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ABSTRACT

The “elliptic-bi-parabolic transfer” orbit for artificial satellites is an extension of the bi-parabolic
transfer that uses a Swing-By with a natural satellite of the main body to reduce the amount of fuel
required by the maneuver. The objective is to find the minimum cost trajectory, in terms of fuel
consumed, to transfer a spacecraft from a parking orbit around a planet to an orbit around a natural
satellite of this planet (in a first version of this maneuver) or to a higher orbit around the planet (in a
second version of this maneuver). The steps involved in this maneuver are: the application of an
impulse to make the spacecraft to escape from the parking orbit around the planet using an elliptic
transfer that crosses the orbit of the natural satellite; a Swing-By with the natural satellite with the
periapsis distance controlled to make the spacecraft to reach a first parabolic transfer orbit; a zero
cost impulse applied at infinity to change the orbit to a second parabolic transfer orbit that makes the
spacecraft to return close to the natural satellite or around the planet (depending on the version
considered) at an altitude equal to the radius of the final orbit desired; a third impulse to circularize
the final orbit. The derivation of analytic equations that calculate the fuel saved in this maneuver
when compared to the standard Hohmann transfer is made for both versions and it is used to generate
numerical examples. Graphics are built to show in more details the potential savings given by this
technique. After that, the idea of using a natural satellite in the maneuver is applied to the problem of
making a spacecraft to escape from the main planet to the interplanetary space with maximum
velocity at infinity. Numerical examples to leave Earth in a trip to all the planets of the Solar System
and the to interstellar space are shown and the savings are quantified.

INTRODUCTION

R. H. Goddard (1919) was one of the first researchers to work on the problem of optimal transfers of
a spacecraft between two points. He proposed optimal approximate solutions for the problem of
sending a rocket to high altitudes with minimum fuel consumption. The problem of optimal transfers
(in the sense of reducing the fuel consumption) between two Keplerian coplanar orbits has been
under investigation for more than 40 years. In particular, many papers solve this problem for an
impulsive thrust system with a fixed number of impulses. The literature presents many solutions for



particular cases, like the Hohmann (1925) and the bi-elliptic (Hoelker and Silber, 1959; Shternfeld,
1959) transfers between two circular orbits and their variants for ellipses in particular geometry.

The original Hohmann solution was obtained for a bi-impulsive transfer between two circular and
coplanar orbits. It is the most used result in orbital maneuvers and it is applied here to compare the
results generated by the technique suggested in the present paper. This important transfer has the

following steps:
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and ¥, is the velocity of the spacecraft when in its initial orbit) is applied in the direction of the

motion of the spacecraft. With this impulse the spacecraft is inserted into an elliptical orbit with
periapsis 7, and apoapsis r;

a) In the initial orbit a 4V, =V, (where r, (r)) is the radius of the initial (final) orbit

b) The second impulse is applied when the spacecraft is at the apoapsis. The magnitude is
2
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as a first approximation of more complex models. Later, Hoelker and Silber (1959) (and others)
showed that this transfer was not the best in all cases. A detailed study of those transfers can be
found in Marec (1979). Next, the Hohmann transfer was generalized to the elliptic case (transfer
between two coaxial elliptic orbits} by Marchal (1965). Smith (1959) shows results for some other
special cases, like coaxial and quasi-coaxial elliptic orbits, circular-elliptic orbits, and two quasi-
circular orbits.

av, =V, \J*s /¥, and it circularizes the orbit. This result is largely used nowadays,

The three-impulse concept is introduced in the literature by Shternfeld (1959) in Russia. He
derived the bi-elliptic transfer (according to Edelbaum, 1967). This transfer was later independently
derived by Hoelker and Silber (1959) and Edelbaum (1959). All those researches show that it is
possible to find a bi-elliptical transfer between two circular orbits that has a AV lower than the one
for the Hohmann transfer, when the ratio between the radius of the initial and the final orbits is
greater than 11.93875. Following the idea of more than two impulses, there is also the paper by
Broucke and Prado (1995) that uses three or four impulses passing through infinity. Two papers that
document and summarize the knowledge about impulsive transfers are the ones written by Edelbaum
(1967) and Gobetz and Doll (1969).

The present paper studies the problem of orbital maneuvers where a celestial body (a natural
satellite of the main body considered) is used to decrease the AV (fuel consumed) required to
complete the specified maneuver. It is called the “elliptic-bi-parabolic transfer” maneuver. A transfer
from the Earth to the Moon and a transfer between two orbits around the Earth are used as examples,
but the results are valid for any system of primaries.

