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Abstract

It is shown that the Levi-Civita metric can be obtained from a family

of the Weyl metric, the γ metric, by taking the limit when the length of

its Newtonian image source tends to infinity. In this process a relationship

appears between two fundamental parameters of both metrics.
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1 Introduction

One of the most interesting metrics of the family of Weyl solutions [1] is the

so called γ metric [2, 3]. This metric, which is also known as Zipoy-Voorhees

metric [4], is continuously linked to the Schwarzschild spacetime through one of

its parameters and corresponds to a solution of the Laplace equation in cylindrical

coordinates. Its Newtonian image source [5] is given by a finite rod of matter. For

a particular value of the mass density of the rod, the metric becomes spherically

symmetric (Schwarzschild metric).

In this article we show that extending the length of the rod to infinity we

obtain the Levi-Civita spacetime. At the same time a link is established between

the parameter γ/2, measuring the mass density of the rod in the γ metric, and

the parameter σ, which is thought to be related to the linear energy density of the

source of the Levi-Civita spacetime [5]. Since σ is the real source, not the New-

tonian image source and γ/2 measures the line mass density of the Newtonian

image source, not of the real source, our result illustrates further the difficul-

ties appearing in the interpretation of the Levi-Civita metric as representing an

infinite line mass of density σ [6].

In the next section we describe the γ metric. In section 3 we show that it has

a limit on the Levi-Civita spacetime. In section 4 some other limits are studied

in order to build a limiting diagram for the γ metric. Finally section 5 presents

our conclusions.
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2 The γ metric

In cylindrical coordinates, static axisymmetric solutions to Einstein’s equations

are given by the Weyl metric [1]

ds2 = e2λdt2 − e−2λ[e2µ(dρ2 + dz2) + ρ2dφ2], (2.1)

with

λ,ρρ + ρ−1λ,ρ + λ,zz = 0, (2.2)

and

µ,ρ = ρ(λ2
,ρ − λ2

,z), (2.3)

µ,z = 2ρλ,ρλ,z, (2.4)

where a comma denotes partial derivation. Observe the most amazing fact, as

Synge writes [1], that (2.2) is just the Laplace equation for λ in Euclidean space.

The γ metric is defined by [2]

e2λ =
[

R1 +R2 − 2m

R1 +R2 + 2m

]γ

, (2.5)

e2µ =

[

(R1 +R2 + 2m)(R1 +R2 − 2m)

4R1R2

]γ2

, (2.6)

where

R2
1 = ρ2 + (z −m)2, R2

2 = ρ2 + (z +m)2. (2.7)

It is worth noticing that λ as given by (2.5) corresponds to the Newtonian po-

tential of a line segment of mass density γ/2 and length 2m, symmetrically

distributed along the z-axis. The particular case γ = 1 corresponds to the

Schwarzschild metric. This is more easily seen using Erez-Rosen coordinates

[4], given by

ρ2 = (r2 − 2mr) sin2 θ, z = (r −m) cos θ, (2.8)

3



which yields the line element [2]

ds2 = Fdt2 − F−1[Gdr2 +Hdθ2 + (r2 − 2mr) sin2 θdφ2], (2.9)

where

F =
(

1 − 2m

r

)γ

, (2.10)

G =

(

r2 − 2mr

r2 − 2mr +m2 sin2 θ

)γ2
−1

, (2.11)

H =
(r2 − 2mr)γ2

(r2 − 2mr +m2 sin2 θ)γ2−1
. (2.12)

Now, it is easy to check that γ = 1 corresponds to the Schwarzschild metric. The

total mass of the source is M = γm [2, 3], and its quadrupole moment Q is given

by

Q =
γ

3
M3(1 − γ2). (2.13)

So that γ > 1 (γ < 1) corresponds to an oblate (prolate) spheroid. We shall

now show that elongating the Newtonian image source to infinity we obtain the

Levi-Civita spacetime. To achieve that, use will be made of the Cartan scalars.

In the next section these scalars are obtained for the γ metric, and are compared

to the corresponding quantities of the Levi-Civita metric in the limit m→ ∞.

3 The Levi-Civita limit

Since the limit m → ∞ taken on the γ metric in the form (2.1) diverges, we use

the Cartan scalar approach to obtain a finite limit [7, 8].

