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ABSTRACT

An inverse analysis for the estimation of inter-
nal sources in natural waters, using remote sens-
ing data, is presented. The analysis involves a
forward model that utilizes an analytical discrete-
ordinates method for solving the radiative transfer
equation and an inverse model which contains an
algorithm for least-squares estimation that is itera-
tively solved for reirieving the internal source pro-
file by using the Levenberg-Marquardt optimizer.
The experimental data are simulated with synthetic
data (exit radiances) that are calculated at the sur-
face of the water and corrupted with noise. The
results show that the internal sources can be re-
covered with good accuracy, even for high noisy
data.
Keywords:  Inverse hydrologic optics, inter-
nal sources, remote sensing, analytical discrete-
ordinatesm ethods.

NOMENCLATURE

Following isa list of the most important sym-
bolsus ed in thisw ork:

intensity (radiance) of the radiation field
incident beam sfrength

order of the anisotropy

number of optimization functions
quadrature order

phase function

Legendre polynomial

associated Legendre function

number of spatial regions
inhomogeneouss ource term

internal source of radiation

geometrical thicknesso f the medium
expansion coefficient

optical thicknesso f the medium
direction of propagation of the radiation
in the medium

3 E R s

oo hinmiy T

>

photon wavelength

It cosine of the polar angle (measured from
the positive T axis)

to  cosine of polar angle of incidence

w  albedo for single scattering

T optical variable

@ azimuthal angle

o  azimuthal angle of incidence

Subscripts/Superscripts

g wavelength interval index

) expansion order of the phase function
m  Fourier component index

r spatial region index

INTRODUCTION

The inverse analysis of radiation in a partici-
pating medium has a broad range of applications,
inchuding, among others,r emote sensing of the at-
mosphere and the determination of radiative prop-
erties in natural waters. McCormick in his arti-
cles [1-3] presents reviews of methods for solv-
ing the inverse radiation problems, such as the es-
timation of optical properties, the thickness of a
medium and the presence of a spatially distributed
source. In hydrologic optics, the estimation of the
radiative properties can be performed by using ei-
ther data from #» situ or remote sensing data.

One of the most important challenges in in-
verse hydrologic optics is to refrieve the properties
of the physical system from remote sensed data.
There are only few worksin the literature on this
subject, most of them are based on the Gershun’s
equation and the estimation of the apparent op-
tical property named irradiance attenuation coeffi-
cient [4] or diffuse attenuation coefficient [5]. An-
other simplification for remote sensing estimates
of bic-optical properties is to consider an homo-
geneouso cean [6-8].
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Differently from our early estimations with in
sifu radiometric measurements [9-15], the source
term estimation is performed using remote sensing
data, that are represented by the exit radiances.
The method presented in this paper is completely
different from the one presented in Ref [16],
which is based on the reciprocity principle. How-
ever, there isn o testsin thisr eference, not even a
numerical one, for the validation of that method-
ology.

The inverse analysis involves the following two
basic steps: (a) a forward problem solution and
(b) an inverse problem solution. In the first step,
the radiative transfer equation is solved by an ana-
Iytical discrete-ordinates method [17-19] fo deter-
mine the exact (synthetic) exit radiances, and, in
the second, an algorithm [20,21] for least-squares
estimation is iteratively utilized to retrieve the spa-
tially distributed sources. In the analysis, the ex-
perimental data are simulated with synthetic data
corrupted with noise from 1 to 5%.

PRELIMINARY ANALYSIS
For a multispectral problem, we consider the
equation of transfer

8
“51(77 Hy 0, A) + I(7, 1,0, A) - w(’\)

1 2T
x f / / P(cos®, N I(r, 1/, NYANdy/dyf
—1J0 A
+SO(Ta)\)a (1)

subject to the boundary conditions

I(Oa 9, /\) = L(Ju'! @, /\) =
Lo(A\)d(s — pa)d(p — o) (2a)
and

I(C, P, ’\) = R(,U,, P, A) =0, (Zb)

where I(r, s, p, A) denotes the intensity (radiance)
of the radiation field, 7 € (0,() the optical vari-
able, with  representing the optical thickness of
the medium, # € [-1,1] and ¢ € [0,27], re-
spectively, the cosine of the polar angle {(measured
from the positive T axis) and the azimuthal angle,
that specify the direction of propagation @ of the
radiation in the medium, and A the photon wave-
length. In addition, w(\) € [0,1] is the albedo
for single scattering, where @ = b/(a + b) with

a and b representing the absorption and scattering
coefficients, p(cos©, A) is the phase function for
scattering from {4/, @', X'} to {g, 0, A}, So(T, A)
an internal source of radiation, and L{j, ¢, A) and
R(p,p,A) are the distributed incident radiances
at the boundaries. The incident beam is character-
ized by a beam strength I(A) and a beam direc-
tion (0, o). An outline of the physical process
isde picted in Fig. 1.

