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Abstract 
The column generation and the Dantzig-Wolfe decomposition methods are well known as efficient 
methods for treatment of linear programming problems with huge number of variables. One restrict 
master problem is identified and new columns are generated by a subproblem. It is also well known 
that these methods presents stabilizing issues. In order to ease these problems, the norm of the dual 
variables is kept under control, in order to avoid great variations. The Lagrangean/surrogate relaxation 
was proposed recently for stabilizing subgradient methods. This work proposes the combination of the 
column generation method and Lagrangean/surrogate relaxation as a stabilization method. Some 
computational results are showed for the p-median problem and several applications are suggested. 
Some opening questions are arising for future investigation. 
 
1. Introduction 
 

The recent computer science advances, with the construction of faster and more reliable 
equipments, provide robust systems for Mathematical Programming [3], allowing the resolution of 
problems with several constraints and/or variables. These tools allow that inherently complex 
problems can also be solved in acceptable computational time, by usage of combined techniques as, 
for example, the Column Generation Method applied to Integer Programming problems. Based on 
Dantzig and Wolfe [5], the first practical application of this technique was the determination of one-
dimensional cutting patterns (Gilmore and Gomory [14, 15]) and, since then, its usage diffuses in an 
intensive way [2, 4, 6, 7, 8, 21, 26, 29, 31, 33, 43, 35]. 

The column generation technique can be employed for linear problems with huge dimensions, 
when all the columns are not known a priori, or when it is intended solve a problem using Dantzig-
Wolfe decomposition, where the columns correspond to the extreme points of the convex set of 
feasible solutions of the problem. In this case, the resolution algorithm interchanges between a 
subproblem and a restrict master problem. 

Approaches based on the column generation technique appears in a large number of recent works, 
as an alternative to nonlinear methods based in Lagrangean relaxation (Bundle and subgradient 
methods) to solve huge integer problems [1]. A search for articles in “Web of Science� on November 
27th, 2001, with the subject �column generation�, turned into 220 works, 93 only in the last three 
years. 

The straight application of the column generation method usually produces a large number of 
counterproductive columns, which difficults the convergence to the solution of the problem. In this 
case, the dual variables oscillates around the optimal dual solution, then methods that avoid this 
performance can accelerate the resolution of the problem. Among these are the Boxstep Method [23], 
that restricts the searching of the dual solutions to a limited region that contains the dual solution as 
center; the Analytic Center Cutting Plane Method [9], that uses the analytic center of a region of dual 
function as solution, instead of the optimal solution, not permitting strong changes between two dual 
solutions in two consecutive iterations; the Bundle Method [23], that combines trust regions and 
penalizations, so the dual solutions do not vary so much from one iteration to another. Others methods 
are described in Neame [26]. 



This work intends to study the equivalence between the column generation method, arising from 
the Dantzig-Wolfe Decomposition of a problem, and the Cutting Plane Method (Kelley [18]) applied 
to the related Lagrangean problem. Our aim is to discuss and suggest research themes based on the 
application of the Lagrangean/surrogate relaxation described in Narciso and Lorena [25] as a 
stabilizing method for the column generation process, obtaining dual solutions with improved quality, 
accelerating the resolution of the original problem. 

The work is organized as follows. Section 2 introduces the column generation process, the 
Dantzig-Wolfe decomposition and the Lagrangean relaxation, applied to an integer linear program. In 
Section 3 is described the combined use of the Lagrangean/surrogate relaxation and the column 
generation method. Some possible applications are proposed in Section 4, and Section 5 presents some 
opening questions about the theme. 
 
2. Column generation 
 

Integer Linear Problems deals with the optimization of a objective function over a feasible set, so 
that some or all variables must assume integer values. In particular, consider that the objective 
function and the equations that form the feasible set of the problem are linear. 

Consider the following problem of Integer Programming: 
 

zPI  =  cx
x

max  

 subject to: bxA =        (2.1) 
    x ∈  Zn, 
 
where x is the n-dimensional vector of integer variables of problem. 

The constraint set bxA =  can be partitioned in two constraint sets, where one of them presents 
some structure that can be explored in advantageous way. Hence, after partitioning, the problem can 
be stated as: 
 

zPI = cx
x

max  

 subject to: Ax = b 
   A’x = b’ 
   x ∈  Zn. 
 

