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ABSTRACT 
An inverse analysis for the estimation of inter-

nai sources in natural waters, using remote sens-
ing data, is presented. The analysis involves a 
forward model that utilizes an analytical discrete-
ordinates method for solving the radiative transfer 
equation and an inverse model which contains an 
algorithm for least-squares estimation that is itera-
tively solved for retrieving the internai source pro-
file by using the Levenberg-Marquardt optimizer. 
The experimental data are simulated with synthetic 
data (exit radiances) that are calculated at the sur-
face of the water and corrupted with noise. The 
results show that the internai sources can be re-
covered with good accuracy, even for high noisy 
data. 
Keywords: Inverse hydrologic optics, inter-
nai sources, remote sensing, analytical discrete-
ordinatesm ethods. 

NOMENCLATURE 
Following isa list of the most important sym-

bolsus ed in thisw ork: 

intensity (radiance) of the radiation field 
1.0 

	

	incident beam strength 
order of the anisotropy 
number of optimization functions 
quadrature order 
phase function 
Legendre polynomial 

Pra associated Legendre function 
R 
	number of spatial regions 

inhomogeneouss ource temi 
So 
	internai source of radiation 

geometrical thicknesso f the medium 
expansion coefficient 

( 

e 
	optical thicknesso f the medium 

direction of propagation of the radiation 
in the medium 

photon wavelength 
cosine of the polar angle (measured from 
the positive 7-  axis) 

tio 
	cosine of polar angle of incidence 

albedo for single scattering 
7- 
	optical variable 

W 
	azimuthal angle 

azimuthal angle of incidence 

Subscripts/Superscripts 
g 	wavelength interval index 
1 	expansion order of the phase function 

Fourier component index 
7' 	spatial region index 

INTRODUCTION 
The inverse analysis of radiation in a partici-

pating medium has a broad range of applications, 
including, among others,r emote sensing of the at-
mosphere and the determination of radiative prop-
erties in natural waters. McCormick in his arti-
cies [1-3] presents reviews of methods for solv-
ing the inverse radiation problems, such as the es-
timation of optical properties, the thickness of a 
medium and the presence of a spatially distributed 
source. In hydrologic optics, the estimation of the 
radiative properties can be performed by using ei-
ther data from in situ or remote sensing data. 

One of the most important challenges in in-
verse hydrologic optics is to retrieve the properties 
of the physical system from remote sensed data. 
There are only few worksin the literature on this 
subject, most of them are based on te Gershun's 
equation and the estimation of the apparent op-
tical property named irradiance attenuation coeffi-
cient [4] or diffuse attenuation coefficient [5]. An-
other simplification for remote sensing estimates 
of bio-optical properties is to consider an homo-
geneouso cean [6-8]. 
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Differently from our early estimations with in 
situ radiometric measurements [9-15], the source 
temi estimation is performed using remote sensing 
data, that are represented by the exit radiances. 
The method presented in this paper is completely 
different from the one presented in Ref. [16], 
which is based ou the reciprocity principie. How-
ever, there isn o testsin thisr eference, not even a 
numerical one, for the validation of that method-
ology. 

The inverse analysis involves the following tive 
basic steps: (a) a forward problem solution and 
(b) an inverse problem solution. In the first step, 
the radiative transfer equation is solved by an ana-
lytical discrete-ordinates method [17-19] to deter-
mine the exact (synthetic) exit radiances, and, in 
the second, an algorithm [20,21] for least-squares 
estimation is iteratively utilized to retrieve the spa-
tially distributed sources. In the analysis, the ex-
perimental data are simulated with synthetic data 
corrupted with noise from 1 to 5%. 

