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ABSTRACT
The temporal evolution of Alfve� n intermittent turbulence in cosmic plasmas is studied. The chaotic

dynamics of a driven-dissipative Alfve� n system is determined by numerically solving the derivative non-
linear Schro� dinger equation in the low-dimensional limit. Two types of Alfve� n intermittent turbulence
are identiÐed : Pomeau-Manneville intermittency and crisis-induced intermittency. The signiÐcance of this
theory for Alfve� nic intermittent turbulence observed in the solar wind is discussed.
Subject headings : chaos È MHD È plasmas È solar wind È turbulence

1. INTRODUCTION

Alfve� n waves are of fundamental importance in astro-
physical and space plasmas (see et al. for aChian 1995
collection of review papers). For example, Alfve� n waves
may be a major mechanism for the production of stellar
winds and extragalactic jets, and they may contribute to the
formation of quasar clouds Pulsar(Jatenco-Pereira 1995).
microstructures can evolve from nonlinear modulation of
Alfve� n waves in the pulsar magnetosphere (Chian 1992).
The dissipation of Alfve� n and magnetohydrodynamic
(MHD) turbulence might also be responsible for interstellar
scintillation of radio sources (Spangler 1991).

In space plasmas, gas models of Alfve� n solitons have been
proposed to describe MHD turbulence in the solar wind

Shah, & Schwartz Dawson &(Ovenden, 1983 ; Ponce
Fonta� n Turbulent heating of the solar corona by1990).
nonlinear Alfve� n waves has been studied through numerical
simulations by Nocera, & Vulpiani MHDPettini, (1985).
parametric instabilities induced by a large-amplitude stand-
ing Alfve� n waves in the planetary magnetosphere were
investigated by Chian & Oliveira and(1994, 1996) Oliveira
& Chian Alfve� n waves can be nonlinearly generated(1996).
by Langmuir waves in auroral plasmas and solar active
regions Lopes, & Alves et al.(Chian, 1994 ; Chian 1997).

& Tu showed that e†ective heating of theMarsch (1997)
solar corona and acceleration of the solar wind are achieved
by high-frequency Alfve� n waves.

A proper understanding of the nonlinear dynamical evo-
lution of Alfve� n waves is essential for most studies of Alfve� n
waves in astrophysical and space plasmas. In particular, the
question of how nonlinear Alfve� n waves evolve into Alfve� n
turbulence must be addressed. Recently, signiÐcant progress
in this subject has been achieved through theoretical
analysis of chaos in Alfve� n systems. & Papado-Ghosh
poulos studied the onset of Alfve� n turbulence via(1987)
chaos by solving numerically a driven-dissipative derivative
nonlinear Schro� dinger equation using the spectral method.
They found that the onset of turbulence occurs via two
di†erent routes, depending on the number of modes in the
system: in the reduced (7 wave) system it occurs via an
inÐnite series of period-doubling bifurcations to a stranger
attractor, whereas in the complete (32 wave) system it
occurs via the Ruelle-Taken route, involving the destruction
of a two-dimensional toroidal surface. et al.Hada (1990)

1 Departamento de Fi� sica, Universidad de Concepcio� n, Concepcio� n,
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investigated the chaos in driven Hamiltonian (conservative)
and dissipative Alfve� n systems. By assuming stationary
wave solutions, they reduced the problem to 3 degrees of
freedom and showed that this simpliÐed model is capable of
reproducing the chaotic properties of the more complicated
high-dimensional model of & PapadopoulosGhosh (1987).
Buti applied the formalism of et al.(1992, 1997) Hada (1990)
to study Alfve� n chaos in multispecies and dusty plasmas. He
showed that heavier ions tend to reduce the chaos, and even
a small fraction of dust grains can eliminate the chaos in
Alfve� n systems that are chaotic in the absence of dust par-
ticles. Rizzato, & Chian used the spectralOliveira, (1997)
method to solve a set of nonlinearly coupled MHD wave
equations. Their results show that the degree of Alfve� n
chaos is a function of the wave amplitude, plasma b, and the
dispersive parameter.