Defining W = Zn ∩ {x : A’x = b’}, the problem will be formulated as: 
 
  zPI = cx

x
max  

 subject to: Ax = b        (2.2) 
   x ∈  W. 
 

Suppose that the set W is finite, that is, the polyhedron {x : A’x = b’} is limited, and {xk: k ∈  K} is 
the set of extreme points of the convex hull of W, conv(W), then any point x ∈  W can be written as the 
convex linear combination of a finite number of extreme points of W: 
 
   ∑

∈

=
Kk

k
k xx α ,  αk ≥ 0, ∀ k ∈  K and .1α =∑

∈ Kk
k   (2.3) 

 
2.1 The Lagrangean Relaxation 
 

Let λ be the vector of dual restrictions related to restrictions Ax = b, then the Lagrangean 
relaxation of (2.2) is as follows: 
 



  zRL(λ) = 
x

max {cx + λ(b � Ax)}      (2.4) 

 subject to: x ∈  W. 
 

Considering the set of all extreme points of conv(W), and noting that optimizing zRL(λ) is 
equivalent to maximizing a linear function over W, then exists a extreme point of conv(W) that 
corresponds to the maximum value. Hence, (2.4) can be written as: 
 
   zRL(λ) = 

Kk∈
max {cxk + λ(b � Axk)} 

 
that is a linear piecewise convex function in λ. 

The best value of a upper bound for zLR(λ) is obtained solving the dual Lagrangean problem: 
 
   zDL = 

λ
min

Kk∈
max {cxk + λ(b � Axk)}, 

 
that can be written as: 
 
   zDL = })λ(maxλ{min

λ

k

Kk
xAcb −+

∈
, 

 
or as the following Linear Program Problem: 
 
  zDL = 

µλ,
min λb + µ 

 subject to: µ ≥ cxk � λAxk,  ∀ k ∈  K.     (2.5) 
 

In problems with a great number of variables (columns), where the set K of the index of extreme 
points of conv(W) is not known a priori, Kelley [18] proposes the use of the optimal dual solutions lλ�  
e lµ�  of (2.5), obtained in a given iteration l for some Kl ⊆  K, in the following subproblem: 
 
  zSP( λ� ) = 

x
max  cx � λ� Ax 

 subject to: x ∈  W,        (2.6) 
 
obtaining the optimal solution kx �

. The difference zSP( λ� ) � µ�  is called reduced cost, and if 

zSP( λ� ) ≤ µ� , then the set Kl contains an optimal basis to the original problem; otherwise, the restriction 

(or cut) c kx �
 � λ� A kx �

 is added as a new line to the problem (2.5), set Kl+1 = Kl ∪  { k� } and the 
problem is re-optimized. As a proposal to accelerate the solution of the original problem, any 
column px  that satisfies µ�  ≤ c px  � λ� A px  can be added to the set Kl. 

This method is equivalent to the column generation process that will be presented in the next 
subsection, and results from the dual of problem (2.5) being equivalent to the Master Problem 
obtained from the linear relaxation of the Dantzig-Wolfe decomposition of the original problem. 
 
2.2 The Dantzig-Wolfe decomposition 
 

Another proposal to solve (2.1) to optimality consists in using the representation of solutions as a 
linear combination of extreme points of the optimization space in the formulation of the problem. The 
substitution of the expression (2.3) in formulation (2.2) leads to the follow Dantzig-Wolfe 
decomposition: 
 



  zDW = 
Kkk ∈:α

max 






∑
∈ Kk

k
k xc α  

 subject to: bxA
Kk

k
k =







∑
∈

α  

   Wx
Kk

k
k ∈∑

∈

α  

 
Assuming the linear relaxation of the problem above, that is, allowing that x ∈  conv(W), the 

following Master Problem is defined: 
 

  zPM = 
Kkk ∈:α

max 






∑
∈ Kk

k
k xc α  

 subject to: bxA
Kk

k
k =







∑
∈

α       (2.7) 

   1α =∑
∈ Kk

k  

   αk ≥ 0,  ∀ k ∈  K. 
 

