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ABSTRACT

The spin axis tilt due to asymmetries on a spin
stabilized satellite equipped with long wire cable
booms is evaluated. The problem is stated as a
constrained optimization one, since the equilibrium
state minimizes the kinetic energy under the an-
gular momentum conservation law, besides the ge-
ometrical constraints of the booms. Three numeri-
cal procedures are presented to solve the non-linear
optimum necessary condition: a direct iteration; a
Newton-Raphson; and a predictor-corrector. Numer-
ical results indicate that the first one works fine for
the ordinary, slightly tilted case only. Convergence
problems under arbitrarily high tilted conditions are
properly dealt with the other two procedures.

1 INTRODUCTION

Spin stabilization has been a cheep and effective
way for attitude stabilization of many artificial satel-
lites since the beginning of the space missions., With
the ever increasing accuracy requirements from both
attitude control system and mission payload, deep
and overall analysis of satellite spin dynamics have
been carried out (see [1-3]). Case studies based on ob-
served data from real missions (see [4], for instance)
have also bring relevant insight to the subject. The
specific topic of prediction and estimation of a satel-
lite spin axis tilt has though received comparatively
less attention in the international specialized litera-
ture, in spite of being possibly a common practice at
space agencies,

The spin axis tilt (sat) of a spinning stabilized
satellite is the angle between its geometric z-axis as
determined by probe draft and the true spin axis
at steady state, which coincides with the satellite’s
major principal axis of inertia. Nominally, these two
axes are supposed to be aligned by design, Mechani-
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cal inaccuracies, non-gravity and thermal effects, vi-
bration during launch phase and asymmetry on mov-
ing parts and fuel tanks, and even fault on deploy-
ment devices may, however, drift the major princi-
pal axis of inertia away from the geometric z-axis,
thus resulting a non-zero sat . Once the phenomenon
starts, it is self amplified. The satellite moving parts
like cable booms, spinning about the tilted axis of
inertia, will look for a new equilibrium position, so
affecting the satellite mass distribution in a hopefully
convergent closed loop process.

During the last two decades, a series of studies
has been motivated by actual missions, specially by
those cnes which have long cable booms. Booms are
useful as antennas or as a mean of protection against
photo-electric-magnetic interference from the satel-
lite main body, for on board high sensitivity equip-
ments placed at the booms tip. Janssens [5-7] begun
by exploring the analogies of a simplified dynamic
model and afterwards stated a general approach to
evaluate the equilibrium position of the booms from
force equilibrium considerations. Brenner (8] evalu-
ated the effect of fuel consumption on the fuel tanks
moment of inertia. Goodwin and Massart (9] derived
the V-slit sun sensor measurements model for the
ISPM satellite in the presence of a sat while Van
der Beken [10] added considerations about statistics
and observability. An iterative algorithm for compu-
tation of the sat due to both axial (rigid) and radial
{wire) booms of ULYSSES was proposed by Gienger
[11]. Then Hugo [12] presented a detailed derivation
of the dynamic model for a spinning satellite with
wire booms from both Newton/Euler and Lagrange
methods. The accurately phased spin reference pulse
specified for ULYSSES required its few arc-minute
sat to be estimated [13] and taken into account by
the control system. More recently, Mortary and Ar-
duini [14] analyzed the attitude dynamics excited by
orbit thermal transitions of a spin stabilized satellite
carrying four equatorial antennas with a tip mass.

The present work follows and extends the works
of Janssens [7] and Gienger [11], and is an alterna-
tive analysis to the more complete study of Delgado
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and Miguel [15]. The spin axis tilt due to asymme-
tries on a spin stabilized satellite equipped with long
wire cable booms is evaluated. The problem is stated
as a constrained optimization one, since for a spin-
ning satellite on a torque free motion the equilibrium
state minimizes the kinetic energy under the angular
momentum conservation law, besides the geometri-
cal constraints of the booms. This was found to be
a suitable, general and systematic approach, even in
the presence of highly asymmetric equilibrium state.
The resulting non-linear equilibrium conditions were
briefly presented by an earlier work [16]. Now, three
procedures to solve the non-linear optimization prob-
lemn are described and numerical results from simu-
lation are presented.

2 NOMENCLATURE

c.0.m. center of mass.