PRELIMINARY ANALYSIS 
For a multispectral problem, we consider the 

equation of transfer 

a 
p FrIer, g, (p, À) -E I(r, g, (p, À) = w(Ã) 

xii f2 irf p(cos e, A)I(T, p',  (p' , À').:1À'd(p'dbt' 
-1 o À 

+ So (z, À), 	 (1) 

subject to the boundary conditions 

/(0, p, (p, À) = L(p,yo, À) = 
10(À)5(IL - Po) 8 (49  - 920) (2a) 

and 
I((,- g, (p, À) = R(tt,(p, À) = 0, 	(2b) 

where /0-, g, (p, À) denotes the intensity (radiance) 
of the radiation field, 1-  E (0,0 the optical vari-
able, with C representing the optical thickness of 
the medium, g e t-1, 11 and (p E [0, 27r], re-
spectively, the cosine of the polar angle (measured 
from the positive .r axis) and the azimuthal angle, 
that specify the direction of propagation e of the 
radiation in the medium, and À the photon wave-
length. In addition, (À) E [O, 1] is the albedo 
for single scattering, where w = b I (a b) with 

a and b representing the absorption and scattering 
coefficients, p(cos e, À) is the phase function for 
scattering from {p' , cp' , À'} to {p, ça, À}, So  (z, À) 
an intemal source of radiation, and L(g, (p, À) and 
ROL cp, À) are the distributed incident radiances 
at the boundaries. The incident beam is character-
ized by a beam strength 10 (À) and a bearn direc-
tion (PC, (p0). An outline of the physical process 
isde picted in Fig. 1. 

In this work, we discretize Eqs. (1) and (2) 
in the wavelength variable and then consider all 
wavelength-dependent values as being averages 
over a wavelength interval (band) LïAg . Thus, for 
a generic variable F(À), we have 

F9  = F(À 9) = —
1 

f F(À)dÀ, (3) 
aLÀ9 AÀ 9  

where Ag is an average wavelength in the inter-
val g. To further sitnplify the calculations, we 
consider that a particle can only be scattered to 
within the same interval, and so we write our orig-
inal equation of transfer, for a specific wavelength 
Ag, as, 

a 
0-1_4(r, p,(p)± 1.9 (r, g, cio) = vau  

X 
 f

1 2,r 
f p(cos 8)4(z, p', cp')d(p' cite 

-1 o 

+ .90,v 
	 (4) 

subject to the boundary conditions 

1.9(0,pt,s0)= 10,9 ,5(,1—bto)5(cp —(a) 
	

(5a) 

and 

1.9(S, 	(P) =0. 	(5b) 

Here, the phase function p(cos e), for scattering 
from {p' ,cp'} to {g, ço}, is representecl by a finite 
Legendre polynomial expansion given in terms of 
the cosine of the scattering angle e, 

p(cos e) = —1 V pipi  (cos e), fio = 1 
47r 

and iPti < 2/ ± 1 for O < / < L, (6) 

where A and Pt are, respectively, the coefficient 
and the Legendre polynomial in the P h-order ex-
pansion of the phase function. 
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Figure I: Pictorial representation of the radiative processin natural waters. 

FORWARD PROBLEM SOLUTION 
Following Chandrasekhar [22], we then write 

the intensity of the radiation field as 

4 (v, p, cp) = 	p, w) + 	p, w), (7) 

where tt, cp) is the unscattered component 
which satisfies a version of Eq. (4) with zero 
right-hand side and boundary conditions similar 
to Eqs. (5),a nd 4,9 ('r, g, w) is the scattered com-
ponent that must satisfy 

a 
ptpa , g er,p, w) + 13 , 9 (r, p, w) = rag  

X  f
2r 

f p(cos 0)49 (r, p' ,cti)clyz' 
—1 o 

+ Sig er, ti, A, 	 (8) 

for re [0, (I, p e [-1, 11 and yi) E [0, 2r], and 
the boundary conditions 

p, w) = 49 (C, —p, (p) = 0, 	(9) 

for ít E (0,1] and ip E [0,2r]. The inhomoge-
neouss ource term 	(p) isg iven by 

Sg (z, p, (p) = So, g (r) + g  
1 j 2r 

X 	 p(cos 0)1„,,9  er, ("Ag:AV . (10) 
—1 o 

Continuing, we make use of the Fowler cosine 
decomposition [22] 

