
4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

1

Function Optimization Using Extremal Dynamics

ABSTRACT
In this paper a new stochastic algorithm for function

optimization is presented. Called Generalized Extremal
Optimization, it was inspired by the theory of Self-
Organized Criticality and is intended to be used in
complex inverse design problems, where traditional
gradient based optimization methods may become
inefficient. Preliminary results from a set of test
functions show that this algorithm can be competitive to
other stochastic methods such as the genetic algorithms.

NOMENCLATURE
k Index of bit rank.
L Length of binary string that encodes the design

variables.
l Length of binary string for one design variable.
N Number of design variables.
V Value of the objective function for a given binary

string.
x Design variable.
∆V Bit fitness.
τ Free adjustable parameter of the optimization

algorithm.

INTRODUCTION
Stochastic algorithms inspired by nature have been

successfully used for tackling optimization problems in
engineering and science. Simulated Annealing (SA)[1]

and Genetic Algorithms (GAs)[2] are probably the two
methods most used. Their robustness and ability to be
easily implemented to a broad class of problems,
regardless of such difficulties as the presence of multiple
local minima in the design space and the mixing of
continuous and discrete variables, has made them good
tools to tackle complex problems, for example, in the
aerospace field[3-7]. The main disadvantage of these
methods is that they usually need a great number of
objective function evaluations to be effective. Hence, in
problems where the calculation of the objective function
is very time consuming, these methods may become
impracticable. Nevertheless, the availability of fast
computing resources or the use of hybrid techniques[8-10]

has made the power of those algorithms available even to

that kind of problems. There are today many derivatives
of the SA and GAs methods, created to give more
efficiency to the proposed original algorithms, but that
keep essentially their same principles.

 Recently, Boettcher and Percus[11] have proposed a
new optimization method based on a simplified model of
biological evolution developed to show the emergence of
Self-Organized Criticality (SOC) in ecosystems.[12]

Called Extremal Optimization (EO), it has been
successfully applied to tackle hard problems in
combinatorial optimization.

Although algorithms such as SA, GAs and the EO are
inspired by natural processes, their practical
implementation to optimization problems shares a
common feature: the search for the optimal is done
through a stochastic process that is “guided” by the
setting of adjustable parameters. Since the proper setting
of these parameters are very important to the
performance of the algorithms, it is highly desirable that
they have few of such parameters, so that the cost of
finding the best set to a given optimization problem does
not become a costly task in itself. The EO algorithm has
only one adjustable parameter. This may be an “a priori”
advantage over the SA and GA algorithms, since they
use more than one.

In this paper the Generalized Extremal Optimization
(GEO) algorithm is presented. The GEO algorithm is
built over the EO method, but the way it is implemented
allows it to be readily applied to a broad class of
engineering problems. The algorithm is of easy
implementation, does not make use of derivatives and
can be applied to nonconvex or disjoint problems. It can
also deal in principle with any kind of variable, either
continuous, discrete or integer. All these features make it
suitable to be used in complex inverse design problems,
where traditional gradient methods could not be applied
properly due to, for example, the presence of multiple
local minima or use of mixed types of design variables.
In this work the performance of the GEO algorithm is
tested in a set of non-linear multimodal functions used
commonly to test GAs. The performance of the GEO
algorithm for these functions is compared with the
ones for a standard GA and the Cooperative Co-

Fabiano Luis de Sousa
INPE-DMC

Av. dos Astronautas, 1758
S.J.Campos, 12227-010, Brazil
Email: fabiano@dem.inpe.br

Fernando Manuel Ramos
INPE-LAC

Av. dos Astronautas, 1758
S.J.Campos, 12227-010, Brazil
Email: fernando@lac.inpe.br

4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

2

evolutionary GA (CCGA) proposed by Potter and De
Jong.[13]

THE EXTREMAL OPTIMIZATION ALGORITHM
Self-organized criticality has been used to explain the

behavior of complex systems in such different areas as
geology, economy and biology.[14] The theory of SOC
states that large interactive systems evolves naturally to a
critical state where a single change in one of its elements
generates “avalanches” that can reach any number of
elements on the system. The probability distribution of
the sizes “s” of these avalanches is described by a power
law in the form P(s) ~ s-γ , where γ is a positive
parameter. That is, smaller avalanches are more likely to
occur than big ones, but even avalanches as big as the
whole system may occur with a non-negligible
probability. To show that SOC could explain features of
systems like the natural evolution, Bak and Sneepen[12]

developed a simplified model of an ecosystem in which
species are placed side by side on a line with periodic
boundary conditions. To each species, a fitness number
is assigned randomly, with uniform distribution, in the
range [0,1]. The least adapted species, the one with the
least fitness, is then forced to mutate, and a new random
number assigned to it. The change in the fitness of the
least adapted species alters the fitness landscape of their
neighbors, and to cope with that new random numbers
are also assigned to them, even if they are well adapted.
After some iterations, the system evolves to a critical
state where all species have fitness above a critical
threshold. However, the dynamics of the system
eventually causes a number of species to fall below the
critical threshold in avalanches that can be as big as the
whole system.