In this work, we discretize Eqs. (1) and (2)
in the wavelength variable and then consider all
wavelength-dependent values as being averages
over a wavelength interval (band) AM,. Thus, for
a generic variable F'(A), we have

1

Fy=FO) =51 [
2

Fdh,  (3)

where ), is an average wavelength in the inter-
val g. To further simplify the calculations, we
consider that a particle can only be scattered to
within the same interval, and so we write our orig-
inal equation of transfer, for a specific wavelength
Ags S,

8
pg- Ll )+ Ig(T, g 0) = @y

x [ seseyn sl
i + So,g(T), (4)
subject to the boundary conditions
Iy(0, 1, ) = do,g8(pt — po)d( — o) (5a)

and
I(¢,—p, ) =0. (5b)

Here, the phase function p(cos ©), for scattering
from {y’, '} to {0}, is represented by a finite
Legendre polynomial expansion given in terms of
the cosine of the scattering angle ©,

L
plcos @) = 21}7; Eﬁng(cos 0), Fo=1
1=0

and |G <2l+1 for 0<I<L, (6)

where 3; and P, are, respectively, the coefficient
and the Legendre polynomial in the L*"-order ex-
pansion of the phase function.
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Figure I: Pictorial representation of the radiative processin natural waters.

FORWARD PROBLEM SOLUTION
Following Chandrasekhar [22], we then write
the intensity of the radiation field as

Iy(r, gt ) = Tug(7o 0, 0) + Lo g (1o 11, 0), (D)

where I, ,(T, 4,¢) is the unscattered component
which satisfies a version of Eq. (4) with zero
right-hand side and boundary conditions similar
to Egs. (5).a nd I, 4(7, 4, @) is the scattered com-
ponent that must satisfy

7,
”EISsQ(Taﬂs ':P) =+ Is:g(T’ M SD) =Wy
1 2
X f f p(eos O) Lo (1, ¢, ') de'dp’
—1J0
+ 8o (7, 11,0}, (8)

for 7 € [0,¢], u € [-1,1] and € [0,2x], and
the boundary conditions

IS,g(Oa JU'NP) = Is,g(C: — s ‘P) =0, )

for p € (0,1] and ¢ € [0,2x]. The inhomoge-
neouss ource term S,(7, i, ) isg iven by

Continuing, we make use of the Fourier cosine
decomposition [22]

L
1
IS,Q(TJ s {P) = 5 Z (2 - 60,71’5)‘[;;1(7-1 M)
m=0

x coshm(p —wo)] (1)

along with the addition theorem [23] for the
Legendre polynomials to deduce that the original
problen: can be reduced to the problem of solving,
form=0,1,... L,

If(rp) + I3 (r,p) =

ZﬁPz

lz=m

3

For
1

< [ BrOLRe + P, (2)

where

- 1/2 m
i) =[S -y R
(13)

denotes an associated Legendre function, and the
inhomogeneouss ource term isg iven by

S5t (T, m) = 2804 (T)do,m

wy I e "
+ e Z BP™ (o) P, (14)
m
SQ(T:’JH (P) = SO;Q(T) + @y f=m
subject to the boundary conditions,

1 27
x / f pcos @)Ly o (7,4, )d'dp’.  (10)
-1J0
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for 4 € (0,1]. It is clear that once we solve the

problems formulated by Eqs. (12) and (15), for
= 0,1,...,L, we can compute the scattered

component of the intensity with Eq. (11).

Thus far we have considered a problem for-
mulated as a single region. The extension of this
method to multi-region geometry is based on the
work performed by Dias and Garcia [24,25]. So
we use, as mentioned in Refs. [24] and [25], “an it-
erative approach that is based on solving the prob-
lem one region at a time and using spatial sweeps
to connect these solutionsa nd guide them to con-
vergence.” For the treatment of the space variable,
we consider a system of R regions, as shown in
Fig. 2.

