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L. P. L. de O L I V E I R A ,1 F. B. R I Z Z A T O1 and A. C.-L. C H I A N2

1Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul PO Box 15501,
91501-970 Porto Alegre, Rio Grande do Sul Brazil

2Instituto Nacional de Pesquisas Espaciais–INPE, PO Box 515,
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The nonlinear dynamics of a finite-amplitude Alfvén wave in a dispersive mod-
ulational regime is analysed. Use is made of a conservative model to show that
turbulence may arise via deterministic chaos. The behaviour of the system is stud-
ied as one varies the initial amplitude of the pump Alfvén wave, the dispersion
parameter and the plasma parameter β.

1. Introduction
Alfvén waves seem to provide an important way by which energy propagates in
the magnetohydrodynamic (MHD) plasmas, probably because fluctuations of this
type do not dissipate easily (Barnes & Hollweg 1974). In space plasmas, for ex-
ample, the concept of Alfvén waves has been used for understanding a number of
processes on MHD scales. In fact, in the solar wind, fluctuations of this type are
found to be ubiquitous, and turbulent regimes with high Alfvénicity are observed
mainly in the fast wind regimes (Belcher and Davies 1971; Marsch and Tu 1990). In
the planetary magnetosphere, both travelling and standing Alfvén-wave patterns
have been detected, and are occasionally associated with some ultralow-frequency
micropulsations (Fukunishi and Lanzerotti 1989; Knudsen et al. 1990). The non-
linear dynamics of Alfvénic fluctuations is believed to be the cause of some of the
observed local density depressions and temperature enhancements in the auroral
zone (Boehm et al. 1990; Chian and de Oliveira 1994; de Oliveira and Chian 1996).

A finite-amplitude Alfvén wave can be coupled parametrically to the local den-
sity fluctuations, which, even if initially small, are likely to be amplified and take
part in the (nonlinear) dynamics. The nonlinear dynamics of Alfvén waves coupled
parametrically to density fluctuations has been treated in many works. Spangler
and Sheering (1982), Spangler et al. (1985) and Hada et al. (1989), among others,
have found nonlinear coherent solutions of the derivative nonlinear Schrödinger
(DNLS) equation, which models the quasistatic evolution of an Alfvén wave under a
weakly nonlinear and dispersive regime, dispersion coming from the finite-Larmor-
radius effect. A variety of nonlinear solutions, such as solitons and periodic elliptic
functions, were obtained. Ghosh and Papadopoulos (1987) and Hada et al. (1990)
found, in dissipative regimes, chaotic (non-coherent) solutions for space-periodic
and stationary solutions of the DNLS equation respectively; this is indicative that
Alfvénic turbulence can be a consequence of the nonlinearities of the problem.
Ovenden et al. (1983) used a soliton-gas model for a space–time modulational regime,
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whose envelope dynamics is governed approximately by a nonlinear Schrödinger
(NLS) equation, to explain some features of the power spectra commonly observed
in solar-wind Alfvénic fluctuations. For the same purposes, Dawson and Fontán
(1990) used similar ideas for modulational regimes based on the DNLS equation.
Basically, these statistical formalisms assume that the overall turbulent fluctuations
are a consequence of random distribution functions adopted for the soliton phases.

In all of the studies mentioned above, the turbulent regimes are not intrinsic
to the Alfvén-wave dynamics, since some external mechanisms are necessary to
trigger the turbulence. In fact, like the NLS, the DNLS equation is known to be
integrable (Kaup and Newell 1978) and some extrinsic processes, such as driving and
dissipation, are required for turbulent solutions to exist. Similarly, in the soliton-
gas models, the stochasticity is added externally to the model via the statistical
description of the soliton population.

