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Abstract

In the present paper the swing-by maneuvers are
studied under the model given by the three-dimensiond circular
restricted three-body problem. This maneuver can be identified
by five independent parameters. Y, the magnitude of the
velocity of the spacecraft a periapsis; g, the angle between the
velocity vector at perigpsis and the intersection between the
horizontal plane that passes by the periapsis and the plane

perpendicular to the periapsis that holds V' ; ,, the distance

between the spacecraft and the cdlestid body during the closest
approach; a, the angle between the projection of the periapsis
line in the xy plane and the line that connects the two
primaries; b, the angle between the periapsis line and the xy
plane. A numerica agorithm to study this problem was build
and used to generate severd results.

1. Introduction

The swing-by maneuve is a very popular technique used
to decrease fud expenditure in space missons. The most usua
approach to study this problem is to divide the problem in
three phases dominated by the “two-body” celegtia
mechanics. Other models used to study this problem are the
circular restricted three-body problem, see[1], [2], [3] and the
dliptic redtricted three-body problem, see [4]. In the present
paper it is assumed that the system is formed by two main
bodiesthat arein circular orbits around their center of massand
a masdess third body that is moving under the gravitationa
attraction of the two primaries.

The god isto amulate a large variety of initid conditions
for those orbits and classify them according to the effects
caused by the close approach in the orbit of the spacecraft.
This swingby is assumed to be peformed around the
secondary body of the system.

Among the severa sets of initid conditions that can be
used to identify uniquely one swingby traectory, the
fallowing five variables are used: \p, the velocity of the
spacecraft at periapsis of the orbit around the secondary bodly;
Two angles (@ and b), that specify the direction of the
periapsis of the trajectory of the spacecraft around M2 in a
three-dimensona space; I, the distance from the spacecraft to
the center of My in the moment of the closest gpproach to M»
(perigpsis distance); g, the angle between the velocity vector a
periapsis and the intersection between the horizontal plane that
passes by the perigpsis and the plane perpendicular to the
perigpsisthat holds V.

For a large number of vaues of these three variables, the
equations of motion are integrated numericaly forward and
backward in time, until the spacecraft is a a distance that can
be considered far enough from M. It is necessary to integrate
in both directions of time because the set of initid conditions
used gives information about the spacecraft exactly at the
moment of the closest gpproach. At these two points, the
effect of M, can be neglected and the system formed by M,
and the spacecraft can be considered a two-body system. At
these two points, two-body celestid mechanics formulas are
vdid to compute the energy, angular momentum and
inclination.

2. The Swing-By in Three Dimensions

Fg. 1 shows the sequence for this maneuver and some
important variables.
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Fig. 1 - The SwingBy in Three Dimensions

It is assumed that the system has three bodies: a primary
(M1) and a secondary (M2) body with finite massesthat arein
circular orbits around their common center of mass and a third
body with negligible mass (the spacecraft) that has its motion
governed by the two other bodies. The spacecraft leaves the
point A, passes by the point P (the periapsis of the trgjectory
of the spacecraft in its orbit around My) and goes to the point
B. The points A and B are chosen in a such way that the
influence of M at those two points can be neglected and,
consequently, the energy can be assumed to remain constant