Reg 1 |Reg 2|- - -|Reg 7/[- -

T2 Tr1

|Reg R-1jReg R

Tr TR-2 ThR-1

To=0 7

TR=(
Figure 2. A system of R regions

The multi-region problem is then expressed, for
pe(0,llandr=1,2,... R, as

g

o m w
#gﬂ?g(", p) + I p) = .

L 1
<3 BB [ AP
I=m -
+ 87( ), (16)
subject, for 12 € (0, 1], to the boundary conditions,
(TR? y’) = 0 (17)

and to the interface conditions,
1,2,...,R—1,

'r',g(TT‘! :b})_) - I}Tl-l,g(q-ﬂ iﬂ:), (18)
where 877 (7, 1) isg iven by

D p)dy!

(1’0, J”')

for r =

Srio (T 1) = 250,4(7T)d0,m + ;’9 I‘T’r’g —7/uo

x Zﬁl,rﬂm(#o)ﬂm(#)- (19)

I=m

To define our discrete-ordinatesv ersion of the
problem posed by Egs. (16) to (18), we uti-
lize a quadrature of order N with nodes {u;}

and weights {#;} to approximate the integral in
Eq. (16). The selected quadrature scheme is the
double quadrature of order N = 2n obtained by
applying a standard Gauss-Legendre scheme of or-
der n to each of the half-intervals [0,1] and [-1, 0].
By using the elementary solutionso f the discrete-
ordinates equations and their orthogonality prop-
erty developed in Ref. 26, we can write the general
discrete-ordinatess olution of order N as

I(mong) =

T

Z {Akmgq’r,g (s py )= (=)
k=1

+Bk,1",g¢r’g(—1/k’ ,Ulj)e_(Tr_T)/Vk]

+ Z [Q[k,r,g (T)q’r,g (Vka .l”'j)

k=1
+ Bk g (7185 (— ke, 5] - (20)

In Eq. (20), vy and —uy, k= 1,2,... ,n,de note,
respectively, the inverses of the positive and the
negative eigenvalues of the N x N matrix E-1(I—

W, ), where B = diag{p;, p2,... ,un}, Lis the
identity matrix of order N, and W, isan N x N
matrix with elements

L
W, 1) 1)
Wi,a',r,g=Tgnj > B P () P py). @)

l=m
The elementary solutions & ,(vk,p;) and

&, o(—vi, p7) present in Eq. (20) are, respec-
tively, the jth components of the eigenvectors
®, o(vy) and ®,. 4(—u1 ), associated, respectively,
with the eigenvalues 1/, and —1/vy. Also the
coefficients {2y, ,(7)} and {By,4(7)} of the
particular solution can be expressed as[ 26]

Asr.g (T) Z P ,g(Vka P"l)

r,g(V

xf Sr,g(x,pi)e_(f_m)/""dw (22a)
Tr—1

and
Pal =
k,r,g('r) r,g( Vk: Z’fh ‘r‘,g Vk:y'z)
Xf S gz, pi)e @V vedz,  (22b)
with
N
Npg(£vk) = Y migpa[@r g (v, pa)]2. (23)
i=1
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Note that the coefficientso f the homogeneouss o~
lution {Ag o} and {B 4} are the solutions to
the linear system of N algebraic equations ob-
tained by imposing that the general solution ex-
pressed by Eq. (20) satisfies the boundary and in-
terface conditions of the problem. These calcula-
tionsa re reported in detail in Refs. 18 and 19.

INVERSE PROBLEM SOLUTION

The inverse problem is formulated as an opti-
mization problem for the minimization of the norm
of the differences between the measured data and
the data obtained through the forward model pre-
sented in the previouss ection.

To simplify our solution, we split the internal
source of radiation Sy 4(7) in two functions

50,6(7) = So(T) Q(Ae) = 50(7) Qor  (24)

and considered the function with spectral depen-
dency Q@4 a known function.

While the internal source of radiation Sy 4(7)
is unknown, the expansion coefficients {3; .} of
the phase function for anisotropic scattering, the
single scattering albedo {w, ,} and the optical
thickness ¢, as well as the measured (exact) val-
ues of the exit radiances I, (0, —u, &) are consid-
ered available. The inverse problem is iteratively
solved by an algorithm for least-squares estimation
where, in each iteration, values of the exit radi-
ances Io(0, —p, @) are computed from estimated
values of the internal source profile So(7). Here
the calculated radiances are obtained from a mod-
itied and adapted package of subroutines taken
from the forward model code, which we here re-
fer to as subroutine Peesna,a nd the estimated pa-
rameters are obtained with the IMSL subroutine
Dbelsf [27]. Basically, these calcutations consti-
tute our inverse model.