In any given iteration l of the column generation method, let Kl ⊆  K be a subset of the extreme 
points of conv(W), defining the following Restrict Master Problem: 
 

  zPMR = 
l

k Kk∈:α
max 










∑
∈ lKk

k
k xc α  

subject to: bxA
lKk

k
k =










∑
∈

α       (2.8) 

  1α =∑
∈ lKk

k  

   αk ≥ 0,  ∀ k ∈  Kl. 
 

Being λ�  and µ�  the optimal dual solutions of (2.8), new columns can be computed as solution of 
the subproblem (2.6). The columns xp that satisfy: 
 

cxp � λ� Axp � µ�  ≥ 0 
 
(positive reduced costs) are included in (2.8) and the Restricted Master Problem is solved again, until 
no columns that improves the optimal value of (2.7) can be obtained. 

The following general algorithm can be adapted to solve problems by the column generation 
method: 
 
Step 0: Determine a initial set K0 of columns for the Master Problem. Let l = 0; 
Step 1: Solve the linear relaxation of the Restricted Master Problem; 
Step 2: Use the optimal dual solution obtained in Step 1 and solve a subproblem to obtain new 

columns kx �
 in W; 

Step 3: Add the columns kx �
 with positive reduced costs to the Restricted Master Problem. If such 

columns do not exist, then STOP → optimal solution. 
Step 4: Otherwise, set Kl ← K ∪  { k� }, l ← l + 1 and go to Step 1. 
 



3. The Lagrangean/surrogate relaxation and column generation 
 
3.1. The Lagrangean/surrogate relaxation 
 

The Lagrangean/surrogate relaxation combines the Lagrangean and surrogate relaxations for a 
problem in an efficiency way. The Lagrangean relaxation is applied over the surrogate relaxation on a 
chosen set of constraints. It leads to a dual local Lagrangean problem in the one-dimensional variable, 
and this local optimization tends to correct the norm of subgradients vector, avoiding strong 
oscillations in the Lagrangean dual optimization methods that use the subgradients as search 
directions. 

The Lagrangean/surrogate relaxation was applied with success in several problems of combinatory 
nature [20, 21, 22, 25, 27, 30]. The local optimization (local Lagrangean dual) does not need to be 
exact and a one-dimensional dichotomic search is employed. This optimization proved to be not 
necessary in every steps of subgradient methods, being enough to find the multiplier value in some 
initial iterations. 

Being λ the surrogate multiplier related to the restrictions Ax = b, and t ≥ 0 the Lagrangean 
multiplier related to the surrogate restrictions λAx = λb, the Lagrangean/surrogate relaxation of (2.2) is 
obtained by: 
 
  zRL(λ)t = 

x
max {cx + tλ(b � Ax)}      (3.1) 

 subject to: x ∈  W. 
 

It is immediate that for t = 1, zRL(λ)1 is the usual Lagrangean relaxation (2.4). The multiplier t is 
known as Lagrangean/surrogate multiplier, and its best value t* is obtained fixing λ and solving the 
local dual problem using dichotomic search: 
 

tRLt
z )λ(  min

0≥
       (3.2) 

 
3.2. New bounds to column generation 
 

The column generation process is generally unstable [10]. The selected columns can improve 
marginally the objective function value of the master problem, or its value can remain unaltered during 
several iterations. In some cases it is not possible to determine if the process is still converging or has 
stopped at some point. The calculation of upper bounds can indicate convergence of the column 
generation method. This section shows how Lagrangean/surrogate bounds can be directly obtained by 
the column generation process, using the multidimensional dual variable obtained as the optimal 
solution of the Restricted Master Problem. Also, the Lagrangean limit and the limit known as Farley 
Limit [11] are derived directly of Lagrangean/surrogate limit. 

The calculation of the reduced cost CR using the Lagrangean/surrogate multiplier is given by: 
 

CRt = 
Wx∈

max{cx � t.λAx} � µ, 

 
or equivalently: 
 

CRt ≥ {cx � t.λAx} � µ , ∀ x ∈  W, and {cx � tλAx} ≤ CRt + µ , ∀ x ∈  W, 
 
which indicate that (tλ, CRt + µ) is a feasible solution to the problem (2.5). Hence, as (2.8) and (2.5) 
are primal and dual problems, respectively: 
 
   zPMR ≤ t.λb + CRt + µ ,     (3.3) 
 
which indicates that tλb + CRt + µ is an upper limit to the Restricted Master Problem. 



