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ABSTRACT

In this paper we studied statistically orbital maneuvers with finite
propulsion under thrust errors. We studied two transfer maneuvers: a) a high orbit
low thrust coplanar transfer; and b) a middle orbit high thrust noncoplanar transfer
(the 1* transfer of the satellite EUTELSAT II-F2). These transfers were done with
magnitude and direction (“pitch” and “yaw”) errors in the thrust applied to the
satellite. This errors were modeled as random-bias or white noise stochastic
processes, with zero mean and unit variance gaussian probability density functions.
We studied many cause-effect relations. Among them, the general results suggest
that the thrust magnitude errors do not cause appreciable mean final deviations, but
that the standard deviation of each thrust direction error holds a nonlinear (almost
parabolic) relation with the mean deviation in the final semi-major axis and with the
final eccentricity. They suggest and partially characterizes the progressive
deformation of the trajectory distribution along the propulsive arc, turning 3sigma
ellipsoids into banana shaped volumes curved to the center of atraction (we call
them “bananoids”) due to the loss of optimality of the actual (with errors)
trajectories with respect to the nominal (no errors) trajectory. A similar
deformation but due to initial condition gaussian errors was shown by Junkins. As
his plots also suggest, such deformations can not be anticipated by covariance
analysis on linearized models with zero mean errors which propagate ellipsoids into
ellipsoids always centered in the nominal (no errors) trajectory. Our results also
characterize how close or how far are Monte-Cario analysis and covariance
analysis for those examples.
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INTRODUCTION
Most space missions need trajectory/orbit transfers to reach their goals. These trajectories/orbits are
reached sequentially through transfers between them by changing of its keplenan elements, by firing
apogee motors or other sources of force. These have linear and/or angular misalignments that displace -
the vehicle with respect its nominal directions. The mathematical treatment for these deviations can be
realized under many approaches (deterministic, probabilistic,c MINMAX, etc.) of the deviations. In the
literature, already reviewed by Souza et alli(1998) we highlight:

In the deterministic approach: Schwende and Strobl(1977), Tandon(1988), Rodrigues(1991), Santos-
Paulo(1998), Rodrigues and Souza(1999), among others. Related works were done by Rocco(1997)
and Schultz(1997).

In the probabilistic approach: Porcelli and Vogel(1980) presented an algorithm for the
determination of the orbit insertion errors in biimpulsive noncoplanar orbital transfers(perigee and
appogee), using the covariance matrices of the sources of errors. Adams and Melton(1986) extended
such algorithm to ascent transfers under a finite thrust, modeled as a sequence of impulsive burns. They
developed an algorithm to compute the propagation of the navigation and direction errors among the
nominal trajectory, with finite perigee bums. Rao(1993) built a semi-analytic theory to extend
covariance analysis to long-term errors on elliptical orbits. Howell and Gordon(1994) also applied
covariance analysis to the orbit determination errors and they develop a station-keeping strategy of
Sun-Earth L1 libration point orbits. Junkins et alli(1996) and Junkins(1997) discussed the precision of
the error covariance matrix method through nonlinear transformations of coordinates. He also found a
progressive deformation of the initial ellipsoid of trajectory distribution (due to gaussian initial
condition errors), that was not anticipated by the covariance analysis of linearized models with zero
mean errors. Carlton-Wippern(1997) proposed differential equations in polar coordinates for the
growth of the mean position errors of satellites (due to errors in the initial conditions or in the drag), by
using an approximation of Langevin’s equation and a first order perturbation theory. Alfriend(1999)
studied the effects of drag uncertainty via covariance analysis.

In the minimax approach: see russian authors, mainly.

However, all these analyses are approximated. This motivated an exhaustive numerical but
exact analysis (by Monte-Carlo), and a partial algebraic analysis done by Jesus(1999) under the
supervision of the two other authors, to highlight and to study effects not shown in those analyses.

In this work we present the 2* part of that Monte-Carlo analysis of the nonimpulsive orbital
transfers under thrust vector errors. The results were obtained for two transfers: the first, a low thrust
transfer between high coplanar orbits, used by Biggs(1978, 1979) and Prado(1989); the second, a high
thrust transfer between middle noncoplanar orbits (the first transfer of the EUTELSAT II-F2 satellite)
implemented by Kuga et alli(1991).

The simulations were done for both transfers with minimum fuel consumption. The optimization
method used by Biggs(1978, 1979) and Prado(1989) was adapted to the case of the transfers with
thrust errors. The “pitch” and “yaw” angles were taken as control variables such that the overall
minimum fuel consumption defines each burn of the thrusters.
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The error sources that we considered were the magnitude errors, “pitcti” and “vaw” directions errors of
the thrust vector, as causes of the deviations found in the several keplerian elements of the transfer
trajectory. Each deviation was introduced separately along the orbital transfer trajectory. Besides this,
we studied two kind of errors for each one these causes: the random-bias and the white-noise errors. -
The random-bias errors are even errors during the transfer arc, while the white-noise errors change
along the transfer arc. These error sources introduced in the orbital transfer dynamic produce effects in
the final orbit keplerian elements in the final instant,

In this work we present an statistical analysis of the effects of these errors on the mean of the
deviations of the keplerian elements of the final orbit with respect to the reference orbit (final orbit
without errors in the thrust vector) for both transfers. The approach that we used in this work for the
treatment of the errors was the probabilistic one, assuming these as having zero mean unit variance
gaussian probability density function.