The IMSL subroutine Dbclsf uses a modi-
fied Levenberg-Marquardt method [20,21] of min-
imization and an active set strategy [28] to solve
nonlinear least squares problems subject to simple
bounds on the variables. The problem is stated as
follows[ 27,29]:

1 M
Din 5 YT(m)Y(E) 5; yi (@)1,

dj 'S Ly S T, (25)

where M > K, Y : R¥ — RM | 4:(2) is the i-th
component function of ¥'(x), and d; and u;,j =

1,..., K, are the lower and upper bounds, respec-
tively. The functions y;,7 = 1,... , M, represent
the differences between the experimental radiances
and radiances that are calculated through each call
to subroutine Peesna, and z;,5 = 1,... K, the
unknown variables to be estimated by the IMSL
subroutine Dbclsf. We implemented two tech-
niques for retrieving the internal source profile. In
the first one, referred to as the average-value tech-
nique, we consider within each region r, an aver-
age source value 9y represented by the variable
and thus we estimate K = R variables. And in
the second one,r eferred to as the three-coefficient
technique, the source Sp(7) is determined by the
quadratic expression

So(r) = @1 + z2(7/C) + 23(r/()%,  (26)

where the coefficients x,, x and x; are the only
variables to be estimated. Note that, using the
average-value technique for retrieving the source
becomes very expensive, computationally speak-
ing, as a large number of regions R is needed to
generate a smooth profile.

NUMERICAL SOLUTION

Two problems were chosen to test the inverse
model. The parameters that define the chosen
problems were based on the simulation presented
in Mobley’s book [30], Light and Water - Radia-
tive Transfer in Natural Waters, in Section 11.8 -
“A Simulation of Case | Water”. In addition, we
considered an internal source generated by biolu-
minescent organisms.

The single scattering albedo @, 4, is calculated
by the expression

brg by g
T g hgtay O

where ¢, 4, ar, and b, , are the attenuation, ab-
sorption and scattering coefficients, respectively.
The absorption and scattering coefficients, which
are expressed in m~!, are approximated by the
equations| 30]

arg = [a¥ +0.06 af C*%(2)]
% [1 102 8—0.014()«9—440)} 28)

and

brg = (5f0) 0.30 C9(z),  (29)
g

where o} is the absorption coefficient of pure
water, a a nondimensional, statistically derived
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chlorophyll-specific absorption coefficient, and
C(z) the chlorophyll concentration, in mg m™!,
which is approximated as a background value plus
a Gaussian [30]

h _%(z_za )2,

e
sV 2m

Clz)=0Ch + 30
where the geometric depth z is expressed in me-
ters. The values of the parameters afy’, af, for three
chosen values of A, (300, 550 and 600), and those
of Cg, h,s and z,,,,, obtained from Ref. 30, are
shown in Table 1.

Table 1. Parameterso btained from Refl [30]

Value
0.026; 0.064; 0.245 m™?
0.668;0.357; 0.236

Parameter
a" {Ay=500; 550; 600)
a°( g ="500; 550; 600)

Co 0.2 mg m~*
h 144 mg m™?
g 9m
Zmaz 17m

Note that the inherent optical properties,
Crg:Grg and b, ., are regarded as being aver-
ages within each region r, and that the corre-
spondence between the optical depth and geo-
metric depth is given by the expression 7(z) =
Tr=1+ (2 = 2zr—1)cr, g, Where

r=1
Tr—1 = Z(Zi - Zi—l)ci,g- @31
i=1

For both problems, we consider ¢gq = 0, pg =
1, the Henyey-Greenstein parameter f = 0.924,
the quadrature order N = 130, a water layer thick-
ness of 40 meters, equidistantly divided into R = 5
regions. With the f factor, applied to all regions,
the G; values in Eq. (6) are obtained in two steps.
First the code calculates the Henyey-Greenstein
phase function [31]

1 1— f?

Pra(f;0) = 4m (14 f2 - 2fcos©)¥2

(32)

then iteratively searches for a scaitering order L
that generates, through Eq. (6), a phase func-
tion whose graphic representation compares well
with the graphic representation of the Henyey-
Greenstein phase function given by Eq. (32), i.e,
the iteration process is stopped when correspond-
ing points on the two graphs do not differ by more

than +1%. The g; values of Eq. (6) are deter-
mined through the expression [32]

Br=@A+1) [ (33)

Note that we consider 8y = Bi20 = 51,... = Bi,r,
for the chosen multi-region problems.