An optimization heuristic based on a dynamic search
that embodies SOC would evolve solutions quickly,
systematically mutating the worst individuals. At the
same time this approach would preserve throughout the
search process, the possibility of probing different
regions of the design space (via avalanches), enabling the
algorithm to escape local optima. Inspired by the SOC
theory, the basic EO algorithm was proposed as
follows:[11]

1.Initialize configuration C of design variables xi at
will; set Cbest = C.

2. For the current configuration C,
a) set a fitness Fi to each variable xi,
b) find j satisfying Fj ≤ Fi for all i,
c) choose C’ in a neighborhood N(C) of C so that xj

must change,
 d) accept C = C’ unconditionally,
 e) if F(C) < F(Cbest) then set Cbest = C.

3. Repeat step (2) as long as desired.

4. Return Cbest and F(Cbest).

The above algorithm shows good performance on
problems, such as graph partitioning, where it can choose
new configurations randomly among neighborhoods of
C, while satisfying step 2c. But when applied to other
types of problems, it can lead to a deterministic
search.[11] To overcome this, the algorithm was modified
as follows: in step 2b the N variables xi are ranked so
that to the variable with the least fitness is assigned rank
1, and to the one with the best fitness rank N. Each time
the algorithm passes through step 2c a variable is chosen
to be mutated according to a probability distribution of
the k ranks, given by:

 P(k) = k−τ
 , 1 ≤ k ≤ N , (1)

where τ is a positive adjustable parameter. For τ → 0, the
algorithm becomes a random walk, while for τ → ∞, we
have a deterministic search. The introduction of the
parameter τ, allows the algorithm to choose any variable
to mutate, but privileging the ones with low fitness. This
implementation of the EO method received the name τ-
EO algorithm[11], and showed superior performance to
the standard implementation even in cases where the
basic EO algorithm would not lead to local minima.

As pointed out by Boettcher and Percus,[11] “a
drawback of the EO method is that a general definition
of fitness for the individual variables may prove
ambiguous or even impossible”. What means that for
each new optimization problem assessed, a new way to
assign the fitness to the design variables may have to be
created. Moreover, to our knowledge it has been applied
so far to combinatorial problems with no implementation
to continuos functions. In order to make the EO method
applicable to a broad class of design optimization
problems, without concern to how the fitness of the
design variables would be assigned and capable to tackle
either continuos, discrete or integer variables, a
generalization of the EO, called Generalized Extremal
Optimization, was devised. In this new algorithm, the
fitness assignment is not done directly to the design
variables, but to a “population of species” that encodes
the variables. Each species receives its fitness, and
eventually mutates, following general rules. The GEO
algorithm is described in the next Section.

THE GENERALIZED EXTREMAL OPTIMIZATION
ALGORITHM

We devised the GEO algorithm using the same logic
of the evolutionary model of Bak and Sneppen,[12] but
applying the τ-EO approach to choose the species that
will mutate. Following Bak and Sneppen,[12] L species
are aligned and for each species is assigned a fitness
value that will determine the species that are more prone
to mutate. We can think of these species as bits that can
assume the values of 0 or 1. Hence, the entire population
would consist of a single binary string. The design
variables of the optimization problem are encoded in this
string that would be similar to a chromosome in a
canonical GA, but with each bit considered as a species
or individual, as shown in Figure 1.

4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

3

To each species (bit) is assigned a fitness number that
is proportional to the gain (or loss) the objective function
value has in mutating (flipping) the bit. All bits are then
ranked from rank 1, for the least adapted bit, to N for the
best adapted. A bit is then chosen to mutate (flip)
according to the probability distribution (1). This process
is repeated until a given stopping criteria is reached and
the best configuration of bits (the one that gives the best
value for the objective function) found through the
process is returned. In Figure 1

The practical implementation of the GEO algorithm
to a function optimization problem is as follows:

1. Initialize randomly a binary string of length L
that encodes N design variables of bit length lj (j = 1,
N). For the initial configuration C of bits, calculate
the objective function value V and set Cbest = C and
Vbest = V.

2. For each bit i of the string, at a given iteration:
a) flip the bit (from 0 to 1 or 1 to 0) and
calculate the objective function value Vi of the
string configuration Ci,
b) set the bit fitness as ∆Vi = (Vi - Vbest). It
indicates the relative gain (or loss) that one has
in mutating the bit, compared to the best
objective function value found so far.
c) return the bit to its original value.