THE ELLIPTIC-BI-PARABOLIC TRANSFER

The elliptic-bi-parabolic transfer is an extension of the bi-parabolic transfer, that is the limit case of
the bi-elliptic transfer invented by Shternfeld (1959) and Hoelker and Silber (1959). In their original
version, they show how to make a transfer between two circular and coplanar orbits in three
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impulses. The sequence is: i) The first impulse is applied to send the spacecraft from its initial orbit
to an elliptic orbit with large periapse distance (parabolic in the limit case); ii) The second impulse is
applied at the apoapse of this first transfer orbit and it puts the spacecraft in a second elliptic
(parabolic in the limit case) transfer orbit with periapse tangential with its final orbit; iii) The third
impulse is applied in the periapse of this second transfer orbit and it completes the capture of the
satellite in its final orbit. It is shown (Marec, 1979) that this transfer is more economical (in terms of
AV) than the Hohmann transfer, in some cases.

The elliptic-bi-parabolic transfer takes advantage of an intermediate swing-by with the secondary
body to reduce the amount of fuel required for the maneuver. It is useful to transfer a spacecraft from
a low orbit around a central body to another body (a natural satellite) in orbit around this same
central body or to transfer the spacecraft between two orbits around the central body. A good
application is the transfer of a space vehicle from LEO (Low Earth Orbit) to the Moon. To develop
the equations involved in this transfer it is assumed that: i) The initial LEO is circular with radius r;
ii) The space vehicle is in a Keplerian orbit around the central body, except for the duration of the
swing-by at the target body; iii) The swing-by at the target body can be modeled by the two-body
scattering (Prado, 1993 and 1995); iv) The propulsion system is the usual impulsive system, able to
delivery an instantaneous increment of velocity 4¥; v) The second body (the satellite) is in a circular
orbit with radius 75, coplanar with the initial orbit of the spacecraft; vi) The final orbit desired for the
spacecraft is a circular orbit with radius »,around the primary or the secondary body.

First version: transfer to a satellite body

With those hypotheses, the complete transfer (for the case where the final orbit is around the satellite
body) follows the steps:

i) From the initial circular parking orbit an impulse is applied to send the spacecraft to an elliptic
Hohmann transfer to the target body. This impulse is tangential to the initial orbit, and the magnitude
is given by Equation (1). This magnitude is the same one that is applied in the Hohmann transfer,
because the intermediate transfer orbits are the same in both cases.
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The time to apply this impulse is chosen such that the spacecraft reaches the apoapse of its transfer
orbit at the same time that the target body is passing by that point, to have a near-collision encounter;

ii) In this point, the spacecraft makes a swing-by with the target body to transform its elliptic orbit O,
around the central body to a parabolic orbit (P)). In a typical planar swing-by, there are three
independent free parameters that can be varied to achieve the purposes of the maneuver: V,, (the
velocity of the spacecraft relative to the satellite body, when it is entering its sphere of influence); 7,
(the distance during the moment of the closest approach); the approach angle y (the angle between
the velocity of the spacecraft during the moment of the closest approach and the velocity of the
planet). See Fig. 1 for more details. In this particular case, the values for ¥, and y are not free, since



it is decided to approach the target body from a Hohmann transfer (to achieve the minimum 4V for
the first impulse). What is left to choose is 7,, and it has to be chosen in such way that the orbit after
the encounter is parabolic. From the condition of the orbit of the spacecraft before the encounter, the
information available is:
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where, V is the velocity of the spacecraft relative to the central body before the encounter, ¥, is the
same velocity relative to the target body and g, is the gravitational parameter of the central body.
Equation (3) is valid because the velocity of the spacecraft and the target body are aligned, at the
near-collision point. From the condition for the desired orbit for the spacecraft after the encounter (it
has to be parabolic) it is possible to say that:

I (4)

where V, is the velocity of the spacecraft relative to the central body after the encounter (parabolic

escape velocity). Using the rules to add two vectors the value for & (the turn angle of the swing-by,
see Fig. 1) is found to be:

ch - V52 = V:

Cos(26)= =
8"
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where V; is the velocity of the satellite body with respect to the central body. Now, with the value of
6, the desired value of 7, is found, from the equation:
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where 1 is the gravitational parameter of the target body. The approach of the spacecraft has to be
calculated to obtain a close encounter with the natural satellite with this distance;

iii) Then, the same principle used in the bi-parabolic transfer is used here. Theoretically, it is
necessary to wait until the spacecraft reaches the infinity to apply a zero impulse to transfer the
spacecraft to a new parabolic orbit, that will meet the natural satellite with a periapse distance equals
to . This maneuver has a zero AV (called 4¥; in Fig. 2), because it is performed at infinity, where

the gravitational force from the central body is zero;

iv) The last step is the insertion of the spacecraft in an orbit around the target body. The same
principle from the bi-parabolic transfer is used again.



