
 1 

THE USE OF THE SINGLE FREQUENCY GPS MEASUREMENTS TO DETERMINE IN REAL 
TIME ARTIFICIAL SATELLITE ORBITS 

 
 

Ana Paula Marins Chiaradia* 
Hélio Koiti Kuga 

Antonio Fernando Bertachini de Almeida Prado  

INPE – Instituto Nacional de Pesquisas Espaciais 
Av. dos Astronautas, 1758 - Jardim da Granja  

São José dos Campos - SP - Brazil - CEP: 12 227-010 
*chiara@dem.inpe.br  

 

 
ABSTRACT 

 
A simple model to determine the orbit of an 
artificial satellite in real time, using single 
frequency GPS measurements, is considered. The 
artificial satellite is above 1000 km of the Earth's 
surface. The estimation method, in this work, is 
the extended Kalman filter which is used to 
estimate in real time the spacecraft's orbit aboard. 
As the goal of this work is to have relatively 
standard accuracy (around tens of meters) along 
with minimum computational cost, the Cowell’s 
method is used to propagate the state vector. The 
modeled forces are due to the geopotential taking 
into account the spherical harmonic coefficients 
up to 50th order and degree of JGM-2 model. To 
propagate the state covariance matrix, it is 
considered a more simplified model than the one 
used in the dynamical model. For computing the 
state transition matrix, the effect of J2 is 
considered. In the measurement model, the single 
frequency GPS pseudorange is used considering 
the effects of the ionospheric delay, clock offsets 
of the GPS and user satellites, and relativistic 
effects. A dual frequency ionosphere model is 
still used to remove them. Several comparisons 
are made to assess the effects that should  taken 
into account, as well as to have a trade-off to 
weigh amongst accuracy, computer load, 
fastness, and real time constraints. To validate 
this model, real data are used from 
Topex/Poseidon satellite which has a dual 
frequency GPS receiver aboard, and the results 
are compared with the Topex/Poseidon Precision 
Orbit Ephemeris (POE) generated by NASA/JPL. 
 
Key words: Kalman filtering, GPS, real time, 
orbit determination, and single frequency. 
 

 

INTRODUCTION 
 

The orbit determination process consists of 
obtaining values of the parameters which 
completely specify the motion of an orbiting 
body, like satellite trough space, based on a set of 
observations of the body. It involves system 
models, measurement model which depends on 
the tracking system, and estimation technique. 
One of the big evolutions of this process has been 
the tracking system.  
 
The observation may be obtained from the 
ground station networks using laser, radar, 
Doppler, etc., or by space navigation systems as 
Transit, Argos, Global Orbiting Navigation 
Satellite System (GLONASSS), Global 
Positioning System (GPS), and Tracking and 
Data Relay Satellite System (TDRSS). The 
choice of the tracking system depends on a 
compromise between the goals of the mission and 
the tools available. 
 
In the case of GPS, the advantages are global 
cover, high precision, low cost and autonomous 
navigation resources. The GPS may provide orbit 
determination with accuracy at least as good as 
methods using ground tracking networks. The 
later provides standard precision around hundred 
meters and the former can provide precision as 
tight as some centimeters.  
 
The GPS provides , at a given instant, a set of 
many redundant measurements which makes the 
orbit position observable geometrically.  
 
With the advances of technology, the single 
frequency GPS receivers provide a good basis to 
achieve fair precision at relatively low cost, still 
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attaining the accuracy requirements of the 
mission. 
 

GPS SYSTEM 
 
The GPS consists of 24 satellites. The satellites 
are distributed in six orbital planes inclined at 
55o, with a nodal separation of 60o. The orbits are 
circular with 12 hour period.  
 
Each satellite broadcasts navigation signals on 
two L band frequencies: 1.57542 GHz (L1) and 
1.2276 GHz (L2). The corresponding carrier 
wavelengths are approximately 19 and 24 cm. 
The two frequencies are used to calibrate the 
ionospheric delay.  
 
The GPS allows the receiver to determine its 
position and time geometrically anywhere at any 
instant with data from only four satellites. Each 
satellite broadcast its orbit, its clock offset, and 
the range measurement between it and the 
receiver. If the measurements are accurate, a 
sequentially dynamical orbit determination may 
not need such a precise force model as the whole 
information is locally provided by the 
measurements. This approach was applied in the 
work of Wu et al.21, which uses the so-called 
reduced dynamic technique. Very few 
experiments were tried using GPS receiver 
aboard, as Landsat 4, 5, Topex/Poseidon and 
Extreme Ultraviolet Explorer (EUVE). 
 