The aim of this paper is to apply the model of et al.Hada
to investigate the phenomenon of Alfve� n intermittent(1990)

turbulence driven by temporal chaos. We point out, for the
Ðrst time, that the onset of Alfve� n turbulence can occur via
two new routes to chaos : Pomeau-Manneville inter-
mittency and crisis-induced intermittency. The nature of
these two types of Alfve� n chaos will be analyzed in detail by
the Poincare� methods, and we will discuss the application of
this theory to understanding the observation &(Marsch
Liu & Marsch of Alfve� nic intermittent turb-1993 ; Tu 1995)
ulence in the solar wind. In particular, the fractal character-
istics of either type of Alfve� n intermittency will be
determined by calculating the fractal dimension of the
respective strange attractor. It is expected that the new
concept of Alfve� n chaos treated in this paper will be beneÐ-
cial to the study of MHD turbulence in the cosmos.

2. THEORY

The spatiotemporal dynamics of a nonlinear Alfve� n wave
propagating along an ambient magnetic Ðeld in the x-
direction is governed by the derivative nonlinear Schro� d-
inger equation & Papadopoulos(MjÔlhus 1976 ; Ghosh

et al. et al. Dawson1987 ; Kennel 1988 ; Hada 1990 ; Ponce
& Fonta� n 1990)
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(where is the acoustic velocity),c
S
2/cA2 c

S
\ (P0/co0)1@2k \ 1/2, and g is the dissipative scale length. The external

driving force S(b, x, t) \ A exp (ik/) is a monochromatic
circularly polarized wave with a wave phase /\ x [ V t,
where V is a constant wave velocity. By deÐning k to be
real, we consider the driver to be nongrowing and
undamped. Note that can be extended toequation (1)
include kinetic e†ects of resonant particles as well as to
three spatial dimensions & Wyller(MjÔlhus 1986, 1988 ;
Spangler 1990).

Two di†erent approaches can be adopted to analyze the
nonlinear evolution of the derivative nonlinear Schro� dinger

First, one can treat it as a system with highequation (1).
degrees of freedom and solve this partial di†erential equa-
tion numerically using the spectral method & Papa-(Ghosh
dopoulos Oliveira, Rizzato, & Chian1987 ; de 1995 ; Chian

et al. This approach provides informa-1997 ; Oliveira 1997).
tion on the spatiotemporal dynamics of a high-dimensional
system. Alternatively, one can reduce to aequation (1)
system of ordinary di†erential equations and obtain infor-
mation on the temporal dynamics of a low-dimensional
system et al. Lopes, & Abalde(Hada 1990 ; Chian, 1996 ;

Lopes, & Chian In this paper,Chian 1997 ; Rizzato, 1997).
we adopt the second approach.

For stationary waves with b \ b(/), the Ðrst integral of
yields a set of ordinary di†erential equationsequation (1)

et al.(Hada 1990) :
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where the overdot denotes a derivative with respect to the
temporal variable (where is an inte-q\ ab02//k, b ] b/b0 b0gration constant), h \ )/, )\kk/(ab02), a \ A/(ab02 k),
l\ g/k, and a [ 0 (i.e., b \ 1) isj \ [1 ] V /(ab02),assumed. In the absence of a driver (a \ 0), the dimension of
equations reduces to 2, and all solutions are regular,(2)È(5)
representing periodic Alfve� n waves, Alfve� n solitons, and
Alfve� n shocks, respectively et al. et al.(Kennel 1988 ; Hada

In the presence of a driver the dimension of1990). (a D 0),
equations increases to 3, making possible chaotic(2)È(5)
solutions et al.(Ott 1993 ; Hada 1990).

A bifurcation diagram for nonlinear Alfve� n waves can be
constructed from equations by varying the driver(2)È(5)
amplitude (a), while keeping other control parameters Ðxed
()\ [1, l\ 0.02, and j \ 1/4). A left-hand driver is
chosen. illustrates a small region of the numericallyFigure 1
computed bifurcation diagram, which elucidates nonlinear
dynamical features of the system. Two types of temporal
Alfve� n intermittency can be identiÐed in Pomeau-Figure 1 :
Manneville intermittency & Pomeau and(Manneville 1979)
crisis-induced intermittency & Ott A(Grebogi 1983).
chaotic region terminates at a D 0.32138. At that point, the
Pomeau-Manneville intermittency sets in, and the solutions
become periodic, with a period of 3. Beyond a certain driver
amplitude (a D 0.32692), a period-doubling cascade occurs.

FIG. 1.ÈBifurcation diagram for )\ [1, l\ 0.02, j \ 1/4, andb
z
(a)

a [ 0.

This process continues until band merging appears, which
leads to the formation of a chaotic continuum at
a D 0.330249 and the onset of the crisis-induced inter-
mittency. The full bifurcation diagram contains many other
regions of intermittency similar to that in indicat-Figure 1,
ing that Alfve� n intermittent turbulence can readily appear
in nature.

