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ABSTRACT: This paper shows a survey on space trajectories in the circular restricted
three-body problem. In this situation, a spacecraft moves under the gravitational forces of
two bodies, that are assumed to be in circular orbits. First of all, there is a search for orbits
that can be used to transfer a spacecraft from one body back to the same body or to transfer
a spacecraft from one body to the respective Lagrangian points L, and L;. The method
employed is to solve the Two-Point Boundary Value Problem. The close approach between
the spacecraft and the celestial bodies involved is also studied in the three-dimensional
space. Then, the gravitational capture is studied. It is a characteristic of some dynamical
systems, like the three- or four- body system, where a hyperbolic orbit around a celestial
body can be transformed in an elliptic orbit without the use of any propulsive system.

KEYWORDS: Astrodynamics, Orbital Maneuvers, Restricted Problem, Gravitational
Capture, Swing-By, Lagrangian Points.

1. INTRODUCTION

This paper has the goal of showing a survey of trajectories to make orbital transfers of a
spacecraft that is traveling in space under the gravitational forces of two bodies. It shows
some results available in the literature, as well as some unpublished results in that topic.
First of all, it is considered the problem of finding transfer orbits in the restricted
problem. Several situations are studied individually. A family of transfer orbits that can
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transfer a spacecraft from the Moon back to the Moon again (passing close to the
Lagrangian point L, in most of the cases) with minimum fuel consumption is considered.
The family of transfer orbits from the Moon back to the Moon that requires an impulse with
magnitude lower than the escape velocity from the Moon is studied and explained
separately. Then, an extension is made to study similar trajectories for the Sun-Earth
system, including a new suggestion to build a cycler transportation between the Earth and
the Lagrangian point L.

After that, a swing-by maneuver in three dimensions is studied. The swing-by
maneuver is a very popular technique used to decrease fuel expenditure in space missions.
The most usual approach to study this problem is to divide the problem in three phases
dominated by the “two-body” celestial mechanics. Other models used to study this problem
are the circular restricted three-body problem (Broucke [1], Broucke and Prado [2], Prado
[3]) and the elliptic restricted three-body problem (Prado [4]). In the present paper, the
swing-by maneuvers are also studied under the model given by the three-dimensional
circular restricted three-body problem. Particular attention is given to study the inclination
change due to this maneuver.

Finally, the problem of gravitational capture in the regularized restricted three-body
problem is studied. For gravitational capture it is understood a phenomenon where a
massless particle changes its two-body energy around one of the primaries from positive to
negative. This capture is always temporary and, after some time, the two-body energy
changes back to positive and the massless spacecraft leaves the neighborhood of the
primary. The importance of this temporary capture is that it can be used to decrease the fuel
expenditure for a mission going from one of the primaries to the other, like an Earth-Moon
mission (Yamakawa [5]). The goal is to apply an impulse to the spacecraft during this
temporary capture to accomplish a permanent capture. Since the goal of this impulse is to
decrease the two-body energy of the spacecraft, its magnitude will be smaller if applied
during this temporary capture.

2. MATHEMATICAL MODEL

For the research performed in this paper, the equations of motion for the spacecraft are
assumed to be the ones valid for the well-known three-dimensional restricted circular three-
body problem. The standard dimensionless canonical system of units is used, which implies
that: the unit of distance is the distance between M| and Mp; the mean angular velocity (o)
of the motion of M and M3 is assumed to be one; the mass of the smaller primary (M) is

given by p = m, /(ml +m2) (where m; and m, are the real masses of M| and Mpy,

respectively) and the mass of M» is (1-u); the unit of time is defined such that the period of

the motion of the two primaries is 2m and the gravitational constant is one. There are
several systems of reference that can be used to describe the three-dimensional restricted
three-body problem (Szebehely [6]). In this paper the rotating system is used. In the
rotating system of reference, the origin is the center of mass of the two massive primaries.
The horizontal axis (x) is the line that connects the two primaries at any time. It rotates with
a variable angular velocity in such way that the two massive primaries are always on this
axis. The vertical axis (y) is perpendicular to the (x) axis. In this system, the positions of the
primaries are: X, =-M, X, =1-H, y, =y, =0. In this system, the equations of motion for
the massless particle are (Szebehely [6]):
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where r, and r, are the distances from M, and M,.