{; Distance fromm the i-th wire boom c.0.m. to its at-
tached point at the rigid body part of the satel-
lite (see Figure 1).

m; Mass of the i-th wire boom.
iy Tip mass of the i-th wire boom.

p: Coordinates of the i-th wire boom c.o.m., at
stowed state, on {X : Y : Z] frame.

r; Coordinates of the i-th wire boom c.o.m. at de-
ployed state on [X : Y : Z] frame.

rg: Coordinates of tlle i:th wire boom c.o.m., at
stowed state onr [X : ¥V : Z] frame.

s Coordinates of the satellite c.o.m. at deployed
state on [X : Y : Z] frame.

sat Spin axis tilt.

u; Coordinates of the unit vector on the deployment
direction of the i-th wire boom on (X : Y : Z]
frame.

v Dummy veetor on R3,

w Coordinates of the satellite angular velocity vec-
tor on the [X : Y : Z] frame.

z Coordinates of the satellite spin axis unit vector
at deployed state on [X Y : Z] frame.

H Satellite angular momentum.
I Identity matrix on R3%3,
J Inertia tensor of the satellite at deployed state,

Jo Inertia tensor of the satellite at stowed state.

J Inertia tensor of the rigid body part of the satel-
lite.

Ji Inertia tensor of the i-th wire boom at deployed
state.

Jo: Inertia tensor of the i-th wire boom at stowed
state,

K Kinetic energy of the satellite rotational motion
around its center of mass.

L; Length of the deployed i-th wire boom.

M Total mass of the satellite.

M Mass of the rigid body part of the satellite.
P(v) Vectorial double product operator: v A{v Ae).

R Coordinates of the rigid body c.o.m. on [X : ¥ -
Z] frame.

R Coordinates of the rigid body c.o.m. on [X : Y :
Z] frame.

U Matrix containing the set of boom directions:
[y s ug -]

V Eigen-vector of .J.

[X : Y : Z) Body fixed right handled frame, aligned
with the satellite principal axes of inertia at
stowed state, and centered on its c.0.m., being
Z the major principal axis of inertia.

[X : ¥ : Z] Body fixed frame, parallel to [X : ¥ : Z]
frame, but centered on the satellite c.o.m. at
deployed state.

A Eigen-value of J.

#; Relative mass of the i-th wire boom.

pi Linear mass density of the +-th wire boom.

¢; Inertia ratio of the i-th deployed wire boom.

v; Lagrange multiplier for a wire boom constraint.

[[v]] Vectorial product operator: v A e.

A Vectorial product.

 Transposition operator.

+ Indicates optimal value.



3  ASSUMPTIONS

The following assumptions are made:

s The satellite consists of a rigid body part and a
given set of wire booms attached to it;

s The satellite at deployed state has achieved a
minimum energy steady-state, and is spinning
under a torque-free motion.

¢ BEach wire boom at stowed state is a point mass.

e Each wire boom at deployed state is a straight
rigid line, (stiffless and with neglectable cross
section) at unconstrained direction. with homo-
geneous linear mass density and a point tip mass
at its free extremity;

o M, Jo, {mi, piyLi,pi, for ¢ = 1,2,...} are the
exactly known inputs.

+ The satellite major principal axis of inertia re-
main unambiguous throughout the deployment
of the wire booms.

4 THE MINIMUM ENERGY APPROACH

Under the assumptions, the problem to be solved
may be stated as:

Find v}, s* and z* which minimize the ro-
tational kinetic energy of the satellite sub-
jected to the physicel constraint due to the
anguier momentum conservation law for a
rigid body torque-free motion and to the ge-
ometrical constraints:

Min: K(w,U)= %w'.;(v)w, (1)
Subj. to:  [J(Ww][J(U)Iw] =HE,  (2)
uiu; = 1. {3)

The necessary extremum condition can e obtained
from the Lagrange multipliers method. Let be the
extended cost function K,

Ke(w U v} = K(w,U}+%[H2—w’.]2(U)w]

+ > gfu;u,- -1 (4)

i

The partial derivatives of K. with respect to
w and u; must vanish at its extremum. This leads
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straightforwardly to the following equations:

J(s* e Aiw”, (5)

1 6 * * * Wi
Ea[w ’J(U )w } g, (6)

which, in view of Equations 1 and 2 yields:

H2
K(w*,U'} = "Q—A— (7)

From Equation 5, w* is one of the eigen-vectors
of J(U*}. From Equation 7 one may easily conclude
that it must be that one whose eigen-value is the
biggest, which means:

z (8)