In the present work, we discuss an intrinsic model for modulational Alfvénic tur-
bulence. This model results uniquely from the Hamiltonian dynamics of an Alfvén
wave in the same modulational regime studied by Ovenden et al. (1983), without
the need for any external mechanism such as those mentioned above. We shall
show that, in this regime, a finite-amplitude Alfvén wave can exhibit chaotic dy-
namics with many degrees of freedom, giving rise to a turbulent component of the
magnetic fluctuations. The chaotic behaviour results from the component of the
normalized ion-density fluctuations ρ that is not Alfvén-resonant, i.e. that does not
satisfy the relation ∂2

t ρ = c2
A∂

2
zρ, where cA is the Alfvén speed and z is the longitu-

dinal propagation direction of all (plane) fluctuations considered. In fact, if those
fluctuations were Alfvén-resonant, the governing equations would reduce to the
integrable model used by Ovenden et al. (1983), based in NLS soliton solutions. We
point out that the chaotic component of the dynamics that will be shown to exist
can justify the randomness adopted for the phase of the solitons in the soliton-gas
models.

Besides the importance of Alfvén waves for space physics and astrophysics, the
problem considered in this paper may be of some interest in the context of the dy-
namics of nonlinear dispersive waves in general. In effect, it is known that in many
cases such dynamics are modelled by continuous systems for which an infinite (in
fact uncountable) number of degrees of freedom (or modes) is available for the parti-
tion of energy. In principle, as the dynamics of such a system evolves, a distribution
of the available energy among all modes can take place. Such a process is known
as energy equipartition or thermalization. However, Thyagaraja (1979) has proved
analytically that for space-periodic solutions of a class of continuous systems, of
which the NLS is one, no thermalization occurs. This was in fact confirmed by the
numerical studies carried out by Martin and Yuen (1980). The absence of thermal-
ization in a given system has deep consequences for the recurrence of its orbits
(see Thyagaraja 1983, and references therein), and will be briefly discussed in the
last section. We shall show that the space-periodic solutions of the non-integrable
system to be considered here, even if occasionally having a large number of modes,
seem to present no thermalization.

The integrable model can actually be accurate when the regime is very week, i.e.
when the total energy is small. However, we shall see that, even in the absence of
thermalization, chaos is present and grows with the total energy.

This paper is organized as follow. In Sec. 2, the fundamental equations are pre-
sented and a low-dimension linear stability study is performed to obtain some ana-
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lytical predictions about the behaviour of the degree of turbulence as a function of
the relevant parameters. In Sec. 3, the numerical simulations results are presented
and the analytical predictions of Sec. 2 are checked. In Sec. 4, a discussion and
concluding remarks are given.

2. Basic equations and analytical considerations
Let b± ≡ bx ± iby be the perpendicular component of the total magnetic field
B ≡ B0 + b± due to Alfvénic (transverse) oscillations with left (+) and right (−)
circular polarization. B0 = B0ẑ is the constant and uniform ambient magnetic field.
The fully nonlinear equations governing the ponderomotive coupled dynamics of
such a wave with density fluctuations (ion acoustic waves) are (Ovenden et al. 1983)

{∂2
t − c2

A∂z [(1− ρ)∂z]}b± + ∂z [vz∂tb± + dt(vzb±)]± i c
2
A

Ωi
∂2
zt [(1− ρ)∂zb±] = 0, (1)

(∂2
t − c2

S∂
2
z)ρ = 1

2c
2
A∂

2
z(|b±|), (2)

∂tρ + ∂z(ρvz) = 0, (3)

where cA ≡ B0/(µ0ρ0)1/2, dt ≡ ∂t − vz∂z and Ωi is the gyrofrequency of the ions.
In the above equations, the magnetic field b± and the density ρ are normalized by
B0 and the local constant average density ρ0 respectively.

The coupled dynamics outlined above can occur in a space–time modulational
regime. In this case, one can separate the corresponding magnetic field b± into a
slow amplitude b and a fast harmonic part, writing

b± ≡ b(z, t) exp[i(k0z − ω0t)]ê± (4)

with

|∂tb|� |ω0b| , |∂zb|� |k0b| , (5)

where the vectors ê± ≡ (x ± y)/
√

2 correspond to left (−) and right (+) circular
polarizations. ω0 and k0 are the frequency and the wavenumber of the Alfvén wave,
which, at t = 0, has its maximum amplitude and henceforth will be referred as the
pump. Then, b represents the envelope of the magnetic oscillations, whose dynamics
is governed by the parametric couplings with the density fluctuations ρ. If the
approximation ∂2

t ρ ≈ c2
A∂

2
zρ is used to simplify only the nonlinear coupling terms

(1)–(3) yield the following non-dimensional equations for the slow components b
and ρ:

(∂t + ∂z + iPα∂2
z)b = −iρb, (6)

(∂2
t − β∂2

z)ρ = β∂2
z(|b|2), (7)

where the normalizations t→ ω0t, z → k0z and b→ 2β−1/2b, with β ≡ c2
S/c

2
A, have

been adopted. The coefficient α ≡ (2Ωi)−1� 1 represents the weak dispersion due
to the finite-Larmor-radius effect, and P ≡ ±1 is a polarization identifier, being +1
(−1) for left (right) circular polarizations. The above equations govern the dynamics
of the envelope b in a weakly nonlinear and dispersive modulational regime, and are
analogous to the Zakharov equations, which are used in the study of modulational
dynamics of Langmuir waves (see e.g. Nicholson 1983). In this paper, we are going
to be interested in the space-periodic solutions of (6) and (7). Note that the Alfvén-
resonant approximation is not used in the linear propagator for the ion-acoustic



444 L. P. L. de Oliveira, F. B. Rizzato and A. C.-L. Chian

waves, the left-hand side of (7), but only in the nonlinear coupling terms. If that
resonant approximation had been used, the system would have been reduced to the
following NLS-like equation:

∂tb + ∂zb + iPα∂2
zb = −iµ |b|2 b, (8)

where µ = β/(1− β).
In analogy with the Zakharov equations, the system (6), (7) can be expressed

in Hamiltonian form (Gibbons et al. 1977). Introducing the variable u, defined by
∂tu = ρ + |b|2, one can rewrite the system as

(∂t + ∂z + iPα∂2
z)b = −iρb, (9)

∂tu = ρ + b2, (10)

∂tρ = β∂zzu. (11)

It is now easy to see that the variables b and f ≡ 1
2 ib
∗, and ρ and u are canonically

conjugate under the Hamiltonian H, whose density is defined by

H = iα(∂zb ∂zf − ∂zb∗∂zf∗)− iρ(bf − b∗f∗) + 1
2 (ρ2 + β∂zu

2)

− 1
2 [(f∂zb− b∂zf )− (f∗∂zb∗ − b∗∂zf∗)] , (12)

i.e. Hamilton’s equations for continuous systems,

∂tb =
δH

δf
, ∂tf =

−δH
δb

,

∂tu =
δH

δρ
, ∂tρ =

−δH
δu

are satisfied, where the functional derivatives are calculated as, for instance

δH

δb
≡ ∂H

∂b
− ∂

∂z

∂H
∂(∂zb)

(Goldstein 1980)
Again in analogy with the Zakharov equations, our system has the following

three constants of motion for space-periodic solutions of period 2L: the energy

H =
∫ L

−L
H dz, (13)

the action

I =
∫ L

−L
|b|2 dz (14)

and the linear momentum

P =
∫ L

−L
[i(b∂zb∗ − b∗∂zb)− ρ∂zu] dz. (15)

These constants will be useful for the verification of the numerical simulations. On
the other hand, when the Alfvén-resonant approximation is fulfilled, our system
reduces to the NLS equation (8), for which

J = −
∫ L

−L
|∂zb|2 dz + γ

∫ L

−L
|b|4 dz, (16)
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with γ = β/ [2α(1− β)], is a constant. As soon as the Alfvén-resonant approxima-
tion fails, the constancy of J is broken.

In what follows, we consider the existence of chaotic solutions for the above
equations. Such solutions might be typical, given the analogy with the Zakharov
equations, which are known to exhibit chaotic behaviour (de Oliveira et al. 1995; de
Oliveira and Rizzato 1996). In pursuing this goal, we follow de Oliveira et al. (1996)
and Ghosh and Papadopoulos (1987) in considering space-periodic solutions of (6)
and (7), and simulate the propagation of a pump Alfvén wave b0 of wavenumber and
frequency (k0,ω0) and initial amplitude parameter |b0| ≡ A1/2. Note that, from the
normalization adopted for b, the conventionally normalized amplitude parameter
Ar ≡ |bdimensional|2/B2

0 is related to A by Ar = 4βA. Equations (6) and (7) are
invariant under the rescaling t→ σt, z → σz, α→ σ−1α, ρ→ σ−1ρ and b→ σ−1/2b,
where σ is an arbitrary positive rescaling constant. Under these transformations,
those equations remain in exactly the same form, which implies that each set of
assumed values for the control parameters in fact represents a family of cases.