Rewriting tλb + CRt + µ, it leads to 
Wx∈

max {cx + t.λ(b � Ax)}, which is the Lagrangean/surrogate 

relaxation with multipliers λ and t. 
The following particular cases can happen: 

• for t = 1: 
it leads to zPMR ≤ λb + CR1 + µ = 

Wx∈
max {cx + λ(b � Ax)}, that is the traditional Lagrangean 

limit (2.4); 
• for t = t* , solution of (3.2): 

it leads to zPMR ≤ t*λb + CRt* + µ = 
Wx∈

max {cx + t*λ(b � Ax)}, that is the best 

Lagrangean/surrogate limit (3.1); and 
• for t0 such that 

Wx∈
max {cx � t0λAx} = 0: 

it leads to zPMR ≤ t0λb, that is known as the Farley Limit for the particular case where c ≥ 0 
and x ≥0. 

It is immediate that 
Wx∈

max {cx + t*λ(b � Ax)} ≤ 
Wx∈

max {cx + λ(b � Ax)}, and that 
Wx∈

max {cx + t*λ(b �

 Ax)} ≤ t0λb, because 1 ≠ t0 ≠ t* (generally). Therefore the best Lagrangean/surrogate limit dominates 
the Lagrangean and the Farley limits (when the latter exists). 

Figure 1 shows the typical behavior of the Lagrangean and Lagrangean/surrogate limits when 
mixed with the column generation process, for a p-median problem with 900 vertices and 300 medians 
[31]. 
 
3.3 Generating new columns 
 

The column generation subproblem (2.6) can be modified by the Lagrangean/surrogate multiplier 
computed in (3.2), obtaining the new subproblem 
 

zSP(λ)t = 
Wx∈

max{cx � tλAx}.     (3.4) 

 
For t ≠ 1, the problems (2.6) and (3.4) can produce different columns. If the columns xp obtained in 

(3.4) satisfy cxp � λAxp � µ ≥ 0, then they become new columns to the Restricted Master Problem. 
Senne and Lorena [31] formulated the p-median problem as a set partitioning problem. During the 

application of the column generation technique, the Lagrangean/surrogate relaxation showed to be an 
excellent alternative for the method stabilization, providing more productive columns than the 
traditional column generation method, accelerating the resolution of the problem. 

Table 1 shows the results for an instance of a p-median problem with 200 vertices and 5 medians 
(showed in [31]). The maximal number of columns of the Restricted Master Problem was determied 
according a given value for the reduced cost. The numbers in brackets refers to the traditional column 
generation method while the other results refers to the columns obtained in (3.4) for t = t*, solution of 
(3.2). 
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Figure 1: Usual behavior of Lagrangean and Lagrangean/surrogate limits. 



 

Table 1: Number of generated and used columns. 
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Figure 2: GC(1) = Usual Column Generation, GC(t) = Column Generation with columns of (3.4) (see 

table 1). 
 
 

Figure 2 illustrates the results of Table 1. Note that even when a little number of columns is 
admitted to the restricted master problem, they produce better results when computed by expression 

Iterations Generated 
Columns 

Used 
Columns 

Primal 
Gap  

Dual Gap Total Time 

403 
[487] 

18493 
[47634] 

7543 
[7364] 

� 
[�] 

� 
[�] 

619.63 
[971.59] 

414 
[1000] 

20395 
[167247] 

6627 
[3270] 

� 
[0.631] 

� 
[4.635] 

613.79 
[1370.99] 

400 
[1000] 

23521 
[186267] 

3886 
[421] 

�0.276 
[11.171] 

2.010 
[65.181] 

532.27 
[905.67] 



(3.4). The bounds obtained by the usual column generation method stands without improvement for 
several iterations. 
 
4. Some applications 
 

The Lagrangean/surrogate relaxation was applied at several Combinatorial Optimization 
problems. The usual subgradient method was used in the optimization of the dual problem. This 
section describes some possible applications of mixing columns generation and the 
Lagrangean/surrogate relaxation. Some of these applications are under development at LAC/INPE. 