> | 1

5 THE INERTIA TENSOR

In order to sclve Equation 6, one need to ex-
press the inertia tensor J as a function of the direc-
tions u;. From the assumptions, geometrical consid-
erations and center of mass definition, one has:

M = M"'Zmiv (9)
R = R+s, (10)
pi = roi+s, (11}
ry = v+ L, (12)
MR+Y mip; = 0, (13)
IJIR+Z-mir,; = 0. (14)

From Equations 11 to 14 it follows:
ri=pi— s+ liug, (15)
M(R-R) +Zm,;(p,: —r)=0. (16)
i

Then, direct substitution of Equations 9, 10 and 15
into Equation 16 leads to a stmple expression to the
satellite center of mass at a deployed state:

5 = prl,-u,-, (17)
kS

where p; is the relative mass of the i-th wire boom,
defined by:
-
Hi = ﬁ‘ (18)
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The quantities m; and I;, as well as the inertia ratio
o;, may be easily obtained as a function of the input
parameters iy, pi, Li and p;.

Now, by the Steiner theorem one can write:

Jo = [T-MPR)]+ E[Jo,: - miP(p:)),(19)

J

[ = BP(R)) + 0 = mP(ro), (20)

where P is the vectorial double product operator,
defined by:

Plv) = —(v'v)I + v, (21)
in such way that:

Plv)vr = v A (v Avy), Yo € R, (22)

Since Jo; is zero and J; is:
Ji = —mioiP(us), (23)
after some algehraic handling the following expres-
sion can be obtained from Equations 19 to 23:

J

= = §+P(s]—2m{(5?+03)7’(w)

+ L ((pall{les]) + ([wal] {fpd])} (24)

6 THE ORTHOGONAL CONDITION

Once the inertia tensor J has been conveniently
expressed as a function of U, one can solve the neces-
sary extremum condition, Equation 6, which in view
of Equation 8 can be rewritten as:

19 J{U* -
2o [P et )
with & given by:
- A2
by = MHZV@. (26)
Now, from Equation 24 one has:
JU J
z’%z = z'ﬁz +8'P(2)s - ;m—[Qlt-p;'P[z)u,;
+ {2+ oD P(2)us). (27)

Having in mind that s represents an explicit function
of u given by Equation 17, Equation 25 yields:

(I~ 22")lilpi — ™) + (l? + og)u:] = uy.  (28)

Pre-multiplying its both sides by =z’ it results:
Hiz'ul =0, (29)

which holds if #; vanishes or if u} is normal to z
either. In the first case, Equation 28 implies that
vector §; defined by:

2
Biz=pi—s"+ {1+ 25 ) u, (30)
12

lies on the z-axis. In the second peossibility, Equa-
tion 28 implies that:

(I = zz"{ps — s") = [ — (F + 02)]u], (31)

which means that u] is normal to zA{p; —s*), besides
of being normal to z. These orthogonal conditions,
together with the normal constraint, form a set of
nonlinear equations which determine u; unless by a
signal ambiguity. They may be compactly rewritten
as:

gi(uf, 5%, 2) =0, (32)
where g; is the vectorial function defined by:
wiu;— 1
gil1y, 8, 2) = 2'u; . (33)

{il=litpi — )Y

So, there are four candidate solutions at whole
for the direction of each wire boom, ;. From force
equilibrium simple considerations, those two of them
with #; = 0 are unstable and correspond to local
maxima of the kinetic energy. From those with =
normal to z, the one with «/(p; — s) < 0 corresponds
to a saddle point of the kinetic energy, stable around
z A u; but unstable around the z axis. The other one
is the stable equilibrium direction which corresponds
to the minimum kinetic energy that the work is con-
cerned about.

The solutions here presented could be obtained
from physical considerations about the centrifugal
force, but the minimum energy approach fits better
for the purpose of numerical procedure development,
in the sense that it offers the natural background to
the interpretation of the iterative solutions. Further-
more, its is a systematic approach, from which every
possible solution comes up naturally.

As a final comment to this section, one should
note that if p; = 0 for the whole set of wire booms,
then Equation 31 holds for any set of directions wu;
normal to z such that s remains null. The equilib-
rium of the set of wire booms becomes indifferent to
rotations around z. As a consequence, one can infer
a weak stability around z if p; << I;.