SYSTEM MODEL 
 
The system model consists of the description for 
the dynamics of the orbital motion of a satellite, 
measurements models, Earth’s rotation effects, 
and perturbation models. 
 
Dynamical Model 
 
The orbits of most of the bodies in space can be 
described as two-body orbits to some degree of 
accuracy. However, to achieve better accuracy 
some perturbations shall be considered, though 
taking into account the minimum computational 
cost loads which are one of the goals of this 
work. 
 
The modeled forces in this work are due to 
geopotential, taking into account the spherical 
harmonic coefficients up to 50th order and degree 

of JGM-2 model. The integration is carried out 
by using the simple fourth order Runge-Kutta 
algorithm without any mechanism of step 
adjustment or error control. The fourth order 
Runge Kutta is considered an adequate numerical 
integrator due to its simplicity, fair accuracy, and 
low computational burden. 
 
The dynamic equation of motion is given by: 
 

  GEO3r
arr +−= µ&& ,                                            (1) 

 
where µ is the geo-gravitational constant, aGEO is 
the acceleration due to the perturbing 
geopotential, computed according to Pines16. The 
solar radiation pressure was not considered in this 
work yet because the results comprised only 
during two hours, where such effects are not 
magnified. 
 
Measurement Model 
 
The GPS provides two kinds of measurements: 
code and carrier phase pseudoranges. 
Pseudorange is the range between the phase 
centers of the GPS satellite and receiver 
antennas, plus the offset between the transmitter 
and receiver clocks. The pseudorange 
measurements, however, are corrupted by various 
error sources. The error sources can steam from 
three groups: satellite (clock bias, orbital errors), 
signal propagation (ionospheric and tropospheric 
refraction), and receiver (antenna phase center 
variation, clock bias, and multipath). In this 
work, the considered errors are the GPS satellite 
and receiver clock bias, and ionospheric 
refraction. Therefore, the equation of the code 
pseudorange in L1 frequency is given by: 
 
  [ ] kkuksvkkc )t(t)t(tcIy ε∆∆ρ −−++= ,      (2) 
 
where cy  is the code pseudorange in L1, Ik is the 
ionospheric delay, c is the vacuum speed of light, 
∆tsv(tk) is the GPS satellite clock offset, ∆tu(tk) is 
the receiver clock offset, tk is the observation 
instant in GPS time, ρk is the geometric range 
given by: 
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x, y, and z are the positional states of the user 
satellite at the reception time, xGPS, yGPS, and zGPS 
are the positional states of the GPS satellite at the 
transmission time (corrected for light time delay), 
and εk is a remnant error supposed random 
gaussian.  
 
    Study of the Ionospheric Correction Model  
 
When the signals are transmitted from the GPS 
satellite to the receiver, they propagate through 
the ionosphere causing errors on the 
measurements which are the highest ones on the 
signal propagation. To analyze the effect of this 
error, some models as Klobuchar's, Dual 
frequency, and Empirical, have been studied 
considering a user above 1000 km of the Earth's 
surface.  
 
The Klobuchar’s model is used to correct the 
ionospheric effect for single frequency 
measurements. It uses the cosine model for a 
daily variation of the ionosphere with the 
maximum being at 14:00hs local time. It is 
described by 8 coefficients α and β which are 
transmitted as part of the GPS satellite navigation 
message. This model removes about 50% of the 
total ionospheric delay at mid-latitudes, being 
necessary to use an estimation model to evaluate 
the remaining unmodeled errors, and it is 
represented through one set of the variables that 
are valid for few days. It must be used for a user 
on the Earth’s surface. Therefore, this model can 
not be used in this work. For more details, see 
Klobuchar7. 
 
The empirical model of the Earth’s plasmasphere 
consists of an analytical expression that can be 
used to reproduce hydrogen density at arbitrary 
locations in the plasmasphere for given 
conditions. The main spatial dependence of 
plasmaspheric electron density is governed by the 
L-shell. The L-shell is the surface traced out by a 
particle moving around the Earth’s geomagnetic 
field lines. It is a good choice for a user above 
1000 km, despite this algorithm does not model 
diurnal, seasonal, or solar cycle variations of the 
plasmaspheric electron content. For more details, 
see Gallagher et. al.5. For more details about the 
ionospheric correction model, see Komjathy8. 
 