The column generation problem relating to (3.4) for each application will be formulated and 
examined. A complete formulation of problems can be referred in other works [4, 10, 12, 21, 24, 26, 
29, 31, 32, 33, 35, 36]. In all of the following formulations the dual variables λ are obtained as 
solution to the Restricted Master Problem, and the associated Lagrangean/surrogate multiplier t is 
obtained as solution of problem (3.2) 
 
4.1. The p-median problem 
 

The p-median problem concerns the installation of p centers in a graph composed by arcs and 
vertices, minimizing the sum of all distances of each vertex to the closest center. If a demand is 
associated to each vertex, restrictions on the attending capacity of the centers may occur (capacitated 
p-median problem) [21, 31]. 

For the p-median problem, the Dantzig-Wolfe decomposition leads to the special case of 
unlimited set of extreme points, where the convexity constraints will not be present in the Restricted 
Master Problem formulation. Therefore, for clustering problems like this, one additional restriction 
will appear on the restricted master problem. This restriction is of type: 
 

p
lKk

k =∑
∈

α .       (4.1) 

 
This restriction imposes that the number of medians (clusters) must be respected. 

In this case, the column generation subproblem is: 
 

zSP(λ)t = ( ) 







−∑

∈∈∈ Nj
jjijyNi

ytd
j

λ.minmin
}1,0{

,   (4.2) 

 
where [dij]n x n is the symmetric matrix that represent the costs (distances) between vertices i and j. 
Note that dii = 0, ∀ i ∈  N = {1, ..., n}. The subproblem (4.2) is solved by inspection, verifying the sign 
of coefficients )λ( jij td −  of yj. 
 For the capacitated case, the column generation subproblem is: 
 

   zSP(λ)t = 
( )

{ }
















∈≤

−

∑
∑

∈

∈

∈

Nj
jijj

Nj
jjij

Ni yQyq

ytd

1,0;  t.s.

.min
min

λ
,  (4.3) 

 
where Qi is the capacity of the center allocated in vertex i and qj is the demand of vertex j. This 
problem is the well-known Knapsack Problem, of class NP-hard, but well solved for large instances 
by branch-and-bound based algorithms. 

Let γ be the dual variable of the Restricted Master Problem corresponding to constraint (4.1). 

If the columns 







1

jy  obtained in (4.2) and (4.3) satisfies ( )∑
∈

−
Nj

jjij yd π < |γ|, these can be new 

columns to the Restricted Master Problem. 



The solution of problems (4.2) and (4.3) can be significantly altered for different values on t. 
In Lorena and Senne [21] and Senne and Lorena [31], it was computationally verified that when t* 
(the best Lagrangean/surrogate multiplier) is used in (4.2) and (4.3), its value is restricted to the 
interval (0,1] (tending to 1 as the process converges) and a simple analysis on these values on the 
formulas (4.2) and (4.3) showed that columns with small reduced costs are selected in the Restricted 
Master Problem as a consequence of the small number of allocated centers of clusters. Studies 
verifying this behavior in other problems are being conducted. 
 
4.2. Generalized assignment problem 
 

The generalized assignment problem consists in finding the most advantageous way of assigning n 
jobs to m machines so that each job is attributed to a single machine with limited capacity. 

Such as the p-median problem, this is also a clustering problem with an additional constraint in the 
Restricted Master Problem: 
 

∑
∈

≤
lKk

i
k 1α .       (4.4) 

 
After the solution of the related Restricted Master Problem, the search for new columns can be 

computed solving the following knapsack subproblems (for i = 1, ..., m) [29]: 
 

  i
tSPz )(λ = ( )∑

=

−
n

j

i
jjij ytp

1

max λ      (4.5) 

  subject to: i

n

j

i
jij cyw ≤∑

=1

 

    i
jy ∈  {0,1}, j ∈  {1, 2, ..., n}, 

where: 
− wij is an integer positive number that represents the time that the machine i takes to do the job 

j, when j is assigned to i; 
− ci is an integer positive number that represents the available total time of machine i; 
− pij is a positive number that represents the produced profit when the job j is assigned to 

machine i. 
 