In order to obtain some analytical predictions about the degree to which the sys-
tem (6), (7) exhibits turbulent solutions, we truncate b and ρ to a few Fourier modes,
b ≡ b0(t)+b−(t)e−ikz+b+(t)eikz and ρ ≡ ρ1(t)eikz+ρ2(t)ei2kz with k� 1, and perform
a linear stability analysis for the pump b0. Assuming that |b−|, |b+|, |ρ1|, |ρ2|� |b0|
and writing ρ1,2 ∝ eiωt, linearization of the system of the equations about b0 yields
the dispersion relation

[(ω − k)2 − α2k4](ω2 − βk2) = −2Pαβk4A. (17)

Note that the dispersion effect is essential for the modulational regime considered
here since otherwise the frequency ω would always be real and no variation in the
amplitudes of the waves involved in the dynamics would occur. The above dispersion
relation then describes a modulational instability where the two sidebands corre-
sponding to the linear dispersion relations ω = k±αk2 are lead to grow to generate
a modulational envelope (Sakai and Sonnerup 1983; Longtin and Sonnerup 1986).
From now on, we shall adoptP = 1, which corresponds to the case where a left-hand
polarized wave is unstable when β < 1. The case P = −1 would correspond to a
symmetric situation where a right-hand polarized wave is modulationally unstable
if β > 1.

For the cases where the growth rate Γ2� k2(1− β), we get the simple form

Γ ≈
[
−αk2

(
αk2 − 2βA

1− β

)]1/2

, (18)

from which we see that the system is unstable if the condition

k < kI ≡
[

2βA
α(1− β)

]1/2

(19)

is satisfied. So, the number of magnetic modes interacting with the pump at the
beginning of the dynamics is given by NI ≡ kI/k. For a set of parameters like
Ar ≈ 0.25, β > 0.1, α ≈ 0.05, typical of the solar wind, and k 6 0.1, one has
kI ≈ 0.454, which means that there are about NI > 4 relevant magnetic modes
taking part in the dynamics. Note that, under the above-mentioned rescalings, one
finds equivalent results where kI → σ−1kI and Γ → σ−1Γ, but the number of
relevant modes NI remains the same, NI → NI . Since, in this case, k � 1, we
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Figure 1. Behaviour of R as a function of the parameters Ar and β < 1.

expect that the regime can be indeed described relatively well by our modulational
approximation.

We now define the parameter R ≡ |ω|/|k|, which measures the validity of the
Alfvén-resonant approximation, since the smaller the value of the difference R−1,
the more valid is that approximation; recall that in our normalized system, the
Alfvén-wave velocity is cA = 1. Thus R is a measure of how far from integrability
is the system (6), (7) at the beginning of the process. From (18) and α2k2� 1, we
find

R ≈ |k + iΓ|
|k| ≈

(
1 +

2αβA
1− β

)1/2

, (20)

from which we can anticipate that the non-integrable component of (6) and (7)
becomes more significant when the pump intensity Ar increases and when β → 1,
but is practically independent of the value of k. This can also be seen from the
numerical solutions of (17) for different values of Ar (or A, for fixed β) and β <
1, as shown in Fig. 1. Moreover, from (20) and from Fig. 1, we can expect that
non-integrability depends more strongly on β variations, when β → 1, than on A
variations. Like NI , the quantity R is also invariant with respect to the referred
rescaling rules, R→ R.