The Pomeau-Manneville intermittency is characterized
by time series containing nearly periodic laminar phases
that are randomly interrupted by chaotic (irregular) bursts

& Pomeau as exempliÐed by(Manneville 1979 ; Ott 1993),
This example shows the transition from chaos toFigure 2a.

period 3 in and belongs to the intermittency ofFigure 1,
type I. Type I Pomeau-Manneville intermittency occurs
when a dynamical system is close to a tangent (saddle-node)
bifurcation arising from the coalescence of pairs of stable
and unstable orbits. At the onset of the period 3 window
(a D 0.321382105), the diagonal line is(b

z
)
n`3\ (b

z
)
ntangent to three points of the curve in the third-order return

map. For values of the driver amplitude just below the onset
of the period 3 window, the third-order return map is no
longer tangent to the diagonal line, but remains close to it,
resulting in laminar regions (no loss of correlations) that are
interrupted by random turbulent bursts (loss of
correlations). A better way to see these intermittent features
is to plot the time series in terms of the driver cycles, as done
in corresponding to the same interval of the timeFigure 2b,
series of The power spectrum for the times seriesFigure 2a.
of Figures and is shown in An example of2a 2b Figure 2c.
strange attractor (Poincare� map) of the Pomeau-
Manneville intermittency is shown in Figure 3.

The crisis-induced intermittency is characterized by time
series containing weakly chaotic laminar phases that are
randomly interrupted by strongly chaotic bursts (Grebogi
& Ott as depicted in The corre-1983 ; Ott 1993), Figure 4a.
sponding time series plotted in terms of the driver cycle is
given in This example demonstrates how threeFigure 4b.
separate narrow chaotic bands merge to form the single
wide chaotic continuum in belonging to a type ofFigure 1,
chaotic transition called interior crisis. The interior crisis
occurs when a dynamical system is near a crisis point
(a D 0.330249), where the unstable periodic orbits collide
with chaotic attractors. The power spectrum for the times
series of Figures and is shown in4a 4b Figure 4c. Figure 5a
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FIG. 2.ÈExample of Pomeau-Manneville intermittent turbulence for
a \ 0.3213795 for (a) (b) variation of with driver cycles, and (c)b

z
(q), b

zas a function of f.o b
z
o2

shows an example of a weak strange attractor just below the
crisis point ; shows a strong strange attractor justFigure 5b
beyond the crisis point. The three separate regions of the
weak strange attractor, marked by the three arrows in

correspond to the three separate narrow chaoticFigure 5a,
bands of mentioned above. In the twoFigure 1 Figure 5c,
strange attractors of Figures and are superposed.5a 5b

FIG. 3.ÈExample of a strange attractor of the Pomeau-Manneville
intermittent turbulence for a \ 0.3213795.

Note that for the sake of clarity, the attractor of Figure 5a
has been artiÐcially darkened in It can be seenFigure 5c.
from Figures and that the crisis-induced intermittency4b 5c
consists of long intervals (laminar phases) of chaotic motion
near the precrisis attracting loci, broken by brief excursion
into extended regions (turbulent bursts) of the postcrisis
attractor added by the crisis.

3. DISCUSSION

Interplanetary MHD Ñuctuations are found in two dis-
tinct states. In low-speed streams, the Ñuctuations are typi-
cally non-Alfve� nic, showing features of standard turbulence
in the sense that waves with a deÐnite sense of propagation
are hard to identify and the Ñuctuation spectra obey a Kol-
mogorov power law & Marsch & Pruneti(Tu 1995 ; Velli

On the other hand, in high-speed streams originating1997).
from coronal holes, the Ñuctuations are dominated by large-
amplitude Alfve� n waves propagating freely away from the
Sun. The outward-propagating nature of interplanetary Alf-
ve� nic waves was Ðrst observed by andColeman (1968)

& Davies and subsequently conÐrmed byBelcher (1971),
the Helios, Pioneer, and Voyager spacecraft in a vast range
of radial distances in or near the ecliptic plane &(Tu
Marsch Recent Ulysses observations of Alfve� nic1995).
waves in the polar regions provided further evidence that
these Ñuctuations are outward-propagating waves in both
solar hemispheres et al. & Pruneti(Smith 1995 ; Velli 1997).
Since the Alfve� nic Ñuctuations in the solar wind are propa-
gating waves, the derivative nonlinear Schro� dinger

is an appropriate model for describing the spa-equation (1)
tiotemporal dynamics of these nonlinear waves.