Let vi the optimal dual cost related to constraint (4.4) corresponding to the agent i in the Restricted 

Master Problem. If for some i, ( ) i

n

j

i
jjij vyp −−∑

=1

λ  > 0, so the column 












i

i
j

e
y

 can be added to the 

Restricted Master Problem. 
The solutions of problems (4.5) can be significantly altered by different values of t. It is immediate 

that values for t in (0,1] favor the choice of columns of better quality. 
 
4.3. Vehicle Routing Problem with Time Windows 
 

Let V the vehicles set (identical) and C = {1, ..., n} the customer set to be attended, associated to a 
depot by a directed graph [2, 4, 8, 16, 17]. Using the dual multipliers λ i, i ∈  C, the coefficients that 
will be used at objective function of each subproblem k ∈  V will be given by: 
 
   iijij tcc λ� −= ,   ∀ i, j ∈  C, i ≠ j, 
 

The subproblem k ∈  V will be the following shortest path problem with time and capacity 
constraints[4]: 



 
  ∑∑∑

∈ ∈ ∈

=
Vk Ni Nj

ijkijt
k
SP ycz �min)(λ  

 subject to: ∑∑
∈∈ Nj

ijk
Ci

i yd ≤ q,  ∀ k ∈  V    (4.6) 

   ∑
∈ Nj

jky0  = 1,   ∀ k ∈  V    (4.7) 

   ∑∑
∈∈

−
Nj

hjk
Ni

ihk yy  = 0,  ∀ h ∈  C, ∀ k ∈  V  (4.8) 

   ∑
∈

+
Ni

kniy ,1,  = 1,   ∀ k ∈  V    (4.9) 

   )1( ijkijik yMts −−+  ≤ sjk, ∀ I ∈  N,  ∀ j ∈  N, ∀  k ∈  V (4.10) 
  ai ≤ sik ≤ bi,    ∀ i ∈  N, ∀ k ∈  V   (4.11) 

   yijk ∈  {0, 1},    ∀ i ∈  N, ∀ j ∈  N, ∀ k ∈  V (4.12) 
 

Constraints (4.6) set up that the total demand of served customers by each vehicle cannot exceed 
its capacity. The three following constraints are flow constraints: constraints (4.7) set up that each 
vehicle must leave the depot only once; (4.8) specifies that each visited customer is left and (4.9) 
guarantee that all the vehicles must return to the depot only once. Precedence constraints (4.10) 
determine that a vehicle, starting from customer i, must not get to the customer j before instant sik + tij, 
where M is a suitable big value. Constraints (4.11) guarantees the start time of attendance of each 
customer to be within the specified time window. The binary nature of variables yijk is given by the 
constraint set (4.12). 

The dual multiplier vector λ = (λ1, ..., λ |C |) reflects the attendance cost of each customer i ∈  C. By 
definition, λ i is irrestricted and t > 0. The costs of the arcs to the subproblem are computed as in (4.6). 
If tλ i > cij prevails, the subproblem will tend to produce longer routes. In the case of prevailing tλ i < cij, 
there will be preference for shorter routes. Kohl [19] notes that the difficult of resolution of the 
subproblem is directly proportional to the norm of the involved multipliers. 

If t tends to 0, the norm of vector λ is always modified so that shorter routes are produced more 
often (more columns are generated). As long as t tends to 1, the values of λ i, i ∈  C, contributes more 
effectively to the determination of the length of the best routes. 
 
4.4. Symmetric traveling salesman problem 
 

Consider a Traveling Salesman Problem defined in a graph G = (V, E), V = {1, ..., n}, and let the 
binary variable ijy  equal to 1 if the arc (i,j) ∈  E is used on the salesman optimal path. Define the 

matrix of costs (or distances) C = ][ ijc , where jiij cc =  for all i, j ∈  V, that is associated to E [28]. 
The subproblem will be the following [36]: 
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where y is a feasible solution to the minimum weight spanning 1-tree problem, that can be obtained 
considering the minimal cost spanning tree with vertices in V\{1} and two distinct arcs of minimal cost 
that links this tree to the vertex 1. 