The secondary frequency L2 was incorporated 
into the system to allow users to automatically 
correct the effects of both the range and range 
rate errors induced by the ionosphere. The dual 
frequency GPS receivers take advantage of the 
dispersive nature of the ionosphere and can 
eliminate (to first order) the ionospheric errors. 
This model is used to analyze this effect and to 
verify if it is necessary to use some other model. 
In this case, it is possible because the tested 
satellite has a dual frequency receiver aboard. 
The expression for the corrected code 
pseudorange measurement are given by:  
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where IFy  is the free code pseudorange of the 

ionospheric effect, 1y and 1y are the code 
pseudorange measurements in L1 and L2, 
respectively, f1 is the frequency in L1, and f2 is 
the frequency in L2.  
 
The Figure 1 shows the ionospheric errors of the 
code pseudorange measurements for one day. 
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Figure 1: The code pseudorange ionospheric 

error 
 

The average ionospheric effect for one day is -
3.62 m. If the goal of this work were accuracy 
better than meters, the ionospheric effect must be 
considered in the model and, in this case, a 
ionospheric correction model for single 
frequency must be used. In spite of this, the dual 
frequency model is used to correct it2. 
 
As developed by Goad6, if the carrier phase is 
incorporated to the model, the ambiguity (number 
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of the cycles) and the ionospheric effects can be 
estimated jointly as part of the state using some 
estimation procedure as the Kalman filtering, 
since observability conditions are provided. 
 
    Clock Error Terms 

 
The third term of the right-side of the equation 
(2) is the clock bias which represents the 
combined clock offsets of the satellite and of the 
receiver with respect to the GPS time. Each GPS 
satellite contributes with one clock bias. The 
information for the GPS satellite clocks is known 
and transmitted via the broadcast navigation 
message in the form of three polynomial 
coefficients with a reference time toc. The clock 
correction of the GPS satellite for the epoch t is20: 
  
  svsv ttt ∆−=                                                      (5) 
 
where  
 
  R

2
ocf2ocf1f0SV t)t(ta)t(taat ∆∆ +−+−+= ,         (6) 

 
and  
 

  Esinea
c
2

t
2R µ∆ −= ,                                    (7) 

 
where t is the GPS time in seconds, tsv is the 
spacecraft code phase time at message 
transmission time in seconds, toc is the reference 
time in seconds, measured from the GPS time 
weekly epoch, af0,  af1, and af2 are parameters, ∆tR

 

is a small relativistic clock correction caused by 
the orbital eccentricity, e is the eccentricity, a is 
the semi-major axis of the orbit, and E is the 
eccentric anomaly. The polynomial coefficients 
af0, af1, and af2 are transmitted in units of sec, 
sec/sec, and sec/sec2, respectively. The clock data 
reference time toc is also broadcast. The value of 
tsv must account for the beginning or the end-of-
week crossovers. The user may approximate t by 
tsv in the equation (6)20. The user clock offset is 
part of the estimated state vector as18: 
 

  2
u tbtbbtc ∆∆∆ &&& ++=                                      (8) 

 
where b is the receiver clock bias, b& is the drift, 

b&&  is the drift rate and ∆t is the elapsed time of 
measurements. 

 
ESTIMATION TECHNIQUE 

 
The orbit determination problem, which has a 
non-linear dynamical system and a non-linear 
measurement system, can be formulated in a way 
that make it possible to apply one of the best 
known methods of sequential linear estimation, 
the Kalman Filter.  
 
The extended Kalman filter is a Kalman filter 
version applicable to problems like this one, 
composed by a time-updated and a measurement-
updated cycles. The time-updated phase updates 
the state and the covariance matrix along the time 
using the dynamical equations.  
 
In this work, a simple reduced state vector is 
chosen to be estimated: 
 

  ( )Tb,bb,,, &&&vrx = ,                                             (9) 
 
where Tz)y,(x,=r  and T)z,y,x( &&&=v  are the 
spacecraft's position and velocity vector, b is the 

receiver clock bias, b& is the drift, and b&&  is the 
drift rate.  
 
