP-12227-010 

Phone (012) 345-6201 – Fax (012) 3456226 – E-mail: prado@dem.inpe.br 
Roger A. Broucke 

Department of Aerospace Eng. and Eng. Mechanics, University of Texas at Austin.  
 
 
 
 

ABSTRACT 
In the present paper we study and classify the Swing-by maneuvers that use the planet 
Jupiter as the body for the close approach. The goal is to simulate a large variety of 
initial conditions for those orbits and classify them according to the effects caused by 
the close approach with Jupiter in the orbit of the spacecraft. The well-known planar 
restricted circular three-body problem is used as the mathematical model. The equations 
are regularized (using Lemaître's regularization), so it is possible to avoid the numerical 
problems that come from the close approach with Jupiter. After that, the velocity 
increment required to start or to stop the spacecraft at the Earth and the flight path angle 
at the meeting point are calculated. A section is also written to compare the results 
obtained with the dynamics given by the restricted problem and the “patched-conics” 
approximation. 
Key Words: Astrodynamics, Restricted Problem, Swing-By, Space Trajectories. 

 
INTRODUCTION 

The Swing-By maneuver is a technique used in several missions to reduce fuel 
consumption like in Weinstein, 1992; Swenson, 1992; Farquhar and Dunham, 1981; 
Minovich, 1961; Dowling et. al., 1991; Flandro, 1966; Farquhar et. al. 1985; Dunham 
and Davis, 1985; Prado, 1996, 1997 and 1999; Prado and Broucke, 1995a and 1995b; 
Broucke and Prado, 1993. 
Among the several sets of initial conditions that can be used to identify uniquely one 
trajectory, the same one used in the paper written by Broucke (1988) is used here. It is 
composed by the following variables: 1) J, the Jacobian constant of the spacecraft (an 
integral of the restricted three-body problem); 2) The angle ψ, that is defined as the 
angle between the line M1-M2 (Sun-Jupiter) and the direction of the periapsis of the 
trajectory of the spacecraft around Jupiter; 3) Rp, the distance from the spacecraft to the 
center of Jupiter in the moment of the closest approach with Jupiter (periapsis distance). 
Note that the Jacobian constant is essentially equivalent to the velocity at periapsis or 
the hyperbolic excess velocity V∞, since they can be related by one single expression. 
For a large number of values of these three variables, the equations of motion are 
integrated numerically forward and backward in time, until the spacecraft is at a 
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distance that can be considered far enough from Jupiter, such that the Jupiter's effect is 
neglected and the system formed by the Sun and the spacecraft can be considered a two-
body system. At these two points, two-body celestial mechanics formulas are valid for 
the computation of the energy and the angular momentum before and after the close 
approach. Those quantities are used to identify up to sixteen classes of orbits, according 
to the changes in the energy and angular momentum caused by the close encounter.  
It is especially checked which ones of those orbits have a passage near the Earth in the 
outbound (starting at the Earth) and in the inbound (starting at Jupiter) trajectories. This 
is very important, because only those orbits have a potential for practical application in 
transfers from/to the Earth. The results are shown in letter-plots, where one letter 
describing the effects of the Swing-by is plotted in a two-dimensional graph that has in 
the horizontal axis the angle ψ (the angle between the periapsis vector and the Sun-
Jupiter line) and in the vertical axis the Jacobian constant of the spacecraft. There is one 
plot for each value of the parameter Rp. After that, the velocity change required to start 
or to stop the spacecraft at the Earth and the flight path angle at the meeting point are 
calculated. This paper has to be considered as a continuation of Broucke (1988); Prado 
and Broucke (1993) and Prado (1999).  
 