It is known [9] that the so called 14 algebraic invariants (and even all the

polynomial invariants of any order) are not sufficient for locally characterizing a

spacetime, in the sense that two metrics may have the same set of invariants and

be not equivalent. As an example, all these invariants vanish for both Minkowski
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and plane-wave [9] spacetimes and they are not the same. A complete local char-

acterization of spacetimes may be done by the Cartan scalars. Briefly, the Cartan

scalars are the components of the Riemann tensor and its covariant derivatives

(up to possibly the 10th order) calculated in a constant frame [10, 9, 11, 12].

Therefore it is possible to establish unambiguously the local equivalence be-

tween two given metrics by comparing their respective Cartan scalars, in other

words: Two metrics are equivalent if and only if there exist coordinate and

Lorentz transformations which transform the Cartan scalars of one of the met-

rics into the Cartan scalars of the other. It should be stressed that, although the

Cartan scalars provide a local characterization of the spacetime, global properties

such as topological defects do not probably appear in them.

In practice, the Cartan scalars are calculated using the spinorial formalism.

For the purpose here, the relevant quantities are the Weyl spinor ΨA, and its first

covariant symmetrized derivative ∇ΨAB′ , which represent the Weyl tensor and

its covariant derivative. Due to the amount of calculations, the computer algebra

systems SHEEP/CLASSI [10, 9] and MAPLE were used throughout this section.

In order to calculate the Cartan scalars for the γ metric, we take the line

element in spherical coordinates (eq. (2.9)) written in the same tetrad basis used

by [2]. In the 0th order we find that the Ricci spinor and curvature scalar vanish

and the Weyl spinor satisfies the relation: Ψ0 = Ψ4, Ψ1 = −Ψ3, Ψ2 6= 0. It can be

easily shown that this corresponds to a Petrov type I metric, which therefore has

no isotropies. For putting these Cartan scalars in a canonical form, two tetrad

transformations are done, which in the spinorial formalism are given by:

1√
2









1 i

i 1









and









A 0

0 1/A









(3.1)

The first transformation puts the 0th order Cartan scalars in the form: Ψ′

0 6= 0,
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Ψ′

1 = 0, Ψ′

2 6= 0, Ψ′

3 = 0, Ψ′

4 6= 0. The second transformation with A =

(Ψ′

4/Ψ
′

0)
1/8 gives finally: Ψ′′

0 = Ψ′′

4, Ψ′′

1 = 0, Ψ′′

2 6= 0, Ψ′′

3 = 0, which is the

canonical form for Petrov type I metrics.

We come out with two independent functions of the coordinates r and θ

(eqs. (3.2) and (3.3)). So, up to 0th order, the isometry group is of dimension

4 − 2 = 2 (where 4 is the dimension of the spacetime). Since the metric is

independent of the coordinates t and φ, its isometry group is of dimension 2.

Therefore, the 1st order Cartan scalars will present no new information about

isometries and the Karlhede algorithm will end in the 1st order.

Instead of calculating the 1st order Cartan scalars in the new basis, for com-

putational reasons they were calculated in the initial basis and afterwards trans-

formed to the new basis. Finally, to have the Cartan scalars in the cylindrical

coordinate system one has to invert the coordinate transformation from cylindri-

cal to spherical given by eq. (2.8)1 and apply it to the Cartan scalars, remembering

that they transform like scalars.

In this new basis, in cylindrical coordinates, the 0th order Cartan scalars of

the γ metric (eqs. (2.1) and (2.5)–(2.7)) are (dropping the primes):

Ψ2 =
e2λ

e2µ

mγ(R1 +R2 − 2γm)

(R1 +R2 + 2m)(R1 +R2 − 2m)R1R2
(3.2)

Ψ0 = Ψ4 = −Ψ2

√
f 2 + g2

2R1R2(R1 +R2 − 2γm)
(3.3)

where

f 2 = {[(R1 − R2 − 2m) (R1 − R2 + 2m) γ2

−(R1 +R2 + 2m) (R1 +R2 − 2m)](R1 +R2)

−2(R1 +R2 − 6 γ m)R1R2}2 (3.4)

1This leads to r =

√
(z−m)2+ρ2+

√
(z+m)2+ρ2+2m

2 and cos θ =

√
(z+m)2+ρ2−

√
(z−m)2+ρ2

2m
.
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g2 = (γ2 − 1)2 (R1 − R2)
2 (R1 +R2 + 2m) (R1 +R2 − 2m)

(R1 − R2 + 2m) (R1 −R2 − 2m) (3.5)

and R1 and R2 are given by eq. (2.7). The 1st order Cartan scalars are too long

and will not be shown.