1 L  
, g (1-  , p, (p) = — E (2 - do o. 	( P 2 m=o  

x cos[m(p — 920)1 	(II) 

along with the addition theorem [23] for the 
Legendre polynomials to deduce that the original 
problem can be reduced to the problem of solving, 
for m = O, 1, , L, 

P—a 1- (7,12)+ rgner,it) = 	E APinGt) ay g 	 2 

x(p')/r(r, pi)dpi  + 8' (r, g), (12) 
—1 

Pim 	= 
r(i 	1/2 

where 
dm 

( 1  — /(2 ) m12 	13(( 1 ) 

	

+ m)ti 	 dpm 
(13) 

denotes mi associated Legendre function, and the 
inhomogeneouss ource Mon isg iven by 

Sgm (r, p) = 28o,g  (T)Soon 

wo lov e-11 mo E fiar (pe )pin (p), (14) 
2 ar 	1=m 

subject to the boundary conditions, 

	

./.79"(0, /2) = 	(C, — p) = 0, 	(15) 

1-=rn 



1 
x E A,,Pin (A) f 	(")/Z (7, dtti  

_1 1=m 
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for p E (0, 11. It is clear that once we solve the 
problems formulated by Eqs (12) and (15), for 
m = O, 1, , L, we can compute te scattered 
component of the intensity with Eq. (11). 

Thus far we have considered a problem for-
mulated as a single region. 'fhe extension of this 
method to multi-region geometry is based on te 
work perfonned by Dias and Garcia [24,25]. So 
we use, as mentioned in Refs. [24] and [25], "an it-
erative approach that is based on solving te prob-
lem one region at a time and using spatial sweeps 
to connect these solutionsa nd guide tem to con-
vergence." For the treatment of the space variable, 
we consider a system of R regions, as shown in 
Fig. 2. 

Reg i Reg 2 • • • Reg r • • • Reg R-1 Reg R 

T 

TO= O T1 	T2 7r-1 Tr TR-2 	TR-1 rn= 

Figure 2. A system of R regions 

The multi-region problem is then expressed, for 
p E (0,1] and r = 1, 2, ... , R, as 

a 	 Ar g 
foi — 	er, p) -E /Zig  (r, p) = 

2 

( I/), 	 (16) 

subject, for g E (0, 11, to the boundary conditions, 

rirg (lh, 	= 	( 1-Ft, -P) = 0 , 	( 17) 

and to te interface conditions, for r = 
1,2,... ,R - 1, 

	

In(rn ±p)= 471+1,9  (rr , ±p), 	(18) 

	

where .977,29 (r, g) isg iven by rong jo,v 

	
/12° 

57,39 (7", 11) = 2,90,9(1- ) 150,m 	 e 
2 	ir 

(19) X  

i=rn 

To define our discrete-ordinatesv ersion of te 
problem posed by Eqs. (16) to (18), we uti-
lize a quadrature of order N with nodes {.5}  

and weights {ni } to approximate te integral in 
Eq. (16). The selected quadrature scheme is the 
double quadrature of arder N = 2n obtained by 
applying a standard Gauss-Legendre scheme of or-
der n to each of te half-intervals [0, 11 and [-E 0]. 
By using the elementary solutionso f the discrete-
ordinates equations and their orthogonality prop-
erty developed in Ref. 26, we can write fite general 
discrete-ordinatess olution of order N as 

I"; (7, 	= 

71 

E [Ak,7.,A,,,(vk,iti )e-e--r-ivu. 

k=i 

pi)e-("-T ) luk] 
TI 

+ E  
k=1 

+%kk,r,g etbr ig 
	 (20) 

In Eq. (20), vk and -24, k = 1, 2, ... , n,de note, 
respectively, te inverses of the positive and the 
negative eigenvalues of the Nx N matrix E-1 (I-
W,,g ), where E = diag{pi, p2,• ,pN}, l iste  
identity matrix of order N, and W,.,g  is an N x N 
matrix with elements 