DEFINITION OF THE PROBLEM 
To solve the problem described above, it is assumed the existence of three bodies: the 
Sun, the planet Jupiter and a third particle of negligible mass (the spacecraft). It is also 
assumed that the total system (Sun + Jupiter + spacecraft) satisfies the hypothesis of the 
planar restricted circular three-body problem: all the bodies are point masses; the Sun 
and Jupiter are in circular orbits around their mutual center of mass.  
With these assumptions, the problem consists in studying the motion of the spacecraft 
near the close encounter with the planet Jupiter. In particular, the energy and the angular 
momentum of the spacecraft before and after this close encounter are calculated, to 
detect the changes in the trajectory during the close approach. The orbits are classified 
in four categories: elliptic direct (negative energy and positive angular momentum), 
elliptic retrograde (negative energy and angular momentum), hyperbolic direct (positive 
energy and angular momentum) and hyperbolic retrograde (positive energy and negative 
angular momentum). The problem now is to identify the category of the orbit of the 
spacecraft before and after the close encounter with Jupiter. Fig. 1 explains the 
geometry involved in the close encounter.  
The spacecraft leaves the point A, crosses the horizontal axis (the line between the Sun 
and the planet Jupiter), passes by the point P (the periapsis of the trajectory of the 
spacecraft around Jupiter) and goes to the point B. Points A and B are chosen in a such 
way that the influence of Jupiter at those points are neglected and, consequently, the 
energy is constant after B and before A. Two of the initial conditions are clearly 
identified in this figure: the periapsis distance Rp (distance measured between the point 
P and the center of Jupiter) and the angle ψ, measured from the horizontal axis in the 
counter-clock-wise direction. The distance Rp is not to scale, to make the figure easier 
to understand. The third initial condition is the Jacobian constant J of the spacecraft. 
The second part of the problem is to identify if one particular trajectory passes near the 
Earth in one or in both directions of time. For that purpose, the numerical integration is 
extended in each direction of time until one of the following events occur: i) The 
spacecraft reaches a position inside the Earth's orbit around the Sun. Then it is assumed 
that the spacecraft crosses the Earth's path in space and, with proper timing conditions, a 
close encounter with the Earth is possible; ii) The spacecraft goes to far from the Solar 
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System without crossing the Earth's path. Then it is assumed that it does not come back 
again and a close encounter with the Earth is not possible; iii) The spacecraft remains 
close to the Solar System, but too much time has been passed without a crossing with 
the Earth's path. Then it is assumed that a useful close encounter with the Earth is not 
likely to occur. 
 

SUN JUPITER X

Y Rotating System

A
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Rp
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ψ

 
Fig. 1 - Geometry of the Close Encounter 

 
 

MATHEMATICAL MODEL AND ALGORITHM 
The equations of motion for the spacecraft are assumed to be the ones valid for the well-
known planar restricted circular three-body problem: 
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The usual standard canonical system of units is used. It is also necessary to have 
equations to calculate the energy and the angular momentum of the spacecraft. It can be 
done with the formulas: 
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With those equations, it is possible build a numerical algorithm to solve the problem. It 
has the following steps: 

i) Arbitrary values for the three parameters: Rp, J, ψ are given; 
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ii) With these values the initial conditions in the rotating system are computed. The 
initial position is ( )µψ −+= 1)cos(RX pi , )(sinRY pi ψ=  and the initial 

velocity is )(VsinVXi ψ−= , )cos(VVYi ψ+= , where V = 22 yx && + ; 
iii) With these initial conditions, the equations of motion are integrated forward in 

time until the distance between the planet Jupiter and the spacecraft is bigger than a 
specified distance limit dJS. At this point the numerical integration is stopped and the 
energy (E+) and the angular momentum (C+) after the encounter with Jupiter are 
calculated; 

iv) Then the initial conditions are returned to the point P, and the equations of motion 
are integrated backward in time, until the distance dJS is reached again. Then the energy 
(E-) and the angular momentum (C-) before the encounter with Jupiter are obtained; 

v) With those results, all the information required to calculate the change in energy 
(E+ - E-) and angular momentum (C+ - C-) due to the close approach with Jupiter are 
available; 

vi) Now, the numerical integration is extended beyond the points A and B and it is 
verified if the spacecraft has none, one or two possible close encounters with the Earth, 
by using the conditions described in the previous section; 
With this algorithm available, the given initial conditions (values for Rp, J and ψ) can 
be varied in any desired range to study the effects of the close approach with Jupiter in 
the orbit of the spacecraft. 
 

RESULTS 
The results consist of plots that show the change of the orbit of the spacecraft due to the 
close encounter with the planet Jupiter, for a large range of given initial conditions. First 
of all it is necessary to classify all the close encounters between Jupiter and the 
spacecraft, according to the change obtained in the orbit of the spacecraft. The letters A 
to P are used for this classification, according to the rules showed in Table 1.  