Then, the differential dynamic equations of 
motion to be integrated are given by: 
 
  ( )t,x xf=& ,                                                    (10) 
 
and 
 
  ΦΦ F=& ,                                                       (11) 
 
where ( )t,xf  is the vector-valued function of 

time and the state, Φ is the state transition matrix 
which relates the state between tk and tk+1 , and 

xxf ∂∂= /)t,(F . 

 
Both equations should be numerically integrated 
simultaneously, so that F is evaluated always 
along the most current state x . Next, one 
updates the covariance matrix P by means of the 
discrete Riccatti equation: 
 
  k

T
1kk1k1k QP̂P += +++ ΦΦ ,                                (12) 
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where kP̂  is the covariance matrix after 

processing all measurements at time tk, Φ is the 
state transition matrix obtained by the previous 
integration and Qk is the discrete state-noise 
covariance which is a measurement of the error 
between the reference state and the true state 
arising from imperfect modeling. The Pk matrix 
is a measurement of accuracy of the errors 
knowledge.  
 
At the end of this process, 1k +x  and 1kP + , are 
obtained and are called time-updated state and 
covariance, respectively. 
 
The measurement residual and the sensitivity 
matrix are found by forming the computed 
observation equation. The model for the GPS 
pseudorange measurement is given by the 
equation (2). 
 
The sensitivity matrix is given by:  
 

  ( ) ( ) ( )
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−
−

−
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             ]2t,t,1,0,0,0 ∆∆ ,                                 (13) 
 
where ∆t is the elapsed time of measurements. 
 
The measurement residual, or innovation 
sequence is: 
  
  )t,(yYy kkckk x−= ,                                   (14) 

 
where Yk is the observed measurement and yc  is 
the calculated measurement by the equation (2). 
 
The measurement updated phase uses the Kalman 
equations to incorporate the information given by 
the measurements themselves, and obtains 
improved estimates of the state and of the 
covariance: 
 

  ( ) 1

k
T
kkk

T
kkk RHPHHPK

−
+= ,                    (14) 

 
  kkkk yKˆ += xx ,                                           (15) 
 

  ( ) kkkk PHKP̂ −= I ,                                      (16) 
 

where Rk is the discrete measurement noise 
covariance, which is basically a measurement 
weight matrix. These equations can be used to 
process the measurements sequentially so that the 
matrix inversion in (14) is a scalar. To be precise, 
the measurements should be uncorrelated, in 
which case the measurement covariance noise Rk 
is diagonal.  
 

TRANSITION MATRIX 
 

The function of the transition matrix is to relate 
the state errors between tk and tk+1  times. 
Binning1 has suggested one method to avoid the 
problem of the high computational cost and 
extended analytical expressions of the transition 
matrix. This method consists of propagating the 
state vector using complete force model and, 
then, to compute the transition matrix using a 
simplified force model. The proposed method is 
used in this work and the transition matrix is 
propagated by the Markley's method13.  
 
The Markley's method uses two states, one in tk-1 
time and other in tk time, and calculates the 
transition matrix between them using µ, J2, ∆t, 
the radius of the Earth, and the two states. In this 
case, the effect of Earth flattening is the most 
influent factor in the process9,14. 
 
The Markley's method consists of making one 
approximation to the transition matrix of the state 
vector based on Taylor series expansion for short 
intervals of propagation, ∆t. However, this 
method is used only to propagate the position and 
velocity of the user.  
 
The state transition's differential equation is 
defined as:  
 

  
( ) ( ) ( )001

0 t,t
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I0
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dt
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φ
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where ( ) I≡00 t,tΦ is the initial condition,  
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where ( )Tzyx=r  and ( )Tzyx &&&=v  are 

the Cartesian state at the instant t, 0r  and 0v  are 

the Cartesian state in t0 , 0 ≡ matrix 3x3 of zeros, 

I ≡ identity matrix 3x3, G(t) ≡ 
r
rf

∂
∂ )t,(

 ≡ 

gradient matrix e )t,( rf  = accelerations on the 
satellite.  
 
Developing the Markley’s method, the transition 
matrix for position and velocity is given by: 
 

  ( )
66

0,
xvvvr

rvrrtt 





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Φ                             (19) 

 
where 
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where ∆t ≡ tk – t0 and G0 ≡ G(t0). 