3. Rank the bits according to their fitness values,
from k = 1 for the least adapted bit to k = L for the
best adapted. In a minimization problem, higher
values of ∆Vi will have higher ranking, and otherwise
for maximization problems. If two or more bits have
the same fitness, rank them randomly.

4. Choose with equal probability a candidate bit i
to mutate. Generate a random number RAN with
uniform distribution in the range [0,1]. If the
mutating probability Pi(k) of the chosen bit is equal
or greater than RAN the bit is confirmed to mutate.
Otherwise, the process is repeated until a bit is
confirmed to mutate.

5. For the bit i chosen to mutate set C = Ci and V =
Vi.

6. If V < Vbest (V > Vbest, for a maximization
problem) then set Vbest = V and Cbest = C.

7. Repeat steps 2 to 6 until a given stopping
criteria is reached.

8. Return Cbest and Vbest.

Equality and inequality constraints can be easily
incorporated to the algorithm simply setting a high (for a
minimization problem) or low (for a maximization
problem) fitness value to the bit that, when flipped, leads
the configuration to an unfeasible region of the design
space. Side constraints are directly applied through the
encoding of the design variables. Note that the move to
an infeasible region is not prohibited, since any bit has a
chance to mutate according to the P(k) distribution.
Moreover, no special condition is posed for the
beginning of the search process, which can even start
from an infeasible region.

A slightly different implementation of the GEO
algorithm can be obtained, changing the way the bits are
ranked and mutated. Instead of ranking all the bits
according to steps 2-3, we can rank them separately for
each variable. In this way the bits of each variable will
have a rank ranging from 1 to lj. In step 4 one bit of each
variable is chosen to be flipped according to the
probability distribution P(k). We will call this
implementation hereinafter GEOvar. In the following
Section the performance of the GEO algorithm is
verified against a set of test functions.

RESULTS
The GEO algorithm and its variation GEOvar were

applied to a set of test functions described in [13]. They
are nonlinear, multimodal, multidimensional functions
with variables bounded by side constraints. As in the
GAs used in [13], each variable is encoded in 16 bits. All
functions have one global optimum, where the value of
the objective function is zero. As with any stochastic
algorithm, the performance of GEO is influenced by its
control parameter. In order to find the “best” value of τ
applicable for each test function, we varied τ in the range
[0.25,3.0] with steps of 0.25. For a given test function,
the best value of τ was the one that lead to the best
(minimal) value for the objective function, after a given
number of function evaluations (NFE).

In Figures 2 to 6, the performance of the GΕΟ
algorithms for the set of test functions is shown together
with the results for the GAs. All data points on the
graphs below represent an average of 50 independent
runs. The best objective function value found through the
search is shown against the number of function
evaluations.

Each bit represents one species

Figure 1 – Encoding of N design variables. In this
example each design variable is represented by 6 bits.

Design variable

4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

4

0 2000 4000 6000 8000 10000
Number of function evaluations

0.00

0.20

0.40

0.60

0.80

F(
Xb

es
t)

o

standard GA

CCGA - 1
CCGA - 2

a

(τ = 0.75)GEO
GEOvar

Figure 2 – Results for the Rosenbrock function. aFrom
[13].

0 20000 40000 60000 80000 100000
Number of function evaluations

0.0

20.0

40.0

60.0

80.0

100.0

F(
Xb

es
t)

(τ = 1.00)

(τ = 1.75)

Figure 3 – Results for the Rastringin function. aFrom
[13].

0 20000 40000 60000 80000 100000
Number of function evaluations

0.0

100.0

200.0

300.0

400.0

F(
Xb

es
t)

(τ = 1.75)

Figure 4 – Results for the Schwefel function. aFrom [13].

0 20000 40000 60000 80000 100000
Number of function evaluations

0.0

2.0

4.0

6.0

8.0

F(
Xb

es
t)

a

standard GA

CCGA - 1O

(τ = 1.25)
(τ = 2.50)

Figure 5 – Results for the Griewangk function. aFrom
[13].

0 20000 40000 60000 80000 100000
Number of function evaluations

0.0

4.0

8.0

12.0

16.0

F(
X)

 b
es

t

(τ = 2.25)
(τ = 2.50)

Figure 6 – Results for the Ackley function.
aFrom [13].

From the results shown throughout this Section, it can
be seen that the GEOvar performed equally or better than
the GEO for all functions. This indicates that, at each
iteration, mutating one bit per variable may be
advantageous compared to mutating only one bit for the
whole string.

It can be also observed that, for a given test function,
the value of τ that gave the best results was always lesser
in the GEO algorithm than in the GEOvar. It must be also
remarked, that the range where the “best” τ was found
for both GEOs is not large, what means that the
computational effort to “fine tune” τ is not really a
burden for the method.