 
 Table 1 - Rules for the assignment of letters to orbits 

After:
Before: 

Direct 
Ellipse 

Retrograde 
Ellipse  

Direct 
Hyperbola 

Retrograde 
Hyperbola 

Direct Ellipse A E I M 
Retrograde Ellipse  B F J N 
Direct Hyperbola C G K O 
Retrog. Hyperbola D H L P 

 
To indicate which ones of those orbits have possibility of one or two close encounters 
with the Earth, the following conventions are used: i) Letters in capital case for orbits 
that do not cross the Earth's path around the Sun and have no possibility of a close 
encounter with the Earth; ii) Letters in lower case for orbits that cross the Earth's path 
around the Sun in only one direction of time. These orbits can be used to send a 
spacecraft from the Earth to the Jupiter or somewhere else using a Swing-by in Jupiter; 
iii) Letters in bold lower case for orbits that cross the Earth's path around the Sun in 
both directions of time. These orbits can be used to send a spacecraft from the Earth to 
the Jupiter; from Jupiter to the Earth; or from the Earth to the Jupiter and back to the 
Earth, without additional maneuvers, if a proper timing condition can be found. 
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With those rules defined, the results consist of assigning one of those letters to a 
position in a two-dimensional diagram that has the parameter ψ in the horizontal axis 
and the parameter J in the vertical axis. There is one plot for each desired value of the 
periapsis distance. The range for the variables used here is ψ (180° ≤ ψ ≤ 360°) and J (-
1.35 ≤ J ≤ 1.55). They are very adequate in showing the main characteristic of the plots. 
The interval 180° ≤ ψ ≤ 360° is used, and not the full range (0° ≤ ψ ≤ 360°), because 
there is a symmetry between the chosen interval and the complementary interval 0° ≤ ψ 
≤ 180°. This symmetry comes from the fact that an  orbit  with  an  angle  ψ  =  θ  is  
different  from  an  orbit  with  an  angle ψ = θ + 180° only by a time reversal. It means 
that there is a correspondence between these two intervals. This correspondence is: 
I⇔C, J⇔G, L⇔O, B⇔E, N⇔H, M⇔D. The orbits A, F, K and P are unchanged. 
To decide the best range of values for the third parameter (periapsis distance) several 
exploratory simulations have to be made. It was noticed that, for values greater than 50 
Jupiter's radius, the effects of the Swing-by are very small, with the exception of very 
few special cases. Then, it is decided to make plots for the values: 1.1, 1.5, 2.0, 5.0, 10.0 
and 50.0 Jupiter's radius. They span a useful range of values and they are able to show 
very well the evolution of the effects. Fig. 2 shows a series of diagrams covering the 
desired range for all the three variables.  
To have a better understanding of the process, some of the trajectories are plotted in the 
rotating and fixed frame in Fig. 3. The orbits of type N, j and b are chosen as examples. 
Table 2 gives some of the numerical data for those trajectories, including the initial 
conditions. The numerical values for the limits involved in the results available in this 
research (in canonical units) are: Distance from Jupiter to the points A and B (dJS): 0.5; 
Distance limit for the spacecraft to be considered too far from the Solar System: 2.0; 
Time limit to stop the numerical integration when searching for a passage close to the 
Earth: 10.0. Trajectories j and b cross the Earth’s orbit making an angle close to 90 
degrees, so they are not very useful for practical applications due to the high increment 
velocity required by the maneuver. They have to be considered just as examples of the 
trajectories available. The results of this paper makes a survey of a large range of 
trajectories, including the ones with the lowest possible increments of velocity and 
flight path angle close to zero. 
The trajectories that have only one encounter with the Earth are studied in more detail, 
to see if they encounter the Earth before or after the Swing-by with Jupiter. The curious 
result is that only trajectories that encounter with the Earth before the Swing-by with 
Jupiter are found. It means that the only type of trajectory that encounter the Earth after 
the Swing-by found in this research is the one that has a double-crossing (before and 
after the Swing-by) with the Earth's path around the Sun. 
Fig. 4 shows the variation in energy obtained using the restricted problem model for the 
case Rp = 1.1 Rj. It is clear the symmetry around the line of angle of approach 180°. 
 