The G and, therefore, vvvrrvrr ,,, ΦΦΦΦ  are 
symmetric if the perturbation is derived from 
potential. The G gradient matrix , including only 
the central force and the J2, is given by: 
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The accelerations due to Earth flattening are 
given by: 
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The partial derivatives are12: 
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The transition sub-matrix for clock bias, clock 
drift, and drift rate is given by: 
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DATA SET 

 
To analyze the proposed method, the 
Topex/Poseidon satellite (T/P) data is chosen 
because it carries a dual frequency receiver GPS 
aboard experimentally to test the ability of the 
GPS to provide precise orbit determination 
(POD). The observation data T/P GPS data set 
and navigation message in Rinex format are 
easily found in the Internet15,19.  
 
As suggested by Binning1, one uses the T/P data 
set of November 18th

, 1993, because Selective 
Availability (SA) was also not in operation for 18 
(2 Block I [PRNs 3, 13], 6 Block II [PRNs 14,15, 
16, 17, 20, 21], 10 Block II-A [PRNs 1, 5, 7, 9, 
22, 23, 2, 26, 28, 31]) of the 25 available GPS 
satellites allowing civilian users access to the 
most precise GPS measurements. At that time, 



 7 

the GPS constellation was not yet considered 
fully operational, and therefore, Anti-Spoofing 
was also off. This allowed all users to receive 
clean data in both L1 and L2 frequencies.  
 
The position and velocity estimated in this work 
are compared against the TOPEX/Poseidon 
Precise Orbit Ephemeris (POE)19 generated by 
the Jet Propulsion Laboratory (JPL) in UTC time. 
The JPL/POE is claimed to estimate T/P position 
to an accuracy of better than 15 cm (See Ref. 1 
for details). The states in the POE are provided in 
one minute UTC time steps in Inertial True of 
Date coordinates. But, the T/P GPS 
measurements are provided in 10 seconds of GPS 
time. Accordingly to IERS, the difference 
between the UTC and GPS time is 9 seconds at 
this date. Therefore, it was necessary to 
interpolate the states in one second steps through 
the ODEM Orbit Determination software10,11.  
 
TOPEX/Poseidon satellite 

 
The mission is jointly conducted by the United 
States National Aeronautics and Space 
Administration (NASA) and the French space 
agency, Centre National d’Etudes Spatiales 
(CNES). The main goal of this mission is to 
improve the knowledge of the global ocean 
circulation. Other applications include the ocean 
tides, geodesy and geodynamics, ocean wave 
height, and wind speed4.  
 
The T/P spacecraft orbits the Earth at an altitude 
of 1336 km, inclination of 66o and with nearly 
zero eccentricity. The period of the orbit is 1.87 
hours. 
 
This satellite carries a total of five tracking 
systems including Satellite Laser Ranging (SLR), 
DORIS Doppler, GPS, TDRSS, and the satellite 
altimeter itself. The satellite orbit must be 
determined with a RMS radial accuracy of 13 
centimeters. This is an extremely stringent 
accuracy requirement for a satellite of this shape 
and altitude17. 
 
The T/P receiver can track up to 6 GPS satellites 
at once on both frequencies if Anti-Spoofing is 
inactive2. 
 
 

RESULTS 
 
In accordance with studies done previously3, 
good results are obtained considering one 
simplified dynamical model where the modeled 
forces are geopotential up to 23rd order and 
degree of the spherical harmonic coefficients and 
a simplified model can be considered to 
propagate the state covariance matrix. In this 
study, it has been checked that 10-second step- 
size to be used in the numerical integrator 
provides good results at minimum computational 
cost as outlined in this work. However, the 
measurement model shall be carefully modeled 
as some effects can be very pronounced.  
 
Aiming at improving this model, new tests were 
carried out. One of them is concerned with the 
modeled forces. It is verified that the 50th order 
and degree of the spherical harmonic coefficients 
can provide the results without raising the 
computational cost. Other tests developed are 
concerned with the ionospheric and SA effects, 
and the transition matrix. Additionally, it is 
analyzed the GPS ephemeris software which 
results are presented here.  
 
According to Chiaradia3, the ionospheric effect is 
one of the smallest errors among the considered 
effects in the measurement model cited 
previously. The Figures 2 and 3 show the error 
caused by the ionospheric effect on the orbit 
determination of an artificial satellite above 1000 
km, in this specific case, the T/P satellite. The 
Table 1 shows the statistical errors for this case 
where σ is the standard deviation. All tests are 
compared with the full model for a span of two 
hours. The full model consists of the 
measurement model cited in the equation (2), the 
ionospheric correction, the effect of the J2 
considered in the transition matrix, SA off, and 
the 50th order and degree of the spherical 
harmonic coefficients of JGM-2 model. 
 