Finally, the results shown above indicate that the
GEO can work successfully. Although it performed very
poorly for the Schwefel function, when compared to the
GAs, it was quite competitive for the other test functions,
mainly when the variables were tackled simultaneously

4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

5

(GEOvar). In fact, it must be remembered that does not
exists a “best of all” optimization algorithm,[15] and it is
not expected that the GEO algorithm would outperform
all the other kinds of stochastic algorithms in all cases.

CONCLUSIONS
In this paper the Generalized Extremal Optimization

algorithm was presented. Inspired by the theory of Self-
Organized Criticality, it is an stochastic algorithm
devised to tackle complex design optimization problems
that presents such features as nonconvex design spaces
or presence of different kinds of design variables. As an
“a priori” advantage over other popular stochastic
algorithms, it has only one adjustable parameter, and can
be easily fine tuned to give its best performance on a
given problem. Tested in a set of nonlinear, multimodal
functions commonly used to assess the performance of
stochastic algorithms, it showed to be a potential
candidate to be incorporated into the designer’s tool
suitcase. Ongoing research is aimed at the study of the
implementation of the GEO algorithm to constrained
function optimization and its application to real inverse
design problems.

ACKNOWLEDGEMENTS
F. M. Ramos acknowledges the support of CNPq-

Brazil through the research grant 300171/97-8.

REFERENCES
1. Kirkpatrick, S., Gellat, C.D. and Vecchi, M.P.,

Optimization by Simulated Annealing, Science, Vol.
220, Number 4598, 1983, pp. 671-680.

2. Goldberg, D.E., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley
Publishing Company, 1989.

3. Ahmed, Q., Krishnakumar, K. and Neidhoefer,
J., Applications of evolutionary Algorithms to Aerospace
Problems – A Survey, Computational Methods in
Applied Sciences’96, John Wiley & Sons, 1996, pp. 237-
242.

4. Schoonover, P.L., Crossley, W.A. and Heister,
S.D., Application of a Genetic Algorithm to the
Optimization of Hybrid Rockets, Journal of Spacecraft
and Rockets, Vol. 37, No. 5, 2000, pp. 622-629.

5. Jones, B.R., Crossley, W.A. and Lyrintzis, A.,
Aerodynamic and Aeroacoustic Optimization of
Rotocraft Airfoils via a Parallel Genetic Algorithm,
Journal of Aircraft, Vol. 37, No. 6, 2000, pp. 1088-1096.

6. Wang, X. and Damodaran, M., Aerodynamic
Shape Optimization Using Computational Fluid
Dynamics and Parallel Simulated Annealing Algorithms,
AIAA Journal, Vol. 39, No. 8, 2001, pp. 1500-1508.

7. Jilla, C.D. and Miller, D.W., Assessing the
Performance of a Heuristic Simulated Annealing
Algorithm for the Design of Distributed Satellite
Systems, Acta Astronautica, Vol. 48, No. 5-12, 2001, pp.
529-543.

8. Vicini, A. and Quagliarella, D., Airfoil and
Wing Design Through Hybrid Optimization Strategies,
AIAA Journal, Vol. 37, No. 5, pp. 634-641, 1999.

9. Crain, T. Bishop, R.H. and Fowler, W.,
Interplanetary Flyby Mission Optimization Using a
Hybrid Global-Local Search Method, Journal of
Spacecraft and Rockets, Vol. 37, No. 4, pp. 468-474,
2000.

10. Desai, R. and Patil, R., SALO: Combining
Simulated Annealing and Local Optimization for
Efficient Global Optimization, Los Alamos National
Laboratory, TR LA-UR-95-2862, Albuquerque, NM,
1995.

11. Boettcher, S. and Percus, A.G. Optimization
with Extremal Dynamics. Physical Review Letters, Vol.
86, pp. 5211-5214, 2001.

12. Bak, P. and Sneppen, K. Punctuated
Equilibrium and Criticality in a Simple Model of
Evolution. Physical Review Letters, Vol. 71, Number 24,
pp. 4083-4086, 1993.

13. Potter, A.P. and De Jong, K.A. A Cooperative
Coevolutionary Approach to Function Optimization. The
Third Problem Solving From Nature, Springer-Verlag,
pp. 249-257, 1994.

14. Bak, P. How Nature Works, Copernicus,
Springer-Verlag, 1999.

15. Wolpert, D.H. and Macready, W.G. No Free
Lunch Theorems for Search, Santa Fe Institute Technical
Report, SFI-TR-95-02-010, 1995.

	ABSTRACT
	NOMENCLATURE
	INTRODUCTION
	THE EXTREMAL OPTIMIZATION ALGORITHM
	The practical implementation of the GEO algorithm to a function optimization problem is as follows:
	RESULTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