after B and before A (the system follows the two-body
cdegtid mechanics). Theinitid conditions are clearly identified
in the Fig.l: the perigpds distance rp (distance measured
between the point P and the center of My), theangles a and b
and the velocity V. The distancerpisnot to scale, to make the
figure easier to understand. The result of this maneuver is a
change in velocity, energy, angular momentum and inclination
in the keplerian orbit of the spacecraft around the central body.
Using the "patched conic” approximation, the eguations that
quantify those changes are available in the literature, see [1].
Under this approximation the maneuver is conddered as
composed of three parts, where each of those systems are
governed by the two-body cdestid mechanics. The first
system describes the motion of the spacecraft around the
primary body before the close encounter (the secondary body
is neglected). When the spacecraft comes close to the
secondary body, the primary is neglected and a second two-
body system is formed by the spacecraft and the secondary
body. After the close encounter the spacecraft leaves the
secondary body, and it goes to an orbit around the primary
body again. Then, the secondary is neglected one more time.
The most important equations for the planar maneuver under
thismode are reproduced below.
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In those equations dis haf of the tota deflection angle of
the trgjectory of the spacecraft, V, isthe linear velocity of M,
in its motion around the center of mass of the system M 1-M ,
m, isthe gravitational parameter of M,. From those equations it
is possible to get the fundamental well-known results: @) The
varigion in energy OE) is equa to the variation in angular
momentum multiplied by the angular velocity of the primaries
(WDC) (Eq.3); b) If the Ay-By is in front of the secondary
body, there is a loss of energy, and this loss has amaximum a
a = 90; ¢) If the Fly-By is behind the secondary body, there
isagain of energy, thisgain hasamaximum at a = 270°.

Equations (1) to (3) use Vi as aindependent parameter.
Later in this paper the varigble V, will be used. The fact isthat
both parameters are equivaent, since the orhit around M, is
considered Keplerian (Hyperbalic) in the approximation used
to derive those equations (“patched-conics’). They are related
by the expresson V., =V - (2rT]rp)

There are many publications studying the standard swing
by maneuver in different missons. Some examples are: the
study of missions to the satdllites of the giant planets, see [5];
new missions to Neptune, see [6] and Pluto, see[7]; the study
of the Earth's environment, see [8], [9]; fast reconnaissance
missions of the solar system, see [10], [11], transfers between
hyperbolic asymptotes, see [12], [13], etc.

3. The Three-Dimensional Circular Restricted Problem

For the research performed in this paper, the equations of
motion for the pacecraft are assumed to be the ones valid for

the well-known three-dimensiond restricted circular three body
problem. The standard dimensionless canonical system of units
isused, which implies that: the unit of distance is the distance
between M1 and My; the mean angular velocity W) of the
motion of My and Mz is assumed to be one; the mass of the
smaler primary (My) isgiven by m= m, /(m, +m,) (where
my and m, are the real masses of M, and M., respectively) and
the mass of M, is (1-M); the unit of time is defined such that
the period of the motion of the two primaries is 2p and the
gravitationa congtant isone.

There are severd systems of reference that can be used to
describe the three-dimensional restricted three-body problem,
see[14]. In this paper the rotating system is used.

In the rotating system of reference, the origin is the center
of mass of the two massive primaries. The horizontd axis (x) is
the line that connects the two primaries at any time. It rotates
with a variable angular velocity in a such way tha the two
massive primaries are dways on this axis. The vertica axis (y)
is perpendicular to the (x) axis. In this system, the positions of
the pimariesares X, =-m, X, =1-m, y, =y, =0.In
this system, the equations of motion for the massess particle
are, e[14]:
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wherer: and r; are the distancesfrom M 1 and M2.
4. Algorithm to Solve the Problem

A numericd dgorithm to solve the problem has the
following steps: 1. Arbitrary values for the parameters rp,
a, b and g are given; 2. With these values the initia conditions
in the rotating system are computed. The initia position is the
point (X, Yj, Zj) and the initial velocity is (Vxi, Vi, Vi),
where:

X, =1- m+r cos(b)cos(a) U]
YI = rp COS(b)S n(a) (8)
Z =rgn (b) ©

V, =-V, sin(g)sin(b)cos(a) +
-V, cos(g)sin(a)+rpcos(b)sin(a)

(10)
V, =-V,sin(g)sin(b) sin(a) +

+V_ cos(g) cos(a) - T cos(b)cos(a)
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3. With these initid conditions, the equations of motion are
integrated forward in time until the distance between M, and
the spacecraft is larger than a specified limit d. At this point
the numerica integration is stopped and the energy (E+) and



the angular momentum (C+) after the encounter are calculated;
4. Then, the particle goes back to its initid conditions at the
point P, and the equations of motion are integrated backward in
time, until the distance d is reached again. Then the energy (E)
and the angular momentum (C.) before the encounter are
calculated.