We can also from figure 1 see that at the beginning of the dynamics, our system
is not very far from the integrable regime, represented by the NLS equation (8).
So, we expect that the constant J does not vary too much, at least for some time
after the beginning of the dynamics. This gives us a nonlinear way to estimate the
number of effective modes in contrast to the linear estimates represented by NI we
made before. In fact, defining

Q ≡

∫ L

−L
|∂zb|2 dz

I
=
k2

∞∑
n=−∞

n2 |bn|2

∞∑
n=−∞

|bn|2
, (21)

and following Thyagaraja (1979), we see that Nrms = Q1/2/k is the root mean
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square of the number of magnetic modes bn, where the statistical weights are the
intensities |bn|2. Thyagaraja showed that, for systems preserving I and J , Q 6M 2,
where, for our case,

M =
γ

2
I +

1
2

[
γ2I2 + 4

(
J

I
+
γ

2
I

)]1/2

. (22)

So, considering pump-like initial conditions, we can calculate the values of I and
J and finally obtain estimates for Q and Nrms. For the interesting cases, we have
αk/β� 1, and so, carring out the above procedure, we get

Nrms ≈
πAβ

αk2(1− β)
= 1

2πN
2
I . (23)

While NI gives an estimate of the minimum, Nrms gives a estimate of the maxi-
mum number of effective modes taking part in the dynamics, above which energy
redistribution is arrested. As we shall see, this is confirmed by the numerical simu-
lations. Note that, according to (23), the qualitative dependences of NI and Nrms
on the parameters A, β and α are similar, except for the square root.

So far, our results show that, even at the onset of the coupled dynamics, a non-
integrable component of the envelope dynamics does exist, which is induced by ion-
acoustic oscillations off Alfvén resonance. It is also argued that the class of solutions
considered displays a large number of effective modes but no thermalization. In
fact, in the next section, we shall show that chaotic regimes exist, and that both
the degree of temporal stochasticity and the number of active modes depend on
the parameters A, β and α in a manner that is consistent with our analytically
estimated predictions, based on R and NI . The absence of thermalization will also
be verified.

3. Numerical simulations
For space-periodic solutions of (6) and (7), we proceed to numerical simulations
using a spectral method (Tajima 1989), which consists in expressing the magnetic
field b and the density oscillations ρ as Fourier series

f (z, t) =
(N−2)/2∑
n=−N/2

fn(t) exp(inkz), (24)

where f represents b or ρ, and integrating the resulting set of ordinary differential
equations (ODEs) for the Fourier coefficients bn(t) and ρn(t). We used Runge–
Kutta and predictor–corrector routines for the ODE integrations, and the number
of modes N was varied between 128 or 256, depending on the convergence and
consistency requirements for the differentA, β and α values. The nonlinear coupling
terms are fast-Fourier-inverted in order to calculate the products in real space, and
the result is then fast-Fourier-transformed back to the ODEs. The numerical values
of the constants H, I and P are calculated, in order to verify the accuracy of the
numerical simulations. Accuracies of 1 : 108 are obtained.

In general, our dynamics exhibit complexity in space and time. Temporal com-
plexity is in principle measured in terms of sensitivity to initial conditions and
associated with a series of positive Lyapunov exponents λ1 > λ2 > . . . > λp > 0.
However, as time passes, the main Lyapunov exponent λ1 dominates the others and
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Figure 2. Convergence of the partial Lyapunov exponents for A = 0.5, 0.7 and 1.0. The
asymptotic values correspond to the main Lyapunov exponent for each case. The others
parameters are kept fixed as α = 0.05, β = 0.01 and k = 0.1.

can be taken itself as a measure of sensitivity to initial conditions (Lichtenberg and
Lieberman 1983). A temporally complex dynamics, also known as chaotic, does not
necessarily involve a large number of unstable modes. But if it does, we shall loosely
speak of it as revealing space–time complexity, or turbulence.

To calculate the main Lyapunov exponent λ1, we use the method developed by
Benettin et al. (1976) (Lichtenberg and Lieberman 1983). This method consists in
calculating partial Lyapunov exponents λ(t), which converge asymptotically to the
λ1 value, i.e. λ1 = limt→∞ λ(t). Figure 2 shows the main Lyapunov exponent λ1

calculated for different values of the parameter A: A = 0.5, A = 0.7 and A = 1.0.
The other parameters are fixed at k = 0.1, β = 0.01 and α = 0.05. In accordance
with the results of the previous section, chaotic activity increases with A (and Ar).
In fact one can see that for increasing values of A, the Lyapunov exponents are
3× 10−4, 7× 10−4 and 10−3, respectively. This is a consequence of the ion-acoustic
fluctuations, which are not Alfvén-resonant, as was signalled by the parameter
R� 1. This behaviour can be thought as natural, since the growth rate Γ associated
with the dynamics also grows with A, and therefore the nonlinear interactions
between the Fourier modes become more intense.