Although, at first sight, the Cartan scalars seem more complicated than the

line element, a closer investigation shows that they are simpler. In fact they

depend only on the coordinates ρ and z, while the line element depends on these

coordinates and the differentials of the four coordinates. In other words, under

coordinate transformations, the Cartan scalars transform like scalars while the

metric components transforms like tensor components.

Due to this fact, it is easier to investigate limits using the Cartan scalars

rather than using the metric. Besides and even more important is the fact that

the metric usually has features that are due to the non-essential coordinates (like

the singularity on the Schwarzschild horizon). On the other hand, since only

the essential coordinates appear on the Cartan scalars, they do not present such

problems. So, in principle, a coordinate system can be found which provides a

well behaved limit for the Cartan scalars while the metric still diverges. Firstly,

let us investigate the limits using Ψ2, later we shall investigate whether the other

Cartan scalars share the same limits.

After a lengthy but straightforward calculation we may write:

lim
m→∞

Ψ2 = 2−(γ−1)m2(γ2
−γ)ρ−2(γ2

−γ+1)γ(1 − γ) (3.6)

which is either divergent or finite depending on the value of γ. Nevertheless, this

expression suggests that a finite limit may arise for all values of γ if we define a

new radial coordinate ρ̄ by m2(γ2
−γ)ρ−2(γ2

−γ+1) = ρ̄−2(γ2
−γ+1) that is,

ρ = 2βmαρ̄ (3.7)
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where

α =
γ2 − γ

γ2 − γ + 1
(3.8)

and

β =
−γ

γ2 − γ + 1
(3.9)

The constant β was introduced to provide the correct power of 2 in the limiting

Cartan scalar.

Indeed, noting that −1
3
≤ α < 1 and using eq. (3.7) into eq. (3.2), a lengthy

but straightforward calculation shows that in this new coordinate system one has:

lim
m→∞

Ψ2 =
1

2
ρ̄−2(γ2

−γ+1)γ(1 − γ) (3.10)

which is finite. Similarly, one finds that all Cartan scalars have a finite limit in

this new coordinate system. The question now is to find out to which metric this

set of Cartan scalars belongs. This is not a straightforward task, but fortunately,

calling

γ = 2σ (3.11)

and ρ̄ = r we are led to following set of Cartan scalars:

ψ2 = (1 − 2σ)σr−2(4σ2
−2σ+1) (3.12)

ψ0 = ψ4 = (4σ − 1)ψ2 (3.13)

∇ψ01′ = ∇ψ50′ =
√

2(8σ2 − 4σ + 1)(4σ − 1)(2σ − 1)σr−3(4σ2
−2σ+1) (3.14)

∇ψ10′ = ∇ψ41′ =
√

2(4σ − 1)(2σ − 1)σr−3(4σ2
−2σ+1) (3.15)

∇ψ21′ = ∇ψ30′ =
√

2(4σ2 − 2σ + 1)(2σ − 1)σr−3(4σ2
−2σ+1) (3.16)

which are the Cartan scalars of the Levi-Civita spacetime [13]

ds2 = r4σdt2 − r8σ2
−4σ(dr2 + dz2) − r2−4σ

a
dφ2 (3.17)
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This shows that in this new coordinate system, the limit of the γ metric as

m→ ∞ is locally the Levi-Civita metric, provided the radial coordinates ρ̄ and r

are identified and the parameter γ divided by 2 of the γ metric is identified with

the density parameter σ of the Levi-Civita metric, i.e., eq. (3.11) holds.

We use the word locally since the Cartan scalars provide a local characteriza-

tion of the metric. Furthermore, there is a parameter a in the Levi-Civita metric

which does not appear in its Cartan scalars since it is a topological defect and can

be eliminated by a coordinate transformation. For studying the global properties

of the limit one has to investigate the metric (or the line element) directly. In fact

one may ask whether, using this new coordinate system, the Levi-Civita limit can

be obtained directly from the line element of the γ metric.