To analyze the transition matrix considering the 
effect of J2 on the orbit determination, it is 
developed one comparison between the estimated 
orbits with the effect of J2 and a pure Keplerian 
model in the transition matrix. The Figures 4 and 
5 show the difference between the estimated 
orbits caused by the transition matrix. The Table 
3 show the statistical errors for transition matrix 
in the estimated orbit. 
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Figure 2: Position error due to ionospheric 

effect. 
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Figure 3: Velocity error due to ionospheric 

effect 
 

Table 1: Statistical error for ionospheric 
effect. 

 Position (m) Velocity 
(m/s) 

error mean  -0.0075 -1.31 ×10-5 

error σσ  0.52 0.0011 

Max. error 14.805 0.014 
Min. error -12.299 -0.179 

 
To analyze the effect of the SA in the estimated 
orbit, the following test is developed. First, the 
estimated orbit considers the GPS satellites with 
SA on and, next, with SA off. One notes that the 
results with SA on is better than with SA off as 
cited in Binning1. The Figure 6 shows the code 
pseudorange residual corrupted with SA. The 
average number of satellites being tracked by the 
T/P receiver on this epoch during two hours is 
5.54 and the average number of used GPS 
satellites (not rejected) is 3.76. However, when 

the SA corrupted satellites are removed the 
average drops to 2.69.  
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Figure 4: Positi on error due to the transition 

Matrix 
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Figure 5: Velocity error due to the transition 

Matrix 
 
Table 2: Statistical error for transition matrix. 

 Position (m) Velocity 
(m/s) 

error mean  5.675×10-5 1.526 ×10-8 
error σσ  8.4 ×10-4 8.735 × 10-6 

Max. error 0.017 0.001 
Min. error -0.006 -0.001 

 
The Figures 7 and 8 show the position and 
velocity error, respectively, compared with the 
JPL/POE. The Table 3 shows the statistical 
errors. 
 
To analyze the effect of the error caused by the 
GPS ephemeris computed through the navigation 
message, it is compared such ephemeris with 
post-processed GPS ephemeris (POE) generated 
by JPL15. The Figure 9 shows the error between 
them for each satellite during two hours.  
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Figure 6: The code pseudorange residual 

corrupted with SA. 
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Figure 7: The position error 
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Figure 8: The velocity error 

 
Table 3: The statistical error for position and 

velocity. 
 Position (m) Velocity (m/s) 

error mean 41.07 0.053 
σσ 10.2381 0.044 

RMS 42.338 0.069 
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Figure 9: The error of the GPS ephemeris 

calculated by navigation message. 
 

The Table 4 shows the comparative statistics 
between the GPS ephemeris calculated by our 
software and JPL.  
 

Table 4: Statistical error of the GPS 
ephemeris. 

error mean  11.6 m 
error σσ   15.91 m 

Max. error 88.5073 m 
Min. error 1.17414 m 

 
CONCLUSIONS 

 
The main goal of this work was to achieve 
accuracy around tens of meters when determining 
in real time the artificial satellite orbits 
considering a simplified model. To develop it, the 
single frequency GPS measurements are used.  
 
With respect of the dynamical model, the 50th 
order and degree of the spherical harmonic 
coefficients provide good results without raising 
the computational cost. However, a truncation to 
the 23rd order and degree still can be used 
providing acceptable accuracy. The solar 
radiation pressure shall be considered in tests of 
long period.  
 
With respect to the measurement model, the 
ionospheric effect can be neglected or jointly 
estimated as part of the state for satellites above 
1000 km of the Earth’s surface when the 
requirement of the mission is accuracy around 
tens of meters.  
 
The transition matrix considering the effect of J2 
do not provide reasonable improvements in the 
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estimated orbit despite having low computational 
cost.  
 
The removal of the GPS satellites with SA on do 
not provide good results for the sampled data. 
Other tests using different data shall be 
conducted to investigate the contradictions. 
 
The GPS ephemeris generated by our software is 
calculated with good accuracy without affecting 
the estimated orbit.  
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