The ¥V, (the velocity of the spacecraft relative to the target body when entering its sphere of
influence) is calculated by Equation (7); then a conic around the target body with periapse at r; is
constructed and an impulse at the periapse of this conic is applied, opposite to the motion of the
spacecraft, to reduce its velocity to the circular velocity at . The magnitude of this impulse is given

by Equation (8).
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All those equations can be combined to offer an expression for the savings in AV between the
standard Hohmann transfer and the elliptic-bi-parabolic transfer. The expression is:
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It is important to note that the first impulse is the same for both maneuvers, so Equation (9)
represents the difference between the velocity of the spacecraft when approaching the satellite body
from an elliptic orbit that belongs to the Hohmann transfer (the first term) and the velocity of the
spacecraft when approaching the satellite body from a parabolic orbit that belongs to the elliptic-bi-
parabolic transfer (the second term).
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| Fig. 1 — The geometry of the Swing-By. | Fig. 2 — Transfer from Earth to the Moon.

As an example, it is calculated the AVs involved to transfer a spacecraft from a circular low orbit
around the Earth to a circular orbit around the Moon. The data used are: r, = 6545 km; r; = 384400

km; r,= 1850 km; - = 398600.44 km?/s?; 1y = -/81.3, where u. is the gravitational parameter of the
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main body and u; is the gravitational parameter of the natural satellite. The results are: AV, = 3.140
km/s; ¥, = 0.1863 km/s; V,,= 0.832 km/s; V, = 1.440 km/s; 6= 39.13°% r, = 4139.0 km; 4V, = 0.713
km/s. The total AV involved in this maneuver is AV, = AV, + AV, = 3.853 km/s. To give an idea of
the savings obtained, Table 1 shows the standard results available, obtained from Sweetser (1991).

Table 1 - AV for several transfes in km/s

A4 VI A VZ A Vtoml

Hohmann 3.140 0.819 3.959
Bi-parabolic 3.232 0.714 3.946
Elliptic-Bi-Parabolic 3.140 0.713 3.853

To show better the possible savings in more generic cases, Fig. 3 shows contour-plots for the savings
obtained. The canonical system of units is used in those graphs, what means that . =r, =V, =1,
where the unit for velocity is chosen to be ¥, (the velocity of a spacecraft in a circular orbit with
radius r;). The values of z; are 0.001, 0.01 and 0.1, respectively. The vertical axis is used for the
variable 7, (the radius of the final circular orbit of the spacecraft around the natural satellite) and the
horizontal axis is used for r; (the radius of the circular orbit of the natural satellite around the planet).
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Fig. 3 - Contour-plots showing AV, as a function of r, (horizontal axis) and r, (vertical axis).

Of course, this maneuver is not practical since the time required for the complete transfer is infinity.
It should be considered as a limiting case of a more practical maneuver that performs the third step in
a finite time (as large as possible) with 4V = 0 (but still very small). It is possible, in some cases, that
the target body is not able to give the necessary impulse for the spacecraft to achieve parabolic orbit.
In this case the swing-by maneuver can be used to get the maximum impulse possible to send the
spacecraft to an elliptic orbit with the semi-major axis as large as possible, and the principles of the
bi-elliptic transfer (Shternfeld, 1959 and Hoelker and Silber, 1959) are used to complete the
maneuver. Another possible application for this transfer is a transfer between two planets, like an
Earth-Mars transfer, using a swing-by in the target planet.



Second version: transfer between orbits around the primary body

Considering the case where the final orbit is around the primary body, the steps are (see Fig. 4):
i) From the initial circular parking orbit an impulse is applied to send the spacecraft to an elliptic
Hohmann transfer to the target body. This step is the same one used in the first version, so the cost is

2ucr,
\rg +7;

given by Equation (1). The standard Hohmann transfer has a cost of 4V, =

it} In this point, the spacecraft makes a swing-by with the target body to transform its elliptic orbit O,
around the central body to a parabolic orbit (P,), in the same way performed in the first version;

iii) Then, the same principle used in the bi-parabolic transfer is used again. Theoretically, it is
necessary to wait until the spacecraft reaches the infinity to apply a zero impulse to transfer the
spacecraft to a new parabolic orbit that will take the spacecraft at an altitude r;. This maneuver has a
zero AV (called AV in Fig. 4), because it is performed at infinity, where the gravitational force from
the central body is zero;

iv) The last step is to circularize the orbit. For the Hohmann transfer the cost is

2
AF ;= aleit I /#—C and for the elliptic-bi-parabolic transfer the cost is:
r
f
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All those equations can be combined to offer an expression for the savings in AV between the
standard Hohmann transfer and the elliptic-bi-parabolic transfer. The expression is given by Equation
(11), where the first term represents the savings obtained in the second impulse and the second term
represents the extra expenses of the first impulse.