3. TRANSFER ORBITS IN THE RESTRICTED PROBLEM

The problem considered here is the problem of finding trajectories between two points that
are fixed in the rotating coordinate system. This is the famous TPBVP (two point boundary
value problem). There are many orbits that satisfy this requirement, and the way used in
this research to find families of solutions is to specify a time of flight for the transfer. Then,
the problem becomes the Lambert's three-body problem, that can be formulated as: "Find
an orbit (in the three-body problem context) that makes a spacecraft to leave a given point
A and go to another given point B, arriving there after a specified time of flight". Then, by
varying the specified time of flight, it is possible to find a whole family of transfer orbits
and study them in terms of the AV required, energy, etc. The transfers considered here are
all restricted to the plane of motion of the two primaries.

Several families made of different trajectories to make a transfer from M, back to the

M, and to the Lagrangian points are shown in Prado and Broucke [7] for the Earth-Moon

system and in Prado and Broucke {8] for the Sun-Earth system. A new pair of transfers
from the Moon back to the Moon is showed in Fig. 1, one involving a hyperbolic transfer
(faster) and one involving an elliptic transfer (slower).
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Figure 1 - Transfer Orbits in the Earth-Moon System, as Seen in the Rotating Frame.



An interesting type of transfer was found (Prado and Broucke [7]) that requires an impulse
with a magnitude lower than the escape velocity from the Moon. This possibility is opened
by the restricted three-body problem model. It uses the perturbation of the third-body (the
Earth in this case) to help the massless particle to escape from the Moon (the first body),
and it decreases the AV required for the maneuver. Remember that the escape velocity is
defined as the velocity required to escape one celestial body considering the system
governed by the "two-body" celestial mechanics. Figure 2 shows one of those transfers.
The initial conditions in canonical units for this trajectory are: x = 0.987871437, y = -
0.004786681, x = 2.220000000, y = 0.000000000, Vesc = 2.251139608, AV-Vesc = -
0.031139608, where Vesc is the escape velocity from the Moon.

Figure 3 shows a transfer from the Moon to the Lagrangian points and back to the
Moon, also from (Prado and Broucke [7]). This trajectory pass twice by the Lagrangian
points visited. The initial conditions in canonical units for this trajectory are: x =
0.987871437, y = -0.004500000, x = -0.100000000, y = -3.063600000, Vesc =
2.321739099, AV-Vesc = 0.743349025.

Several trajectories to transfer a spacecraft between the Earth and the Lagrangian
points with minimum AV are shown in Prado and Broucke [8]. In the present paper one of
them is shown in details, because it generates results for the construction of a cycler
transportation between the triangular Lagrangian points and the Earth. The spacecraft
leaves the Earth and visits the Lagrangian points in the order L, (in 1.81 years), L; (in 5.49
years), Ls (in 9.20 years) and then it returns to the Earth's neighborhood (in 11.00 years).
Fig. 4 shows the first two revolutions of this trajectory. The particular important point of
this orbit is that after the close approach with the Earth (in the end of the first revolution)
the spacecraft starts a new tour to the Lagrangian points, in the reverse order. Integrating
this trajectory for a longer time it is possible to see that the first five revolutions have
alternating directions of motion.
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Figure 2 - Transfer from the Moon back to ~ Figure 3 - Transfer from the Moon to the
the Moon with AV-Vesc <0. Lagrangian points.