The cost matrix of (4.13) is kij tc λ−  that represents the modified costs of the arcs of the original 
graph. It is immediate that some value of t ≠ 1 can modify the solution of problem of the minimum 
weight spanning 1-tree. In particular, if the values of t* are restricted to the interval (0,1], columns 
with lower costs will be selected to the Restricted Master problem as a consequence of the cost 
reduction of the 1-trees, leading to solutions sequences that resembles salesman�s tours. 
 



4.5. Binary cutting problem 
 

The binary cutting problem consists in determining the minimum number of rolls of length L 
necessary to attend a demand of rolls of smaller length ai, i = 1, ..., n [34, 35]. 

In this case, the columns of the Restricted Master Problem represents feasible cutting patterns to 
pieces of length L. So, the new patterns (columns) are generated solving the following 0-1 knapsack 
subproblem: 
 

max ∑
=

n

i
ii y

1

λ         (4.14) 

subject to: Lya
n

i
ii ≤∑

=1

       (4.15) 

yi ∈  { 0,1}        (4.16) 
 
where yi = 1 if the item i is present at new column, or yi = 0, otherwise. 

It is known that the Lagrangean/surrogate limit must be a good dual limit for this problem. Let yv 
be a feasible solution to the problem (4.14)-(4.16). The best value to the Lagrangean/surrogate 
multiplier can favor the determination of such solutions, producing different columns than the ones 
obtained by the traditional approach (t = 1). If the reduced cost, given by (1 � λyv), is negative, then 
the correspondent column is a candidate to be added to the Restricted Master Problem. 
 
5. Open questions 
 

The formalization of the results of the following issues can perform the complementation of the 
existent theory: 
 

a) Limits: It is known that the Lagrangean/surrogate relaxation provide better quality limits than 
the usual Lagrangean relaxation [25]. It is intended to establish relations between the obtained 
limits by these relaxations and others obtained to this class of problems, for example the 
Farley�s Limit [11], specific for the column generation implementation; 

b) Stabilization methods: Evaluate the influence of Lagrangean/surrogate relaxation and establish 
relations with other stabilization methods for the column generation technique (subgradients, 
bundle, Boxstep, Analytic Center Cutting Plane methods). Verify if such methods can be 
improved when mixed with the Lagrangean/surrogate relaxation; 

c) Complexity of column generation subproblem: The Lagrangean/surrogate relaxation, when 
applied to problems with additional restrictions of capacities (knapsack) was adapted to permit 
the computation of the Lagrangean/surrogate multiplier (shortening the search process of t). 
Studies will be carried to evaluate how this search will be affected when combined with 
column generation; 

d) Subproblem resolution: It is known that the column generation subproblem does not need to 
be solved to optimallity to generate new columns to the Restrict Master Problem. We intend to 
explore the influence of the Lagrangean/surrogate multiplier in the column generation process, 
considering it in the elaboration of new heuristics to the column generation subproblem; 

e) Management of the number of columns: We intend to study the management of the number of 
columns to be considered on the Restricted Master Problem. Avail the relation quantity × 
quality of the columns obtained by the subproblems (in Senne and Lorena [31] the 
Lagrangeana/surrogate relaxation allowed to solve p-medians problem with less columns); 

f) Lagrangean/surrogate relaxation and the branch-and-price: the Branch-and-Price method [1] 
uses the column generation technique on each node of a branch-and-bound search tree to 
obtain new non-basic variables to the problem. It will be explored the possibility of adapting 
the Lagrangean/surrogate relaxation and the column generation to branch-and-price and to 
verify if there is advantage in this adaptation. 

 
 



6. Conclusions 
 

This paper emphasizes the use of Lagrangean/surrogate relaxation as a stabilization method for the 
column generation problem. Some computational experience was produced to the p-median problem 
and other problems were suggested to test the stabilization algorithm. 

The Lagrangean/surrogate relaxation and column generation method combination is done by the 
Dantzig-Wolfe decomposition theory and the Kelley method. The dual multiplier obtained as solution 
of a Restricted Master Problem is used to determine the Lagrangean/surrogate limit. The exploration 
of these limits is still open, as well as there are several other questions related to the efficient use of 
the lagrangean/surrogate multiplier at column generation process. 

The suggested applications are being studied at LAC/INPE, but several other applications can be 
tested, including scheduling problems and new clustering problems. 
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