7 THE NUMERICAL PROCEDURES

Although Equation 33 has a simple geometrical
interpretation, it repersents a nonlinear equation sys-
tem, which in the general case could be solved by
numerical procedures only. Three of them are de-
scribed through this section. The first and simplest
one is similar to the iteractive procedure of Gienger
[11], where convergence was told to be achieved in
five steps at most for the minute sat magnitude pre-
dicted to UL'YSSES due to its mechanical tolerances.
It is a direct optimization procedure, which takes into
account virtual displacements only, towards the min-
imum energy eqiulibrium state for the wire booms.

Nevertheless, for highly tilted asymmetric con-
figurations, the situation may be quite different as
it will be shown. Actually, for some numerical ex-
amples, after hundreds of steps convergence has not
heen achieved at all. A possible explanation seems to
be related with the conjecture that the Lipschitz con-
stant of the algorithm should be the ratio of the first
two eigen-values of the satellite inertia tensor [11],
which of course may variate considerably along the
iterative process. However a large sat is unlikely, it
may happen due to failure on deployment devices.
Therefore, at least for those odd, but nonetheless
possible cases, the direct iteration approach is not
suitable,

The conceptual problem with the direct iteration
procedure is that it disregards the closed loop effect
of a correction on the boom direction. The proper
way of taking it into account is to solve the non linear
set of necessary conditions by the Newton-Raphson
method. Such indirect optimization method is the
second proposed procedure.

Even though it never failed to find the equilib-
rium solution in all numerical examples, convergence
of the Newton-Raphson procedure has not been the-
oretically assured. S0, a third procedure is proposed
as an extra tool to deal with strongly iil condi-
tioned cases. That is the predictor-corrector proce-
dure, whose basic idea is to split the original problern
inte a convergent sequence of similar ones, the solu-
tion of each of them being used to predict a close
enough initial guess to the next one. The sequence
starts with the stowed state and stops at the final
deploved state. Each elementary problem of the se-
quence could be solved by any of the two previous
procedures, on the so called corrector step. A linear
predictor is then applied to find the initial guess to
the next elementary problem. The number of inter-
miediate states may always be chosen high enough to
assure convergence.
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8 NUMERICAL RESULTS

The algorithms described on the section above
have been implemented using MATLAB. To com-
pare their performances under different asymmetry
levels, several boom deployment failure cases were
simulated, where two among four wire booms de-
ployed only 20% of their full lenghts. The satellite
input parameters are:

M=30Kg, L={7m 35m 7m 35m },
360Kg/m? 0 0
J= ] 110Kg/m? 0 )
0 0 430Kg/m?
1.5m —-1.5m 0 0
p= 0 0 Am —.3m
-4m .4m —4m —.4dm

The boom mass was varied from less then 100g
up to few Kilograms and the results are sohwn in
Table 1. The number of iterations and elapsed time
refers to the following convergence criteria: the cor-
rections on both spin axis tilt and ¢.o0.m. offset are
smaller then 1 arc second and 0.1mm, respectively.

9 CONCLUSIONS

Three different procedures to evaluate the spin
axis tilt of a spin stabilized satellite with a general
set of wire booms have been tested on a boom de-
ployment failure case. The Direct Iteration Proce-
dure was found the simplest and fastest one, suit-
able for a slightly tilted satellite (up to 13 degrees
for the simulated case). Nevertheless, possibility of
failure on the boom deployment system may yield a
strong mass asymmetry around the spin axis. In such
cases, the Direct Iteration Procedure may not con-
verge. By the other hand, in all of the study cases,
the Predictor-Corrector Procedure was of no bene-
fit, since the Newton-Raphson Procedure was always
able to find a solution faster then it. Anyway, it re-
mains as a proper tool to assure convergence.

As a final remark, the minimum energy approach
offered a suitable background and a systematic way
to find the equilibrium condition of the wire boom
problem, which suggests it would also be able to deal
with other non rigid devices like a fuel tank.
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Table 1: PERFORMANCE OF THE TILT EVALUATION PROCEDURES

tip mass | cable linear tilt ¢.0.m. offset Direct Iteration Newton Raphson Predictor-Corrector
[Keg] density [g/m) [mm)] # steps | time [s] | # steps | time [s[ | # steps | time [s]
025 2 37 7 11 3 16 R 11 16 31
250 10 3°5¢ 44 50 6 86 44 56 79 7.2
500 25 750 a3 90 1.2 158 78 112 | 142 13.0
750 50 1136’ 119 127 1.5 225 11.0 177 | 196 18.6
1.000 50 12°23° 128 140 1.6 248 11.7 201 | 213 203
1.250 50 1303’ 136 179 20 267 12.9 224 | 227 23.5
1.500 50 13°39/ 143 * - 285 13.6 245 | 239 23.9
2.000 50 14°38’ 156 * - 314 14.7 243 | 219 22.4

* Convergence not achieved after 5000 steps

Acknowledgement

The author is indebted to Dr. L. Fraiture of

ESOC.