There is some observational evidence of chaos and non-
linear dynamical phenomena in both Alfve� nic and non-
Alfve� nic Ñuctuations in the solar wind. Turning Ðrst to the
non-Alfve� nic chaos the formation of(Burlaga 1995),
ordered large structures from irregular smaller structures
was detected in the interplanetary magnetic Ðeld data of
Voyager 1 and 2 between 1 AU and 9.5 AU, which provided
the Ðrst example of ““ order out of chaos ÏÏ in the outer helio-
sphere. Combined data of IMP 8 at 1 AU and Voyager 2 at
15 AU indicated period doubling (from D13.4 days to D25
days) of the period of the corotating interaction regions.
Simultaneous data from ISEE 3 at 1 AU and Voyager 1 in
the outer heliosphere measured period doubling (from 6.5
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FIG. 4.ÈExample of the crisis-induced intermittent turbulence for
a \ 0.33029 for (a) (b) variation of with driver cycles, and (c)b

z
(q), b

z
o b

z
o2

as a function of f.

days to 13 and 26 days) of the period of large-scale inter-
planetary structures. et al. used the magneticPavlos (1992)
Ðeld data of IMP 8 to present evidence for strange attractor
structures in the solar wind, and found a fractal dimension
of 4.5. & Obojska applied the fractal analysisMacek (1997)
to the Helios 1 data at 0.3 AU to show that the radial
velocity Ñuctuations in the solar slow-speed stream have
chaotic temporal behavior, with a fractal dimension of

FIG. 5.ÈExamples of strange attractors of the crisis-induced inter-
mittent turbulence for (a) a \ 0.33022 (precrisis), (b) a \ 0.332 (postcrisis),
and (c) a superposition of (a) and (b).

about 3.5. The aforementioned observations of non-
Alfve� nic chaos in the solar wind should serve as motivation
to search for evidence of chaos in the interplanetary Alfve� n-
ic Ñuctuations.

Alfve� nic turbulence, consisting of microscale Ñuctuations
with periods ranging from fractions of minutes to several
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hours, and showing a high correlation between solar wind
velocity and solar wind magnetic Ðeld Ñuctuations, is fre-
quently observed in the solar wind. For example,

& Bruno presented evidence of the localBavassano (1989)
generation of Alfve� nic turbulence at the stream shear
regions of the solar wind. Velli, & MangeneyGrappin,

detected the coexistence of Alfve� nic turbulence and(1991)
standard weakly compressive MHD turbulence in the fast
hot streams of the inner heliosphere. et al.Tsurutani (1994)
used the Ulysses data to show that high-speed streams ema-
nating from solar coronal holes at high heliographic lati-
tudes are dominated by nonlinear Alfve� n waves.
Large-amplitude Alfve� n waves were measured in the coro-
tating interaction regions formed by high-speed corotating
streams interacting with slow-speed streams at midlatitudes
of the heliosphere et al. Nonlinear inter-(Tsurutani 1995).
planetary Alfve� n-wave trains may cause geomagnetic
storms, leading to high-intensity, long-duration, continuous
auroral activity (HILDCAA) Gonzalez, & Tsu-(Gonzalez,
rutani 1995).

Observations of Alfve� nic intermittent turbulence in the
solar wind were reported by & Liu and &Marsch (1993) Tu
Marsch Using the Helios 2 data in the inner solar(1995).
wind between 0.3 and 1.0 AU, they identiÐed the multi-
fractal nature of interplanetary Alfve� nic Ñuctuations and
the dependence of Alfve� nic intermittent turbulence on
stream speed and radial distance from the Sun. It is worth
mentioning that the multifractal character of small-scale
(0.85È13.6 hr) velocity Ñuctuations, related to the presence
of MHD (non-Alfve� nic) intermittent turbulence, were seen
in the solar wind by Moreover, MHD inter-Burlaga (1991).
mittent turbulence and multifractal structures are common
features of large-scale (non-Alfve� nic) Ñuctuations, with
periods varying from several hours to the solar rotation
period throughout the interplanetary medium (Burlaga