In this new coordinate system, the γ metric may be written as

ds2 = e2λdt2 − e−2λe2µ22βm2αdρ̄2 − e−2λe2µdz2 − e−2λ22βm2αρ̄2dφ2 (3.18)

where λ and µ are expressed in the new coordinates. The limit of the component

gρ̄ρ̄ is precisely the grr of the Levi-Civita metric but the other metric components

diverge. Now, the divergences can be easily removed by similar transformations

on the coordinates t, z and φ, given by:

t = 2−β(γ2+1)m−β t̄ (3.19)

z = 2βmα z̄ (3.20)

φ = 2βγ2

mβγ 1√
a
φ̄ (3.21)

In this new coordinate system, the γ metric becomes:

ds2 = e2λ2−2(γ2+1)βm−2βdt̄2 − e−2λe2µ22βm2αdρ̄2

−e−2λe2µ2−2βm−2αdz̄2 − e−2λ22(β+γ2β)m2(α+γβ)ρ̄2 1

a
dφ̄2 (3.22)
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and its limit is precisely the Levi-Civita metric. The only drawback of this limit

is the introduction of an infinite topological defect. In other words, the limit of

the γ metric in this new coordinate system is the Levi-Civita metric only locally.

So we have reproduced the result we found previously with the Cartan scalars.

Whether a coordinate system for the γ metric exists which provides a global limit

into the Levi-Civita metric, i.e., with a finite topological defect, is still an open

question.

4 A limiting diagram for the γ metric

In the previous section we have shown that in the coordinate system defined

by eqs. (3.7) and (3.19)–(3.21) the limit m → ∞ of the γ metric is locally the

Levi-Civita spacetime. We shall now study this limit, find other limits in the

coordinate systems of the previous section and discuss some limits known in the

literature in order to build the limiting diagram for the γ metric shown in figure 1.

4.1 Limits in the Schwarzschild coordinates

In the usual Schwarzschild coordinates, in the limit m → 0, the Schwarzschild

line element tends to Minkowski. The limit m→ ∞ diverges. This can be easily

checked by hand or from the Cartan scalars [7].

4.2 The Geroch Limits

In 1969 Geroch [14] showed that in the coordinate system (Geroch coordinates)

defined by

x = r +m4/3, ρ = m4/3θ, t′ = t, ϕ′ = ϕ (4.1)

the limit of the Schwarzschild metric as m→ ∞ is the Minkowski spacetime. He

also presented a coordinate system where the limit is a Kasner spacetime. These
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Levi-Civita
Density: σ

✲

σ → 0
(lc∗)

σ → 1
2

(lc∗)

Minkowski

Gamma
Length: 2m

Density: γ
2

= σ

Mass: γm = 2σm

✻

m→ ∞
(lc∗)

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑✑✸

σ → 0
(lc, γ)

✻

m→ 0
(lc∗, γ, s)

✻

m→ ∞
(lc∗, γ∗, g)

✲

σ → 1
2

(lc, γ) Schwarzschild
Mass: m

❄

σ → ∞
m→ 0

2σm = const.
(γ)

Curzon
Mass: M = 2σm

✒

M → 0
(γ)

Figure 1: Limiting diagram for the γ metric. In brackets are the coordinate

systems where each limit works. γ means the original cylindrical coordinate

system for the γ metric; lc means the Levi-Civita coordinate system, i.e., the

γ coordinate system plus the coordinate transformation given by eqs. (3.7) and

(3.19)–(3.21); s means the usual Schwarszchild coordinates and g the Geroch

coordinates first used to find the Minkowskian limit of Schwarzschild. The ∗

means that, the limit is local, i.e., it was taken with the Cartan scalars and/or

on the line element but a topological defect was found.
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results show that the limit of a spacetime as some parameter goes to infinity is a

coordinate dependent process.

Later, [7] re-obtained these limits by using the Cartan scalar technique, and

extended the results presenting new limits of the Schwarzschild metric and de-

veloping an approach to find all limits of a given spacetime (see also [8, 15, 16])

4.3 Limits in the γ-coordinates

We shall call γ-coordinates the original cylindrical coordinates used for the γ

metric (eqs. (2.1) and (2.5)–(2.7)). Its is known [17] that in this coordinate system

the limit γ → ∞, m → 0 with γm = const. leads to the Curzon metric and, as

shown in section 2, the limit γ → 1 leads to Schwarzschild. Besides one can easily

see that as γ → 0 the γ metric tends to Minkowski. The coordinate systems in

which the Curzon and Schwarzschild metrics are expressed when obtained as limit

of the γ metric will also be called γ-coordinates.

In the γ-coordinate system, the line elements of Curzon (see [17]) and Schwarzschild

tend to Minkowski as m → 0 (this arises directly from the line element). Al-

though the Schwarzschild line element in γ-coordinates diverges as m → ∞ it

can be shown that its Cartan scalars (those of the γ metric with γ = 1) tend to

zero, which is locally Minkowski.