(1

2l

(3]

4

(9]

(6]

(7]

8]

References

Wertz, J.R. (Ed.) Spacecraft attitude determina-
tion and control D.Reidel, London, 1978. (As-
trophysics and Space Sciences Library)

Kane, T.R., Likins, P.'W. and Levinson, D.A.
{eds.) Spacecraft Dynamics. Mc Graw-Hill, New
York, 1983.

Hughes, P.C. Spacecraft ettitude dynamics. John
Wiley & Sons, New York, 1986,

Fraiture, L.; Wiengarn, N. and Chambaz, B. “Ir-
regularities in the motion of spin stabilized earth
satellites.” Proceedings of the ESA Symposium
on Spacecraft Flight Dynamics. Darmstadt, May
18-22, 1981.

Janssens, F. “Some elementary considerations
about the motion of long cable booms of a spin-
ning satellite.” OAD/ESOC Working Paper 37,
ESOC, Darmstadt, Germany, Aug. 1975.

Janssens, F. “Some elementary considerations
about the motion of long cable booms of a spin-
ning satellite. Part 2." OAD/ESOC Working
Paper 37, ESOC, Darmstadt, Germany, Aug.
1975,

Janssens, F. “Consequences of boom or central
body asymmetries for the equilibrium configu-
rations of GEQS." OAD/ESOC Working Paper
43, ESOC, Darmstadt, Germany, Oct. 1975.

Brenner, H. “Formulas for the fuel consumption
and its influence on the moment of the inertia
of a satellite.” OAD/ESOC Working Paper 98,
ES0C, Darmstadt, Germany, Aug. 1977.

[9] Goodwin, A. and Massart A. *ISPM sun aspect

angle determination and sun aspect angle dead-
band setting in the presence of a spin axis ¢ilt.”
OAD/ESOC Working Paper 244, ESOC, Darm-
stadt, Germany, Jan. 1984,

[10] Van detr Beken, Ch. “ISPM spin axis tilt mea-

surements.” OAD/ESOC Working Paper 282,
ESQOC, Darmstadt, Germany, Nov. 1984,

[11] Gienger, G. “The effect of antenna booms on

the spin axis tilt of ULYSSES.” OAD/ESOC
Working Paper 331, ESOC, Darmstadt, Ger-
many, June 1988.

[12] Hugo, D.v. “Detailed dynamical model for spin-

ning rigid s/c with wire booms.” OAD/ESOC
Working Paper 422, ESOC, Darmstadt, Ger-
many, Apr. 1990.

[13] Gienger, G. “ULYSSES principal axis tilt de-

termination and C-loading.” Proceedings of the
ESA Symposium on Spacecraft Flight Dynamics.
Darmstadt, Sep. 30 - Oct. 4, 1991.

[14] Mortari, D. and Arduini, C. “Attitude dynamics

indueed by thermal transitions on a spin stabi-
lized cable boom system.” (AAS 94-104) Space-
flight Mechanics 1994, Vol 87, Part 1, Advances
in the Astronautical Sciences. J.E. Cochran Jr.;
C.D. Edwards Jr. 5.J. Hoffman and R. Hold-
away {eds.). Proceedings of AAS/AIAA Space-
flight Mechanics Meeting, Cocoa Beach, Florida,
Feb. 14-16, 1994. (Univelt, San Diego, CA,
1994.) pp. 533-65.

[15] Delgado, I. and Miguel, J. “Study on Spin Axis

Tilt on Stabilized S/C - Part 1.” Final Report
GMVSA 2057792 V2/93 Grupo de Mecanica del
Vuelo, Madrid, Spain, Feliruary, 1993.

[16] Lopes, R.V.F. “Configuragdes de equilibrio para

a atitude de satélites artificiais equipados com
extensdes lineares e estabilizados por rotagio.”
Anais, VI Coléquio Brasileiro de Dinamica Or-
bital, secdo 6. (Abstract) IGCE/UNESP, Aguas
de Sao Pedro, 23 a 26 de novembro de 1992,