The direct link between the temporal intermittent1995).
turbulence and the fully developed spatiotemporal inter-
mittent turbulence remains an open question &(Paladin
Vulpiani & Liu Nonetheless, the tem-1987 ; Marsch 1993).
poral model of Alfve� n intermittent turbulence formulated in
this paper is capable of exhibiting the fractal nature of the
Alfve� nic intermittency. In Figures and we show that the3 5,
temporal Alfve� n intermittency is characterized by strange
attractors. Continuous blow-up of a tiny portion of these
Poincare� maps shows that these strange attractors have
self-similar structures on arbitrarily small scales. This scale
invariance is the fundamental property of fractal objects

The fractal dimension Hanson, & Ott(Ott 1993). (Russell,
of the strange attractor of the Pomeau-Manneville1980)

intermittency of is found to be 2.44, while those ofFigure 3
the weak and strong strange attractors of the crisis-induced
intermittency in Figures and are 2.176 and 2.513,5a 5b
respectively. The power spectra (Figs. and of chaos-2c 4c)
driven Alfve� n intermittencies present features similar to the
power spectra of MHD turbulence in the solar wind
(Burlaga 1995).

4. CONCLUSION

There is abundant observational evidence of chaotic phe-
nomena in laboratory experiments. For example, experi-
mental observations of chaotic behavior and period
doubling have been performed on a laboratory plasma dis-
charge & Wong In addition, in a plasma(Cheung 1987).
laboratory experiment of drift waves in a triple-plasma

device, it has been shown that as the control parameter is
increased, the transition from a stable state to chaos and
intermittent turbulence occurs via successive Hopf bifur-
cations et al. The two chaotic phenomena(Klinger 1997).
studied in this paper, Pomeau-Manneville intermittency
and crisis-induced intermittency, have been observed in
numerous laboratory experiments. For example, the tran-
sition from half-harmonic oscillation to chaos via the type I
Pomeau-Manneville intermittency has been observed in a
biological experiment of pacemaker neurons Ishi-(Hayashi,
zuka, & Hirakawa the type I Pomeau-Manneville1983) ;
intermittence between chaos and period 3 attractors has
been observed in a leaky-faucet experiment (Sartorelli,

& Pinto Intermittency induced by inte-GoncÓ alves, 1994).
rior crisis has been observed in a laser experimentCO2Glorieux, & Hennequin and in a mecha-(Dangoisse, 1986)
nical experiment of magnetoelastic ribbon et al.(Ditto

The observation of chaos and intermittency in1989).
plasma and laboratory experiments supports the validity of
modeling chaos-driven Alfve� n intermittency by the deriv-
ative nonlinear Schro� dinger equation (1).

It is worth pointing out that chaotic behavior appears
not only in the highly reduced equations, but also readily in
the primitive equations. It has been shown by various
works that chaotic solutions can be found in primitive
plasma equations, such as the conservative (Hamiltonian)
Zakharov equations, in the absence of driving and dissi-
pation Oliveira et al. et al.(de 1995 ; Chian 1996 ; Chian

et al. In fact, et al.1997 ; Rizzato 1997). Oliveira (1997)
showed that Alfve� n chaos appears in the numerical solu-
tions of primitive MHD equations that are generalizations
of the derivative nonlinear Schro� dinger equation. It is inter-
esting to note that the simpliÐed low-dimensional system
adopted by the present paper retains the intrinsic properties
of the Alfve� n chaos contained in the high-dimensional
system studied by & Papadopoulos andGhosh (1987)

et al. The choice of a steady state (neitherOliveira (1997).
growing nor damped) sinusoidal circularly polarized driver
in is a good representation of an undepletedequation (1)
large-amplitude Alfve� n driver, which is a steady state solu-
tion of the undriven derivative nonlinear Schro� dinger equa-
tion. The results from the simpliÐed model of temporal
Alfve� n intermittency provide a good basis for future investi-
gations of spatiotemporal Alfve� n intermittency.

In summary, we demonstrated that Alfve� n intermittent
turbulence driven by temporal chaos can evolve via two
distinct routes ; Pomeau-Manneville intermittency and
crisis-induced intermittency. Both types of chaotic tran-
sitions involve an episodic switching between di†erent
states of temporal behavior. In the Pomeau-Manneville
route, the time series of magnetic Ñuctuations switches
intermittently between nearly periodic and chaotic states. In
the crisis-induced route, the time series of magnetic Ñuctua-
tions switches intermittently between weakly chaotic and
strongly chaotic states. These two types of intermittency,
along with quasi-periodicity and period doubling to chaos,
are intrinsic nonlinear dynamical features of Alfve� nic turbu-
lence in astrophysical and space plasmas.
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