The "swing-by" that reverses the direction of motion discovered in this trajectory can be
used to build a cycler transportation system between the Earth and the Lagrangian point Ls
as shown in Prado and Broucke [8]. In the present paper, an extension is made to build a
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cycler system for the Lagrangian point L,, by using the rairror image theorem (Miele [9]). It
is necessary to find the mirror image of the trajectory linking the Earth and the Lagrangian
point Ls. Fig. 5 shows this trajectory. Note that the mirror image of the legs for an Earth-
bound trip in now a L,-bound trip and the mirror image of the L;-bound leg is now the
Earth-bound leg. The time-line for a complete cycler is: t = 0: The spacecraft leaves L,
from rest (as seen in the rotating frame) with an impulse of AV = 0.0274 (816 nvs); t = 5.82
years: The spacecraft arrives at the Earth, makes a swing-by to reverse the sense of motion
and it starts going back to L,; t = 7.62 years: The spacecraft arrives at L,. A new impulse of

AV = 0.0377 (1003.8 m/s) is applied to send it back to the Earth and to start the cycler
again.
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Figure 4 — Trajectory linking the Earth and the ~ Figure 5 - The Cycler System Between the
Lagrangian points. Earth and L,.

4. THE SWING-BY IN THREE DIMENSIONS

The three dimensional swing-by maneuver consists of using a close encounter with a
celestial body to change the velocity, energy, and angular momentum of a smaller body (a
comet or a spacecraft). Fig. 6 shows the sequence for this maneuver and some important
variables.



Figure 6 - The Swing-By in Three Dimensions

It is assumed that the system has three bodies: a primary (M;) and a secondary (M,) body
with finite masses that are in circular orbits around their common center of mass and a third
body with negligible mass (the spacecraft) that has its motion governed by the two other
bodies. The spacecraft leaves the point A, passes by the point P (the periapsis of the
trajectory of the spacecraft in its orbit around M) and goes to the point B. The points A and
B are chosen in a such way that the influence of M at those two points can be neglected
and, consequently, the energy can be assumed to remain constant after B and before A (the
system follows the two-body celestial mechanics). The initial conditions are clearly
identified in Fig. 6: the periapsis distance r, (distance measured between the point P and the
center of M), the angles o and B and the velocity V,. The distance r, is not to scale, to
make the figure easier to understand. The result of this maneuver is a change in velocity,
energy, angular momentum and inclination in the keplerian orbit of the spacecraft around
the central body. A numerical algorithm to solve the problem has the following steps: 1)
Arbitrary values for the parameters rp, Vp, o, B and y are given; 2) With these values the
initial conditions in the rotating system are computed. The initial position is the point (Xj,

Yi, Zi) and the initial velocity is (Vxi, Vyi, Vzi), where:

X, =1-p-+r, cos(B)cos(c) @
Y, =1, cos(B )sin(ct) %)
Z, =r,sin(p) ©)
Vy ==V, sin(y) sin(B) cos(a) - V, cos(y) sin(o)+ I, cos(B)sin(c) @)
Vy, ==V, sin(y) sin(B) sin(a) + V, cos(y) cos(o} - r, cos(B)cos(ct) (8)
Vg =V, cos(B)sin(y) ; 9

3) With these initial conditions, the equations of motion are integrated forward in time until
the distance between M; and the spacecraft is larger than a specified limit d. At this point
the numerical integration is stopped and the energy (E+) and the angular momentum (C+)
after the encounter are calculated; 4) Then, the particle goes back to its initial conditions at
the point P, and the equations of motion are integrated backward in time, until the distance



d is reached again. Then the energy (E-) and the angular momentum (C.) before the
encounter are calculated.

An interesting question that appears in this problem is what happens to the inclination
of the spacecraft due to the close approach. Some results regarding this question for the
Earth-Moon system are shown in Felipe and Prado [10]. To investigate this fact the
inclination of the trajectories were calculated before and after the closest approach. To
obtain the inclinations the equation cos(i) = Cz/C is used, where C, is the Z-component of
the angular momentum and C is the magnitude of the total angular momentum. Fig. 7
shows some new results for the case y = 0 in the Sun-Jupiter system. This constraint is
assumed, because it is the most usual situation in interplanetary research, since the planets
have orbits that are almost coplanar. The horizontal axis represents the angle o, and the
vertical axis represents the angle . The variation in inclination is shown in the contour
plots. All the angles are expressed in degrees.