MATHEMATICAL FORMULATION AND COORDINATE SISTEMS
The orbital transfer problem studied can be formulated in the following way:

1) Globally minimize the performance index: J = m(ty) — m(ts);
2) With respect to a : [to,t]— R (“pitch” angle) and B : [to,t]]— R (“yaw” angle) with a, pecC’
em [to,tq];

3) Subject to the dynamics in inertial coordinates X, Y;, Z; of Figure 1: Vt € [to,td],

m(t) S X —pn®OX g )
R
m(t). sz_ ’”“(:)Y +F, 2
R
iz - bi
m(t) S 14 "“;’f" +F, @)

Fx =F [cosBsena(cochosB—sechosIsenﬂ)«-
——cosBcosa(costenO+senﬂcosIcosG)+senBseanenI] 4)
F, =F [cospsenafsen Qcosd + cos2cosIsend)—-

~cosBcosafsen Qsen @ - cos Q cosIcos) - sen BcosQsend] 5)

F, =F (cosﬂsena.senIsen9+cosBcosasenIcos9+senﬂcosI) (6)
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m(t)=m(t, )+ m.(t—t,) , with <0 )
F= |n'1,.c (3

Or in orbital coordinates(radial R, transversal T, and binormal N) of Figure 1:

m(t)a, (t) = F.cosB(t).sen a(t) -%‘% ' ©)
m(t)a(t) = F.cosp(t).cosa(t) (10)
m(t)a, (t) = F.senp(t) | (11)
a, ()= V, -V??--Yﬁi (12)
a5(t)=Vy +2VT _ v jcos0 - V. Oosinl sind (13)
a,(t)=V, +y-%£+v.,icose + V; Qsinl sin@ (14)
V, =R 5)
V; = R(QcosI+6) (16)
Vi =R(~Csenlcos@ +.sen ) (17)
0=0+f (18)

4) Given the initial and final orbits, and the parameters of the problem( m(ty), c.,...).

These equations were obtained by: 1) writing in coordinates of the dexterous rectangular reference
system with inertial directions OX;Y;Z; the Newton’s laws for the motion of a satellite S with mass m,
with respect to this reference system, centered in the Earth’s center of mass O, with X; axis toward the
Vernal point, X;Y; plane coincident with Earth’s Equator, and Z; axis toward the Polar Star
approximately, 2) rewriting them in coordinates of the dexterous rectangular reference system with
radial, transversal, binormal directions SRTN, centered in the satellite center of mass S; helped by 3) a
parallel system with OX,Y,Z, directions, centered in the Earth’s center of mass 0, X, axis toward the
satellite S, X,Y,, plane coincident with the plane established by the position R and velocity V vectors of
the satellite, and Z, axis perpendicular to this plane; and helped by 4) the instantaneous keplerian
coordinates (€2, I, o, f, a, ¢). These equations were later rewritten and simulated by using 5) 9 state

382



variables, defined and used by Biggs(1978, 1979) and Prado(1989), as functions of angle s shown in
Figure 2.

Figure 1 - Reference systems used in this work.

The nonideal thrust vector, with magnitude and direction errors, is given by:

F, =F+AF (19)
F, =F, +F, +F, (20)
[E.|=F.. [F|=F @
F, ={F +AF)cos(B + AB) sen(a + Act) 2)
F; = (F + AF) cos(B + AB) cos(ot + Act) (23)
Fy = (F+AF)sen(B + AB) (24)

where: F, Fn e AF are: the thrust vector without errors, the thrust vector with errors, and the error in
the thrust vector, respectively, Aa e AB are the errors in the “pitch” and in the “yaw” angles,
respectively, Fr, Fr e Fy are the components of the thrust vector with errors F; in the radial,
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transversal and normal directions, respectively. The magnitude error, AF, was computed as a
percentage of the nominal force, while the direction errors Aa e AP were computed in units of angle.
They are varied inside given ranges, that is, + DES1.F for AF, +DES2 for A and +DES3 for Ap. )
This variation will correspond to the implementation of the random numbers that satisfy a uniform -
probability distribution into those ranges. In this way, for each implementation of the orbital transfer ,
arc, values of o and P are chosen, whose errors are inside the range, that produce the direction for the
overall minimum fuel consumption.

v

Figure 2 — Thrust vector applied to the satellite and the s variable.