THE EXCESS VELOCITIES AND THE FLIGHT PATH ANGLE 
After finding all those orbits, it is interesting to know the magnitudes of the impulses 
(∆V) required to start the outbound trajectories at the Earth (to go to Jupiter), or to stop 
the inbound trajectories at the Earth (coming from Jupiter). It is assumed that the 
impulse required is the difference between the inertial velocities of the Earth and the 
spacecraft. It means that the spacecraft is assumed to be traveling attached to the Earth 
(they both have the same position and velocity at a given time), but it is free of the 
attraction of the Earth's gravity field. In other words, the impulse required to escape the 
Earth is not included in the results shown here. Another quantity calculated is the flight 
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path angle at the Earth, which is defined as the angle between the inertial velocities of 
the spacecraft and the Earth at the point that their orbits intersect. Figs. 5 to 7 show the 
results. All the plots have the angle of approach ψ (in degrees) in the horizontal axis and 
the Jacobian Constant in the vertical axis. They are: i) The flight path angle (in degrees) 
for the outbound trajectories; ii) The outcoming excess velocity (in canonical units) to 
start the outbound trajectories; iii) The flight path angle (in degrees) for the inbound 
trajectories; iv) The incoming excess velocity (in canonical units) to stop the inbound 
trajectories; v) The addiction of the two excess velocities, also in canonical units. From 
those figures it is easy to find the regions with minimum excess velocities. It 
corresponds, as expected, to the regions with flight path angle close to zero. 
 

Table 2 - Numerical data for the trajectories plotted in Fig. 3 
Orbit J Rp ψ E- E+ ∆E C- C+ ∆C 

N 0.70 10RJ 216 -0.2021 0.2706 0.4727 -0.9021 -0.4294 0.4727 
j 0.00 10RJ 237 -0.2872 0.4631 0.7503 -0.2872 0.4631 0.7503 
b -0.85 10RJ 192 -0.9573 -0.7450 0.2123 -0.1073 0.1050 0.2123 

 

 
 

Fig. 2 - Results for Rp = 1.1, 1.5, 2.0, 5.0, 10.0, 50.0. 
 

Rp = 1.1 Rj Rp = 1.5 Rj 
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Fig. 2 (Cont.) - Results for Rp = 1.1, 1.5, 2.0, 5.0, 10.0, 50.0. 

Rp = 2.0 Rj 

Rp = 10.0 Rj 

Rp = 5.0 Rj 

Rp = 50.0 Rj 
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Fig. 3 - Examples of Trajectories in the Rotating and Fixed Reference Frame. 
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Fig. 4 –  Variation in Energy Using the Restricted Problem Model for Rp = 1.1 Rj. 
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Fig. 5 – Results for the case Rp = 1.1 RJ. 
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Fig. 6 - Results for the case Rp = 5.0 RJ. 
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Fig. 6 (cont.) - Results for the case Rp = 5.0 RJ. 
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Fig. 6 (cont.) - Results for the case Rp = 5.0 RJ. 
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Fig. 7 - Results for the case Rp = 50.0 RJ. 
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Fig. 7 (cont.) - Results for the case Rp = 50.0 RJ. 
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Fig. 7 (cont.) - Results for the case Rp = 50.0 RJ. 

 
 

THE “PATCHED-CONICS”  APPROACH 
 
In this section a comparison between the results obtained using the restricted problem 
and the “patched-conics” approximation is made. To perform this task, the following 
procedure is used: 

i) Using the values of the energy (E-) and angular momentum (C-) before the close 
approach obtained by the numerical integration of the restricted problem, the semi-
major axis (a) and the eccentricity (e) of the keplerian orbit before the passage is 

obtained by 
E2

a
µ−=  and 

a
C

1e
2

µ
−= . Those values are assumed to be the initial 

values for both maneuvers, the one using the “patched-conics” model and the one using 
the restricted model; 

ii) Starting from this orbit, the variation in energy and angular momentum given by 
the “patched-conics” model is obtained by: 

 ( )Ψ

µ

∆ω∆ sin
VR

1

1
VV2CE

2

2
p

2





















+

−==
∞

∞ , where ω is the angular velocity of 

the two primaries, V2 is the velocity of the secondary body in the inertial frame and µ2 is 
the gravitational parameter of the secondary body (µ2 = Gm2, where G is the universal 
gravitational constant); 

iii) Then, the energy after the passage is obtained by E+PC = E- + ∆E, as well as the 
angular momentum C+PC = C- + ∆C; 
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iv) The semi-major axis and the eccentricity of the keplerian orbit that follows the 
passage using the “patched-conics” model is obtained, as well as the same quantities 

based in the restricted problem, using the equations 
E2

a
µ−=  and 

a
C

1e
2

µ
−= ; 

v) Finally the variations of all the variables involved are calculated. 