With these input parameters, the simulated
measured exit radiances I{t = 0,—-p,» = 0),
were determined by the forward model code at five
values of p (—.96, —.97,—.98, —.99 and —1), for
each one of the three chosen values of At otaliz-
ing, in Eq. (25), M = 15 optimization functions.
We used a constant source profile (Sp(7) = 0.5)
and a sine source profile (So(7) = sin{wr7/(}), in
the first and second problems, respectively, con-
sidering in both problemsQ, = 1.0, in Eq. (24).

In order to simulate measured radiances Z,,
containing measurement errors, the calculated data
Z. were corrupted with noise by using the IMSL
subroutine Drrnor [33], which generates pseudo-
random numbers from a standard normal distribu-
tion. Thusw e have

I = Ze(]- + K &)a (34)

where # is the percent noise and ¢ is a random
variable calculated by subroutine Dranor.

We used both techniques, the average-value
technique and the three-coefficient technique, to
retrieve the internal source profiles. Besides the
excessive computational time involved to solve
the problems,w hen using the average-value tech-
nique, we were not able to obtain results with
a good degree of accuracy. In Figs. 3 and 4
we show the estimated source profiles, using the
three-coefficient technique for four selected exper-
imental errors, £ = 0,1,2 and 5%. The values
in parentheses indicate the percentage deviations
of the calculated areasu nder the estimated curves
from those under the exact curves.

So(z)
— Exact
].0_ ...... 5:05}. EO%
] —— - k= 1% (—4%)
0.8 — — k= 2% (-8%)
0.6 _ — e = = 5% (—'20%)
0.4 - NI E
02- T
0.0 4
T | | 1 [
0 10 20 30 40

z
Figure 3: Estimation of the constant source profile.
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So(z)
1.0
0.8 ~
0.6 -
Exact
044 S ... & = 0% (10%)
024 ——-n:l%E?%)
: — — k= 2% (4%)
0.0 - — - - - k=5%(-5%)
I I [ I T
0 10 20 30 40
z

Figure 4: Estimation of the sine source profile.

FINAL COMMENTS

The inverse problem of estimating the internal
sources i natural waters, using remote sensing
data, is solved by an analytical discrete-ordinates
method [17-19] and a medified Levenberg-
Marquardt method [20,21,27] for the adopted for-
ward mode! and inverse technique, respectively.

In the solution of the two problems chosen
to test the implemented inversion technique, the
analyses were performed by using simulated mea-
surements containing random errors varying from
0 to 5%. We note that, as shown in Fig 3 and
4, the differences between the exact and estimated
source profiles increase with depth. In the opin-
ion of the authors, thisb iasisdue to the physical
nature of the problem, where the radiances expo-
nentially decay within water, so the signal to noise
relation greatly degradesf or greater depths.

In order to solve our inverse problem, various
modeling aspects had to be formulated, including
the consideration of splitting the internal source in
two functions, one carrying the spatial dependency
and the other the spectral dependency, where the
latter was considered as a known function. This
simplification was applied in order to reduce the
computational time involved in the solution.

Two techniques, the average-value technique
and the three-coefficient technique, were imple-
mented for retrieving the internal source profiles.
The average-value technique was considered inad-
equate, due to its ineffectiveness and inaccuracy.
With the three-coefficient technique, we were abie
to recover the desired profiles with an acceptable
degree of accuracy, even with inputda ta containing
significant measurement errors and with a small
number of measurement points.

We note that other techniques can be used to
solve this type of inverse problems, such as the

Tikonov regularization techniques or the princi-
ple of maximum entropy (in its various forms),
Kalman filtering technique and the variational
methods, and that we consider applying them in
future works.

The estimation of the optical properties by us-
ing remote sensing data is still a challenge to the
scientific community. This work represents the
first effective step forward for the multispectral
inversion. It is important to point out that there is
no need in our analysis to impose an homogeneous
ocean or any other constrained assumptions. Al-
though we only present preliminary results of our
research, we are able to conclude that it is possi-
ble to develop techniques for estimating the desired
properties, using remote sensing data.

To close this work, we finally note that we ex-
pect soon to be able to extend our analysis for the
estimation of other optical properties, such as the
absorption and scattering coefficients.
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