= =wr g 2 3  77 E A,Pr(iti)Pr(/k,). (21 ) 
1 =m 

The elementary solutions (Dr,g (l) I c, p4 and 
(Dr,g( —  V k, #3) present in Eq. (20) are, respec- 
tively, te jth components of te eigenvectors 

ng (me ) and es„,g (-vk), associated, respective1y, 
with the eigenvalues l/vk and -1 /. Also te 
coefficients {2lk,,, 9 (r)} and {93k,,., 9  (r)} of the 
particular solution can be expressed as[ 26] 

, , 	Ili (Dr g(v1c, Pi) 
Nnolv k i=1  

X  j Sr,9 (X, pi)e-0-')/vk dx (22a) 
r-1 

and 

1 
k,t,g ( T ) -= 	rgEw 	E 7o,,,c-vk,iti) 

i=1  
r,. 

x j S,. ,g (x,p i )e — V (r—T 'kdx, (22b) 

with 
rv 

= E nipar,g(±,k, pi)]2. (23) 
t=t 

ak,,,g (r) = 
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Note that the coefficientso f the homogeneouss o-
iution {Ak,ng } and {Bk, ng } are the solutions to 
the linear system of N algebraic equations ob-
tained by imposing that the general solution ex-
pressed by Eq. (20) satisfies the boundary and in-
terface conditions of the probiem. These calcula-
tionsa re reported in detail in Refs. 18 and 19. 

INVERSE PROBLEM SOLUTION 
The inverse problem is formulated as an opti-

mization problem for the minimization of the norm 
of the differences between the measured data and 
the data obtained through the forward model pre-
sented in the previouss ection. 

To simplify our solution, we split the internai 
source of radiation 8o,9  (r) in two functions 

S0, 9 	= Sq(r) Q(A g ) = So(r) Q 9 , 	(24) 

and considered the function with spectral depen-
dency Q9  a known function. 

While the intemal source of radiation So , g  (7) 
is unknown, the expansion coefficients {)34,.} of 
the phase function for anisotropic scattering, the 
single scattering albedo (tang } and the optical 
thickness (, as well as the measured (exact) vai-
ues of the exit radiances 4(0, — (p) are consid-
ered available. The inverse problem is iteratively 
soived by an algorithm for least-squares estimation 
where, in each iteration, values of the exit radi-
ances 4(0, —it,w) are computed from estimated 
values of the internai source profile Se(r). Here 
the calcuiated radiances are obtained from a mod-
ified and adapted package of subroutines taken 
from the forward model code, which we here re-
fer to as subroutine Peesrur,a nd the estimated pa-
rameters are obtained with the 1MSL subroutine 
Dbclsf [27]. Basically, these calculations consti-
tute our inverse model. 

The IMSL subroutine Dbclsf uses a modi-
fied Levenberg-Marquardt method [20,21] of min-
imization and an active set strategy [28] to solve 
nonlinear least squares problems subject to simple 
bounds on the variabies. The problem is stated as 
follows[ 27,291: 

i=1 
di 	5_ ui, 	 (25) 

where M > K, Y: R I(  —>M, yi(x) is the i-th 
component function of Y(x), and di  and ui , j = 

1, 	,K, are the lower and upper bounds, respec- 
tively. The functions yi, i = 1,... ,M, represent 
the differences between the experimental radiances 
and radiances that are calculated through each call 
to subroutine Peesna, and x3 , j 1, , K, the 
unknown variables to be estimated by the 1MSL 
subroutine Dbc1st We implemented two tech-
niques for retrieving the intentai source profile. In 
the first one, referred to as the average-value tech-
nique, we consider within each region r, an aver-
age source value Seq represented by the variable x 3 , 
and thus we estimate K = R variables. And in 
the second one,r eferred to as the three-coefficient 
technique, the source 8o (r) is determined by the 
quadratic expression 

80 (r) = xi + er/() + x3( 7- /O °  , 	(26) 

where the coefficients xli x2 and x3 are the only 
variables to be estimated. Note that, using the 
average-value technique for retrieving the source 
becomes very expensive, computationally speak-
ing, as a large number of regions R is needed to 
generate a smooth profile. 