Figs. 8 to 10 show some of the results obtained: the difference in the variation in energy, 
between the two models, for the cases where Rp = 1.1, 5.0, 50.0 Rj, respectively. The 
difference between the two models is defined as (Variation in energy calculated by the 
“patched-conics” model) - (Variation in energy calculated by the restricted problem), so 
positive values means that the “patched-conics” model gives a higher value for the 
variation in energy. The velocity of approach is used as an independent variable to 
replace the Jacobian constant, because this constant does not exist in the “patched-
conics” approximation. The results showed that the differences between the two models: 
- decrease in magnitude when the periapsis distance increase, what is expected since the 
general effects of the swing-by decrease with this variable; 
- the most negative values for this variable are concentrated close to Ψ = 270° for the 
smallest values of the velocity of approach, so the “patched-conics” model 
underestimated the variation in energy close to the maximum effect of the Swing-By; 
- the most positive values for this variable are concentrated in the interval 1.5 < ∞V  < 
2.0 and 210° < Ψ < 240°; 
- the typical values for the energy variation have an order of magnitude 1.0, so the 
maximum differences between the two models (about 0.05) are in the order of 5 %. A 
detailed plot with the differences expressed in percentage is not shown, because values 
of the variation in energy close to zero generate values too large for the percentage 
error; 
- the influence of those differences in the semi-major axis, eccentricity and angular 
momentum before and after the passage were also studied. The detailed results are not 
shown here due to the limitation of space, but they are of the same order of magnitude, 

except for situations where the energy is small. In those cases, since 
E2

a
µ−= , small 

alterations of the variation in energy causes a large variation in the semi-major axis, 
eccentricity and angular momentum of the orbits involved and in the excess velocity 
and flight path angle in the crossing points with the Earth’s orbit. A detailed study for 
the case Rp = 1.1 Rj showed that trajectories with energy before or after the passage 
small enough to cause an error in the semi-major axis greater than 0.1 canonical units 
(10% of the Sun-Jupiter distance) occur in 5% of the trajectories calculated. There are 
also trajectories with errors in semi-major axis of several hundreds of canonical units. In 
those situations, the use of more complex models, like the one shown here is justified. 
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Fig. 8 –  Difference of the variation in energy between the two models for Rp = 1.1 Rj. 
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Fig. 9 –  Difference of the variation in energy between the two models for Rp = 5.0 Rj. 
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Fig. 10 – Difference of the variation in energy between the two models for Rp = 50.0 Rj. 

 
CONCLUSIONS 

A numerical algorithm to calculate the effects of a close approach with Jupiter in the 
trajectory of a spacecraft is developed. Many trajectories are classified and some of 
them are shown in detail. It is also shown which ones of those trajectories have a 
potential use for missions involving departures from the Earth or returns to the Earth. 
The theoretical prediction that for 0° ≤ ψ ≤ 180° the spacecraft losses energy and for 
180° ≤ ψ ≤ 360° the spacecraft gains energy is confirmed. 
The outgoing and the incoming excess velocities of the spacecraft with respect to the 
Earth involved in those transfers are calculated, as well as the flight path angles at the 
point where the orbits of the spacecraft and the Earth intersect. Those results are 
sufficient to identify regions of minimum excess velocities for practical maneuvers. 
After that, a procedure was developed to study the differences in the effects of the close 
approach predicted by the two models studied for the dynamics. The results showed that 
there is a good agreement of the results in the majority of the situations, but there are 
large discrepancies when the energy before or after the passage is small. In about 5% of 
the trajectories simulated the differences in semi-major axis predicted by the two 
models were larger than 10% of the Sun-Jupiter distance. Trajectories with differences 
in the order of several hundreds of Sun-Jupiter distances were also encountered. Those 
trajectories are the main reason to use more complex models to study this problem. In 
terms of energy change, the largest discrepancies obtained were about 5%. 
A good strategy is to use the “patched-conics” approximation for a first study, including 
the study of timing conditions for the encounter with the Earth, and after that to use the 
restricted problem model to improve the accuracy of the results and verify if a situation 
of small energy does occur. 
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