Several conclusions come from those results: i) when p = 0° (planar maneuver) the
variation in inclination can have only three possible values: £180°, for a maneuver that
reverse the sense of its motion, or 0° for a maneuver that does not reverse its motion. Those
numerical results agree with the physical-model, since the fact that B = 0° implies in a
planar maneuver that does not allow values for the inclination other than 0° or 180°; ii)
when B =+90°the variation in inclination is very close to zero; iii) when o = 0° or o0 =
180° there is no change in the inclination. This is in agreement with the fact that a
maneuver with this geometry does not change the trajectory at all; iv) when the periapsis
distance or the velocity at periapsis increases, the effects of the swing-by in the maneuver
are reduced. In the plots shown, this can be verified by the fact that the area of the regions
where the variation in inclination is close to zero increases.

There is also analytical expressions for the variations in velocity (AV ), energy (AE),

angular momentum (AC) and inclination ( Ai ) available in the literature (Prado [11]). They
are:

AV =V, -V, = -2V _sind(cos c.cos B, cos B sina, sinf) (10)
AV =|AV|=2V,sind (11)
AE = —12— (V{,2 -V? ): —2V,V, cosPsinasind (12)
AC = C‘U -C, =2LV_(0,sinBsind, — cosPsina sind) (13)
|G| = 2LV, sind(cos? psin’a. + sin?p)” (14)

Using the definition of angular velocity m=% it is possible to get (for the z-

component of the angular momentum C,, and for the inclination before (ij) and after (ip) the
swing-by):
0AC, =-2V,V_ cosPsinasind = AE (15)
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For the planar maneuver (§ = y = 0°), those equations are reduced to the well known
results:

AE = -2V, V_ sino sind (18)
AV =2V, sind (19)
AC =2LV_ sina sind (20)

Where V, and V, are the velocity of the spacecraft with respect to the inertial frame before
and after the swing-by, respectively, Ci and CO are the correspondent angular momentum,

L is the distance between the secondary body and the center of mass of the system, V_ is

the velocity of the spacecraft with respect to the secondary body when the approach starts,
& is half of the total rotation angle described by the velocity vector during the maneuver.
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Figure 7 — Inclination chance resulted from a close approach in the Sun-Jupiter system.

5. THE GRAVITATIONAL CAPTURE

Then, attention is given to the problem of gravitational capture. For gravitational capture it
is understood a phenomenon where a massless particle changes its two-body energy around
one of the primaries from positive to negative. This capture is always temporary and, after



some time, the two-body energy changes back to positive and the massless spacecraft
leaves the neighborhood of the primary. Studies related to this problem are available in
Yamakawa et. al. [12]; Yamakawa [5]; Vieira-Neto and Prado [13][14][15] and Vieira-
Neto [16]. The importance of this temporary capture is that it can be used to decrease the
fuel expenditure for a mission going from one of the primaries to the other, like an Earth-
Moon mission. The goal is to apply an impulse to the spacecraft during this temporary
capture to accomplish a permanent one. Since the impulse decrease the two-body energy of
the spacecraft, its magnitude will be smaller if applied during this temporary capture. An
important application of this technique can be found in trajectories to the Moon with fuel
consumption smaller than the fuel required by the Hohmann [17] transfer (Belbruno,
[18][19][20]; Krish [21]; Yamakawa [5]).