AV :\} zﬂcra _ 2)“C . Z#CrB _ 2pcrf (11
e rf(rf +1‘0) rf FO(J"B +I’0) ro(rf +P‘0)

To show better the possible savings in more generic cases, Fig. 5 shows contour plots for the savings
obtained over the Hohmann transfer. The canonical system of units is used in those graphs, what
means that u-=r,= ¥, = 1, where the unit for velocity is chosen to be ¥, (the velocity of a spacecraft
in a circular orbit with radius r,). The vertical axis is used for the variable r, (the radius of the final
circular orbit of the spacecraft around the natural satellite) and the horizontal axis is used for r (the
radius of the circular orbit of the natural satellite around the planet). Only situations where rg > rare
shown in this plot. Positive numbers means a gain for the elliptic-bi-parabolic maneuver and a
negative number means a gain for the Hohmann transfer.




As an example, it is calculated the AVs involved to transfer a spacecraft between two circular orbits
around the Earth. The data used are: r, = 6545 km; 75 = 384400 km; 7, in the range 13090 km to
654500 km; u- = 398600.44 km*/s?, the gravitational parameter of the main body. The total AV
involved in this maneuver is shown in Fig. 6, as a function of #, compared with the Hohmann and the
bi-parabolic transfers. For the biparabolic transfer the xmpulses are given by:

2
AV, = J He .. \[ﬁc- = \/ £ (\/_ and av, = #2;1‘: f V‘C One canonical unit
"o Fy

of velocity corresponds to 7.8039 km/s. The results show that the elllptlc-bl -parabolic transfer is
better than the bi-parabolic in all situations, and the Hohmann transfer is the most economical only
when r,< 10,37745, that is a critical value for this maneuver. After this value the elliptic-bi-parabolic
has the lowest cost, showing a difference about 0.5 canonical units (about 400 m/s) for r,> 40.
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| Fig.5-Savings obtained over the Hohmann Transfer.|  Fig. 6 - AV involved in the example shown.
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The use of a swing-by to achieve escape velocity from the planet

A natural sequence of the maneuvers previously described is to use the swing-by with the satellite to
achieve a hyperbolic orbit, instead of a parabolic one. In this way the spacecraft leaves the low
circular orbit with an impulse a little bit smaller than the one required by the standard maneuver
(with no swing-by), and it uses the natural satellite of the main body as an accelerator to compensate
for this deficit. As an example, it is calculated the savings involved in a Hohmann transfer from
Earth to all the planets in the Solar System and to the interstellar space, using the Moon as an
accelerator. The standard procedure of the patched conic transfer is used and the results are shown in
Table 2. Two values for the periapse distance during the swing-by (r,) are used: 1750 km and 1840
km. They can show the importance of this parameter. The minimum possible value (about 1750 km,
barely above the surface of the Moon) can provide better savings, but r, = 1840 km can provide
almost the same savings, with a comfortable distance greater than 100 km from the surface of the
Moon during the swing-by (to avoid the risk of crashing into the Moon).

Table 2 - Savings in AV (m/s) in a Hohmann Transfer from Earth to the planets

Planet AV for standard Savings Savings
maneuver (km/s) (m/s, r, = 1750 km) (m/s, r, = 1840 km)
Mercury 5.561 53 52
Venus 3.511 142 137
Mars 3.619 129 124
Jupiter 6.310 44 43
Saturn 7.292 35 34
Uranus 7.984 31 30
Neptune 8.251 30 29
Pluto 8.367 29 28
Inter-stellar space 8.751 27 26
CONCLUSIONS

The use of the satellite of a planet to reduce the costs of several types of missions is explained. A
maneuver that uses a swing-by with a natural satellite of a planet to transfer a spacecraft to the
natural satellite or to a higher orbit around the planet was described. Analytical equations were
derived and showed a savings in the order of 100 m/s in a transfer from Earth to the Moon and in the
order of 400 m/s in transfers between two orbits around the Earth over the standart Hohmann
transfer. It was shown that there is a critical value for r, (10.37745) for the elliptic-bi-parabolic be
more economical. After that, the idea of making a swing-by with the natural satellite was used in
maneuvers to send a spacecraft to the other planets of the Solar System and to the interstellar space.
The results show that the Moon is not a great accelerator, but savings in the order of 100 m/s can be

achieved. Better results can be found for other hypothetical and real systems, where the natural
satellite is a better accelerator.
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