Figure 3 displays the partial Lyapunov exponents for some values of the parame-
ter β. For β = 0.07, the partial exponents converge to λ1 = 10−3, while for β = 0.22
and β = 0.49, they converge to λ1 = 2.3× 10−3 and λ1 = 2× 10−2 respectively. The
other parameters are fixed as k = 0.025 and α = 0.2, except A, which is normalized
by 2β and varies in a way such that Ar =

√
2/40 is kept fixed. Again in accordance

with the results of the previous section, λ1 grows with β < 1. Note that, on com-
paring Figs 2 and 3, one can see that λ1 is more sensitive to β variations than to A
variations. In fact, one sees from Fig. 2 that the Lyapunov exponent λ1 found for
A = 1.0 is about 3.3 times larger than that found for A = 0.5, while one observes
from Fig. 3 that the λ1 value found for β = 0.49 is about 15 times larger than that
found for β = 0.22, which is almost half of the first value. This is also consistent
with the conclusions drawn in the previous section.

In the simulations, we assume, as initial conditions, Fourier-mode amplitudes
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Figure 3. Convergence of the partial Lyapunov exponents for some values of β: β = 0.07,
0.22 and 0.49. The other parameters are fixed as α = 0.2, k = 0.025 and Ar =

√
2/40.

such that b satisfies |b0/b±1| = 100. The remaining involved modes, including those
corresponding to ρ and its derivative, are assumed to be numerically null. How-
ever, even if initially sharp, the spectral bandwidth becomes larger and larger as
time evolves, until a saturated bandwidth limit is attained; no thermalization is
verified in any case. In order to illustrate this and check the conclusions about the
dependence of the number of relevant modes on the parameters A, β and α, Fig. 4
displays the spectral intensity for different sets of parameter values, at the begin-
ning (thin lines) and as typically obtained at the end of the respective simulations
(thick lines). It is easy to see from this figure that the bandwidth increases as A
grows (a, b), as α decreases (b, c), and as β grows, approaching 1. The estimates
based onNI have been shown to be more accurate than those based on the constant
M , as proposed by Thyagaraja. In fact, similarly to Martin and Yuen (1980), in
our numerical experiments, Thyagaraja’s bounds have given values for Nrms much
greater than those verified in the numerical results. On the other hand, the esti-
mates based onNI give better results for both absolute and r.m.s. number of modes,
as one can check from Figs 4 and 5.

It is interesting to note that the case illustrated in Fig. 5 is the farthest from
the integrable NLS regime among all the situations studied. In fact, it corresponds
to the highest Lyapunov exponent obtained in the numerical simulations, and ac-
cordingly to the highest R value, as one can see from Fig. 1. This suggests that,
in all cases treated here, we have no thermalization, owing to the quasi-constancy
of J .

Our simulations therefore confirm the simple analytical predictions of the previ-
ous section about the behaviour of the turbulence level of the solutions with respect
to the parameters A and β. We could not obtain clear results about the Lyapunov
exponent as a function of α, since the range of values for which we could per-
form meaningful simulations was restricted. As we attempt to compare the present
results with results for smaller values of the dispersion, the number of modes in-
creases and the simulation becomes prohibitively time-consuming. On the other
hand, larger dispersion does not fulfil the weak dispersion condition.
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4. Discussion and concluding remarks

In this paper, we have shown that the dynamics of Alfvén waves, in the dispersive
modulational regime considered, can be intrinsically turbulent. Accordingly, we
have shown that the dynamics of a finite-amplitude Alfvén wave, with no external
driving, like a source or dissipation, can exhibit chaotic dynamics with many de-
grees of freedom resulting in complex space–time Hamiltonian evolution. In fact,
the system (6), (7) represents a perturbation of an NLS equation, which is inte-
grable. The integrability is broken when we consider sets of control parameters A,
β and α for which R is different from unity. This allows a significant level of den-
sity fluctuations that are not Alfvén-resonant to take part in the dynamics. In this
situation, some of the NLS constants of motion, including J , are no longer valid,
but vary with time, and chaotic dynamics arises.