NUMERICAL SOLUTION 
Two problems were chosen to test the inverse 

model. The parameters that define the chosen 
problems were based on the simuiation presented 
in Mobley's book [30], Light and Water - Radia-
tive Transfer in Natural Waters, in Section 11.8 - 
"A Simulation of Case 1 Water". In addition, we 
considered an intentai source generated by biolu-
minescent organisms. 

The single scattering albedo wng , is calculated 
by the expression 

br, 9  
— 	 (27) 

cr,g 	b + a r,g 	r,g 

where c,„,9 , ar, 9  and 14,9  are the attenuation, ab- 
sorption and scattering coefficients, respectively. 
The absorption and scattering coefficients, which 
are expressed in 	are approximated by the 
equations[ 30] 

61/4 9  = [a; + 0.06 dg  C°.65 (z)] 

	

x [1 + 0.2 e-0.014(À9-440)] 	(28) 
and 

	

br,9  = (-9 0.30 C° 62 (z), 	(29) 
Ag 

where agni is fite absorption coefficient of pure 
water, g a nondimensional, statistically derived 

min —Y T (x)Y(x) = min - E [yz (x)] 2 , 
xertic 2 	 xeye 2 
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chlorophyll-specific absorption coefficient, and 
C(z) the chlorophyll concentration, in mg m -1 , 
which is approximated as a background value plus 
a Gaussian [30] 

C(z) Co +" — 	 (30) 
,s ■/ 	e   

where the geometric depth z is expressed in me-
ters. The values of the parameters aeg , for three 
chosen values of Às' (500, 550 and 600), and those 
of Co, h, s and zmax,  obtained from Ref. 30, are 
shown in Table 1. 

Table 1. Parameterso btained from Ref. [30] 

Parameter Value 
C (4=500; 550; 600) 0.026; 0.064; 0.245 m-1  

(,),,,= 500; 550; 600) 0.668; 0.357; 0.236 
Co 0.2 mg 111-3  

h 144 mg 111-2  

9m 
17 m 

Note that the inherent optical properties, 
eng , 3/4 and br,g , are regarded as being aver-
ages within each region r, and that the corre-
spondence between the optical depth and geo-
metric depth is given by the expression T(z) = 

+ (z - zr-i)cr,g, where 

r-1 

/-r-1 = E(Zi 
	 (31) 

i=1 

For both problems, we consider 	= 0, #o = 
1, the Henyey-Greenstein parameter f = 0.924, 
the quadrature order N = 130, a water layer thick-
ness of 40 meters, equidistantly divided into R = 5 
regions. With the f factor, applied to ali regions, 
the A values in Eq. (6) are obtained in two steps. 
First the code calculates the Henyey-Greenstein 
phase function [31] 

1 _ f2  
b.frc (f; e) = 	.,,„ , (32) 

-kr (1+ p 2f cos er ,  

then iteratively searches for a scattering order L 
that generates, through Eq. (6), a phase func-
tion whose graphic representation compares well 
with the graphic representation of the Henyey-
Greenstein phase ffinction given by Eq. (32), L e., 
the iteration process is stopped when correspond-
ing points on the two graphs do not differ by more 

than ±1%. The 13i values of Eq. (6) are deter-
mined through the expression [32] 

0, = (21+1) fl 	(33) 

Note that we consider (341 = A,2 = 	= 
for the chosen multi-region problems. 