In this paper the main concern is to study the forces involved in this maneuver. The
main force is the gravitational force due to the central body, in this case, the Moon. The
others forces are perturbations on the movement of the massless particle. So, to understand
the behavior of the perturbing forces, an analysis was made by measuring the components
of each force. The chosen components are in the radial, transversal and in the direction of
motion of the massless particle. In the radial direction, the positive sign means that the
force is acting opposite to the direction of the body. In the transversal direction, the positive
sign indicates that the force is acting in the counter-clockwise direction. In the direction of
motion, the force is positive when it is being applied in the direction of the movement of
the particle. Fig. 8 shows one of those trajectories and the forces acting in the spacecraft in
every moment of time. The curves are: 1: Gravitational radial force; 2: Gravitational
transversal force; 3: Centripetal radial force; 4: Centripetal transversal force; 5: Resultant
radial force; 6: Resultant transversal force; 7: Gravitational force in the direction of motion;
8: Centripetal force in the direction of motion; 9: Resultant force in the direction of motion.
In the radial direction the force due to the Earth has a negative sign. This means that the
force is pushing the spacecraft to an opposite direction to the Moon. So, it is slowing down
the object. In the transversal direction, this force is also negative, which means that it is
accelerating the spacecraft in the clock-wise direction. In the direction of motion the sign is
also negative, breaking the spacecraft all the time. The centripetal force acts in an opposite
direction from the gravity force due to the Earth, but with smaller absolute values. So the
net result is due to the gravity force of the Earth, which makes the vehicle to reduce its
velocity. The resultant on the transversal direction accelerates the spacecraft in the clock-
wise direction. It is visible that the components radial and in the direction of motion of the
forces are very close to each other. This is a consequence of the fact that the trajectory is
close to radial in most of the trajectory.
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The most relevant component is in the direction of motion. This component of the resulting
forces show that, independent of where the particle came, it is breaking the particle all the
time. The transversal component ever tries to pull the particle to the Earth-Moon axis. The
radial component of the resultant force has the same effect of the component in the
direction of motion. It also shows that the particle is loosing radial velocity when
approaching the central body. These forces slow down the spacecraft working opposite to
the movement of the spacecraft. This is equivalent of applying a continuous propulsion
force against the motion of the spacecraft. In the radial direction the gravitational force due
to the Earth and the centripetal force tends to equilibrium, but ever rest some work against
the movement. This is also true for the component in the direction of motion. In the
transversal direction the forces pull the particle to the Earth-Moon axis. Understanding
these behaviors explain why a particle with a velocity slower than the escape velocity can
escape from the Moon. It is the opposite case for the capture and it happens for all the cases
studied. Some analytical results with respect to this problem is available in Prado [22].

6. CONCLUSIONS

In this paper, trajectories in the planar restricted three-body problem with near-zero AV to
move a spacecraft between any two points in the group formed by the Earth and the
Lagrangian points L;, L,, L; in the Earth-Moon and Earth-Sun systems are found. It is
shown how to apply these results to build a cycler transportation system to link all the
points in this group. For the Sun-Earth system, it is also shown how to use one or more
"swing-by" with the Earth to build a cycler transportation system between the Earth and the
Lagrangian points L, and L, with small AV required for maneuvers in nominal operation.
Looking at the results for the Earth-Moon system, we can conclude that: i) There are
trajectories with AV near the escape velocity to move a spacecraft from the Moon back to
the Moon in the Earth-Moon system, using the restricted three-body problem as a model,; ii)
There is a new type of trajectory for this transfer that requires a AV under the escape
velocity; iiil) There are trajectories connecting the Moon and the Lagrangian points L,, L,
and Ls; iv) There are trajectories that make consecutive close approaches with the Earth and
the Moon. Those orbits are shown in this paper and they can be used in three situations: a)
To transfer a spacecraft from the Moon back to the Moon; b) To transfer a spacecraft from
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the Moon to the respective Lagrangian points L;, L, and Ls; ¢) To transfer a spacecraft to an
orbit that passes close to the Moon and to the Earth several times, with the goal of building
a transportation system between these two celestial bodies.

The three-dimensional restricted three-body problem is also used to study the swing-by
maneuver. The effects of the close approach in the inclination of the spacecraft is studied
and the results show several particularities, like: § = 0° allows only +180° and 0° for Ai,
B =190°0r o = 0° or 180° implies in Ai = 0°, etc.

Some particularities of the gravitational capture problem are also studied and the forces
acting are also shown. This study answers some questions about the phenomena. Two of
the forces are relatively weak, and they act as disturbing forces: the gravitational force due
to Earth and the centrifugal force. These forces working together slow down the spacecraft
with a force in the opposite direction of the spacecraft’s motion. This is equivalent of
applying a continuous propulsion force against the motion of the spacecraft. In the radial
direction the gravitational force due to Earth and the centripetal force tends to equilibrium,
but ever rest some work against the gravitation of the central body. It is also true for the
components in the direction of motion for these forces. In the transversal direction, the
forces pull the particle to the Earth-Moon axis. The understandings of these behaviors
explain why a particle with a velocity slower than the escape velocity can escape from the
Moon. It is the opposite case for the capture and it happens for all the cases studied.
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