NUMERICAL RESULTS
The simulations were performed with 1000 realizations for each transfer, that is, 1000 runs were done
with random values for each DES1, DES2 and DES3, such that the results obtained for the final
keplerian elements represent the arithmetic mean of 1000 realizations (mean over the ensemble). The
value 1000 was chosen to represent the set of runs because the mean deviations in all final keplerian
elements with respect to their references converge to their minima for this number of runs.

Figures 3 and 4 show the mean deviations in the final semi-major axis and eccentricity versus the
mumber of runs, respectively. These plots were done for systematic pitch direction with DES2=1,0°,
The computation of the mean deviations of the final keplerian elements with respect to their references
can be estimated by the arithmetic mean of them, for 1000 runs as representatives. So, we can estimate
mean deviation of any final keplerian element, AK as

i=l

25

It is important to remark that Eq. (25) estimates a mean in the ensemble and not in the time. In this
work we present only these estimates for the final semi-major axis and eccentricity with respect to their
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references. Figures 5 to 10 present the behavior of them as functions of the maximum (random-bias and
white noise) direction errors.
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1) Semi-major axis (a), Gaussian Random-Bias and White-Noise “Pitch” Errors
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Figure 5 — First Maneuver: Figure 6 — Second Maneuver
Efa(t)} vs DES2 E{a(t)} vs DES2

In these plots, we observe behaviors very similar for both maneuvers, although their causes are very
different from each other. We easily observe that the values of the mean semi-major axis present a
region of decrease sufficiently defined according to the growth of the maximum “pitch” error, DES2.
Figure 5 is for a random-bias “pitch” error and Figure 6 is for a white-noise “pitch” error. Both suggest
the same nonlinear (almost parabolic) relation not depending of the maneuver studied.

2) Semi-major axis (a), Gaussian Random-Bias and White-Noise “Yaw” Errors

Once more these plots show behaviors well defined and similar for the semi-major axis as function of
the maximum “yaw” error, DES3, for both maneuvers studied. That is, there is a region of decrease
well defined between the elements a and DES3. Figure 7 shows the result of the random-bias “yaw”
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errors and Figure 8 shows the result of the white-noise “yaw” errors. The behaviors are the same for
the both cases.

These resuits show clearly the influence of the white-noise errors when the second maneuver is '
simulated with errors in “yaw”. The region of decrease still exist, as well as the nonlinear relation, but
there are fluctuations in the growth of the maximum “yaw” error.
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3) Eccentricity (e), Gaussian Random-Bias and White-Noise “Pitch” and “Yaw” Errors
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These plots show the nonlinear behavior of the mean deviation in the final eccentricity with the
maximum “pitch” and “yaw” deviations. They were done only for the second maneuver because in the
first one the change of the eccentricity is close to zero for the usual values of DES2 and DES3. They
were plotted with precision of 107 for the eccentricity.
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We observed in the figures that for the white-noise errors the results were' very similar to the results
obtained for the random-bias errors but, the curves for the “pitch” errors present a more defined
pattern with respect to those for the “yaw” errors, where small fluctuations appear in its final form. It is
possible to see that the influence of the out-of-plane (“yaw”) errors is so strong in the definition of the
orbital transfer trajectory. Figure 9 is for the random-bias “pitch” errors and Figure 10 is for the white-
noise “yaw” errors.

The results show that the values of the eccentricity also fluctuate for practical maneuvers with the
white-noise errors in “yaw”, but keeping the region of growth similar to the one verified for the
random-bias errors case. So, we can say that all these results suggest and partially characterizes the
progressive deformation of the trajectory distribution along the propulsive arc. It occurs due to the loss
of optimality of the actual trajectories (with errors) with respect to the nominal trajectories (without

eITors).

The dependence of the final keplerian elements with the magnitude errors for any of the cases was
practically null, specially for the mean deviation of the final semi-major axis, since the perturbations
occurred in this element were probably due to its estimator and they were comparable to the numerical
errors of the experiment, as shown in Figures 11 and 12. They show that the mean deviation in the final
semi-major axis is much smaller than the cone + 1 o (standard deviation of the deviation in the final
semi-major axis).

The values for DES1, DES2 and DES3 used in these plots range from usual values to nonusual values,
with the aim to verify the general behaviors. Obviously, it is not usual to have a “pitch” error equal to
30,0° ora magnitude error equal to 30,0%, for example.
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CONCLUSIONS

This work presented the influence of gaussian thrust vector errors on nonimpulsive orbital transfer
maneuvers. It was verified that, in any case, the mean deviation in the final semi-major axis presents a
nonlinear (approximately parabolic) dependence with the maximum error in thrust direction. The same
results were verified for the mean deviation in the final eccentricity, for the second transfer. The
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respective dependence with the errors in thrust magnitude were not verified. These results are similar
to that obtained by Jesus" for the uniform probability density functions of the errors. The general
results suggest a progressive deformation of the trajectory distribution along the propulsive arc. This
deformation may be associated to the loss of the optimality of the actual trajectories with respect to the
nominal trajectory.
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