4.4 Limits in the LC-coordinates

In the previous section, starting from the γ-coordinates we defined new coordi-

nates by scaling ρ with a coordinate transformation which depends on m and γ

(eq. (3.7)). As we have then shown, the Cartan scalars of the γ metric in this new

coordinate system tend to the Cartan scalars of the Levi-Civita spacetime if the

radial coordinates of both metrics are identified (ρ̄ = r) and γ = 2σ. Since the

Cartan scalars give a complete local characterization of each metric, therefore,
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the metric corresponding to this limit is locally the Levi-Civita metric. Rescal-

ing also the coordinates t, z and φ (eqs. (3.19)–(3.21)) the Levi-Civita limit was

obtained directly from the line element but with a topological defect.

This new coordinate system will therefore be called Levi-Civita-coordinates

or LC-coordinates for short, for both the γ metric and the Levi-Civita metric

(although the metric equivalence is only local). Coincidently, this is the usual

coordinate system for the Levi-Civita metric.

As γ → 0 or γ → 1, the γ metric in LC-coordinates tends to Minkowski or

Schwarzschild, as can be seen directly from the line element (3.22). The last one

giving Schwarzschild in LC-coordinates.

The limits of the Levi-Civita metric as σ → 0 and σ → 1/2 giving locally

Minkowski can be directly found from the line-element in LC-coordinates.

As m→ ∞, the Schwarzschild line element in LC-coordinates diverge but its

Cartan scalars tend to 0, i.e., locally Minkowski.

Finally, the LC-coordinate system turns out to be a new coordinate system

(Geroch coordinates is the old one) where the Schwarzschild line element tends

to Minkowski as m → ∞. The equivalence is local since an infinite topological

defect appears. This limit can be also done with the Cartan scalars.

5 Conclusion

We have seen so far that extending the length of the Newtonian image source of

the γ metric to infinity, we arrive at the Levi-Civita spacetime. The amazing fact

is that the finite rod does not represent the real source of the γ metric (it is just

its Newtonian image source), whereas the infinite line singularity is thought to

be the real source of the LC spacetime. The link between the parameters γ and

σ (γ = 2σ) appearing in the limiting process is quite consistent with previous
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results [14, 7], in the sense that the Schwarzschild metric (γ = 1) leads (locally)

to Minkowski spacetime as m → ∞ and the Levi-Civita metric (m → ∞) leads

(locally) also to Minkowski if σ = 1/2. It should be interesting to find out if

restrictions on σ, based on the existence of timelike circular geodesics [18] in LC

(σ < 1/4) do appear in the γ metric.

We shall now proceed to the interpretation of the limiting diagram of the γ

metric (figure 1). In order to build this diagram, we introduced a new coordinate

system for this metric (the LC-coordinates) and found two new limits as m→ ∞:

Schwarzschild → Minkowski in γ-coordinates and LC-coordinates and γ metric

→ Levi-Civita in LC-coordinates.

One notices, that as it is presented, the diagram is quite consistent. It supports

the current interpretations of σ as being the density in the Levi-Civita metric;

γ/2 and 2m, respectively, as the density and the length in the γ metric; m as the

mass in the Schwarzschild solution and M as the mass in the Curzon solution.

Note that from the γ metric one can reach Minkowski either through Levi-

Civita making m → ∞ and then σ → 1/2 or through Schwarzschild by making

σ → 1/2 and then m→ ∞. The limit σ → 0 is similar; the difference being that,

since the mass in the γ metric is 2σm, the limit σ → 0 leads to Schwarzschild

with zero mass, which is Minkowski.

This work would not be complete if we did not show the known weakness of the

diagram. The first one is that specific coordinate systems were used. We do not

know which other limits could arise if we explored more coordinate possibilities.

One away to solve this problem would be the use of the Cartan scalar techniques

developed in [7, 8] to find all limits of the concerning metric. The main difficulty

is computational, since in the present case too many Cartan scalars are different

from zero and they depend on more than one coordinate and parameter.
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The second weakness are two other known limits of the Schwarzschild solu-

tion found in [14] and [7], namely, a Kasner solution and plane wave solutions,

respectively. How do they match in this diagram is still an open problem.

Another extension of this work is finding a single coordinate system which

provides all the limits on the diagram and does not present an infinite topological

defect. This would help the understanding of the topological defects in the Levi-

Civita metric.
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