With these input parameters, the simulated 
measured exit radiances /(1-  = 0, -p,w = 0), 
were deterrnined by the forward model code at five 
values of p (-.96, -.97, -.98, - 99 and -1), for 
each one of the three chosen values of A g ,t otaliz-
ing, in Eq. (25), M = 15 optimization functions. 
We used a constant source profile (So(r) = 0.5) 
and a sine source proffie (8 0  (T) = sin(wr/e)), in 
lhe first and second problems, respectively, con-
sidering in both problemsQ g  = 1.0, in Eq. (24). 

In order to simulate measured radiances Zn, 
containing measurement errors, the calculated data 
Ze  were corrupted with noise by using the IMSL 
subroutine Drnnor [33], which generates pseudo-
random numbers from a standard normal distribu-
tion. Thusw e have 

= Ze (1 + e), 	(34) 

where 1£ is lhe percent noise and e is a random 
variable calculated by subroutine Drnnor. 

We used both techniques, the average-value 
technique and the three-coefficient technique, to 
retrieve the intemal source profiles. Resides the 
excessive computational time involved to solve 
the problems,w hen using the average-value tech-
nique, we were not able to obtain results with 
a good degree of accuracy. In Figs. 3 and 4 
we show the estimated source profiles, using lhe 
three-coefficient technique for four selected exper-
imental errors, tc = O, 1,2 and 5%. The values 
in parentheses indicate the percentage deviations 
of the calculated areasu nder lhe estimated curves 
from those under the exact curves. 

So(z) 

    

Exact 

K = 1% (-4%) 

K = 5% (-20%) 

  

1.0 - 

0.8 - 

0.6 - 

0.4 - 

0.2 - 

0.0 - 

    

    

      

      

1 	1 	1 
0 
	

10 	20 	30 
	

40 
z 

Figure 3: Estimation of the constant source profile. 
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So (z) 

FINAL COM MENTS 
The inverse problem of estimating the internai 

sources in natural waters, using remote sensing 
data, is solved by an analytical discrete-ordinates 
method [17-19] and a modified Levenberg-
Marquardt method [20,21,27] for the adopted for-
ward model and inverse technique, respectively. 

In the soiution of the two problems chosen 
to test the implemented inversion technique, the 
analyses were performed by using simulated mea-
surements containing random errors varying from 
0 to 5%. We note that, as shown in Fig 3 and 
4, the differences between the exact and estimated 
source profiles increase with depth. In the opin-
ion of the authors, thisb iasisdue to te physical 
nature of the probiem, where te radiances expo-
nentially decay within water, se te signal to noise 
relation greatly degradesf or greater depths. 

In order to solve our inverse problem, various 
modeling aspects had to be formulated, including 
the consideration of splitting the intemal source in 
two functions, ene carrying the spatial dependency 
and the other te spectral dependency, where the 
latter was considered as a known fimction. This 
simplification was applied in order to reduce the 
computational time involved in te solution. 

Two techniques, the a-verage-value technique 
and the three-coefficient technique, were imple-
mented for retrieving the internai source profiles. 
The average-value technique was considered inad-
equate, due to its ineffectiveness and inaccuracy. 
With the three-coefficient technique, we were able 
to recover the desired proffies with an acceptable 
degree of accuracy, even with inputda ta containing 
significant measurement errors and with a small 
number of measurement points. 

We note that other techniques can be used to 
solve this type of inverse problems, such as lhe 

Tilconov regularization techniques or the princi-
pie of maximum entropy (in its various forms), 
Kaiman filtering technique and lhe variational 
methods, and that we consider applying them in 
future works. 

The estimation of te optical properties by us-
ing remote sensing data is still a challenge to the 
scientific community. This work represents te 
first effective step forward for lhe multispectral 
inversion. It is important to point out that there is 
no need in our analysis to impose an homogeneous 
ocean or any other constrained assumptions. Al-
though we only present preliminary results of our 
research, we are able to conclude that it is possi-
ble to develop techniques for estimating the desired 
properties, using remete sensing data. 

To close tis work, we finally note that we ex-
pect soon to be able to extend our analysis for the 
estimation of other optical properties, such as the 
absorption and scattering coefficients. 
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