The complexity or, alternatively, the level of turbulence depends on the amplitude
parameter A, and on the plasma parameters β and α. In fact, one has stronger
turbulence for larger A and β (< 1) values, since the number of relevant magnetic
modes as well as the main Lyapunov exponent are larger. The role of the parameter
α is somewhat different from those of the parametersA and β. In fact, it can be seen
from (19) and (20), that, while the parameterR grows with the dispersion parameter
α, NI decreases. This means that, as α grows, the complexity in space is diminished
while the complexity in time becomes more significant, and vice versa. Therefore
the dispersion resulting from the finite-Larmor-radius effect acts as a regulating
mechanism for the number of relevant modes in the considered regime. Dispersion
is typically small for MHD settings, so we were limited in taking relatively small
values for α. This was why we always had a large (>3) number of relevant magnetic
modes in the dynamics found in the feasible numerical simulations. Moreover, when
α > 0, one always has Γ > 0 and, from (20),R > 1. This means that an Alfvénic off-
resonant component of density ρ is always present in the dynamics, thus destroying
the integrability of the system (6), (7).

Although the numbers of relevant modes for most of our simulations were rel-
atively high, no thermalization was verified in any case, and only a finite number
of the available modes took part in the energy redistribution (Yuen and Fergus-
son 1978; Martin and Yuen 1980). According to Poincaré’s theorem, we conclude
that, although chaotic, our system displays recurrence (see Thyagaraja 1983, and
references therein). In fact, Thyagaraja’s arguments are based fundamentally on
the constancy of I and J , as happens, for example, for the NLS equation. In the
present case, I continues to be conserved, while J , even if not constant, is almost
conserved, since our system is a perturbation of an NLS. This is illustrated in Fig.
5, where results for the most non-integrable case treated in this work are displayed.

According to our studies, one can identify two classes of nonlinear regimes. In
the weakly nonlinear regimes, one has values for A, β, α and k giving a modula-
tional regime where NIk � 1; we have focused the present analysis on this case.
Conversely, in strongly nonlinear regimes, the condition on NIk is not satisfied, and
the envelope energy is progressively transferred to smaller scales comparable to the
carrier space–time scale. In this case, all the available modulational scales are ener-
gized, and the modulational approximations should not be expected to provide an
accurate description of the wave dynamics. For practical applications, depending
on the A, β, α and k values, this transfer of energy can take place in a rather short
time compared with the time necessary for the chaotic process to develop fully. In



452 L. P. L. de Oliveira, F. B. Rizzato and A. C.-L. Chian

these cases, the NLS regular solutions should provide a rather good description of
the dynamics for the short period while the energy is still restricted to the modula-
tional scales. The lifetime of such solutions, however, is short, and moves away from
the modulational scales. The transition from the weakly to the strongly nonlinear
regime will be reported elsewhere.

The results of our studies can have some implications in understanding the pres-
ence of solitons and turbulence in the solar wind, as proposed by Ovenden et al.
(1983). In fact, all the parameter values considered in our simulations are somewhat
typical of that kind of environment, except for β, whose values are slightly smaller
than the most typical values, which are closer to unity. This suggests that a modu-
lational turbulent regime can be even more intense there. According to our studies,
a modulational soliton turbulence regime such as that proposed by Ovenden et al.
(1983) would belong to the class of strongly nonlinear regimes.

To conclude, our analysis shows that for typical system parameters, one is likely
to observe non-integrable features that arise from the ion-acoustic equation. In fact,
owing to the multitude of degrees of freedom typically found here and the known
intrinsic instability of multifrequency systems, one cannot expect the integrable
model to provide a very faithful description of the system.
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Lichtenberg, A. J. and Lieberman, M. J. 1983 Regular and Stochastic Motions. Springer-Verlag,
New York.

Longtin, M. and Sonnerup, B. U. Ö. 1986 J. Geophys. Res. 91, 6816.
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