For al of the smulations shown, a fourth-order Runge-
Kutta method with stepsize control and a Runge-Kutta of 8-th
order was used for numerica integration. The result of this
comparison isthat there is no distinction in the plots obtained.
The congtant value for the Jacobian congtant dso is a proof
that both numerical integration methods worked very well. The
criteria to stop numerica integration is the distance between
the spacecraft and M2, When this distance reeches the value d
= 0.5 (hdf of the semimgor axis of the two primaries) the
numerical integration is stopped. The value 0.5 is a lot larger
than the sphere of influence of M for the EarthMoon system,
that is used here (which is, 0.00077 in canonica units), which
avoids any important effects of M, a these points.
Smulaions using larger vdues for this disance were
performed, and it increased the integration time, but did not
significantly change the results. To study the effects of
numerica accuracy, severd cases were Smulaed using different
integration methods and/or dfferent values for the accuracy
required with no effects in the results. All of the calculations
were peformed with an IBM-PC computer (Pentium
233Mhz) using the Microsoft Fortran Power Station 4.0
Compiler.

5. Numerical Simulations

5.1 Effectson the inclination for g=0

An interesting question that appears in this problem is
what happens to the inclination of the spacecraft due to the
close approach. To invedtigate this fact the inclination of the
trgectories were caculated before and after the closest
approach. To obtan the inclinations the equation
cos(i) = Cz/C is used, where G is the Z-component of the
angular momentum and C isthe total angular momentum. Fig. 2
shows results for a series of initia conditions, considereing the
case 9= 0. This congtraint is assumed, because it is the most
usua dtuation in interplanetary research, since the planets
have orbits that are amost coplanar. The horizonta axis
represents the angle a, and the vertica axis representsthe angle
b. The vaiation in inclination is shown in the contour plots.
All the angles are expressed in degrees.

Severd conclusions come from those results. The most
interesting ones are; i) when b = (° (planar maneuver) the
vaiaion in inclination can have only three possble vaues
+180°, for amaneuver that reverse the sense of its motion, or
0° for a maneuver thet does not reverse its motion. Those
numerical results agree with the physical-modd, since the fact
that b = 0° implies in a planar maneuver that does not allow
vaues for the inclination other than 0° or 180°. Thisis clearly
shown in the figures, following the line b = 0°. The plots are
divided in two parts: one with Di = £180° and the other one
with Di = 0°; ii) Looking a any verticd line (a line of

congtant a) it is clear that the change in inclination goesto zero
a the poles (b=+90°). Then, in the case where
Di =+180° the change in inclination starts at zero in b= -
90°, increases in magnitude until b = 0° and then it dtarts
decreasing again until zero when b = 9(Pis reached. When Di =
0°for b = ° the behavior of Di oscillates, with two maximum
for the magnitude (one in the interval —90° < b < (° and the
other in the interval 0° < b < 909 and three zeros at b= -90°,
0°, 90°. It is aso clear that the variation in inclination is
symmetric with respect to the angle b (+b and -b generatethe
same Di); iii) when b=+ 90° the vaiation in inclinaion is
very close to zero. It means that a passage by the poles with
the velocity paralel to the X-Y keeps the inclinaion of the
trgectory unchanged; iv) when a = 0° or a = 180° thereis no
changein theinclination. Thisis in agreement with the fact that
amaneuver with this geometry does not change the trgjectory
at dl. Looking at any horizontd line (aline of congtant b) it is
vishle that this curve has a maximum in the magnitude of Di
somewhere between the two fixed zeroesa @ = ®and @ =
180°% v) when the perigpss distance or the velocity a
periapsisincreases, the effects of the swing-by in the maneuver
are reduced. In the plots shown, this can be verified by the fact
that the area of the regions where the variation in inclination is
close to zero increases. Thisis the reason why the regions full
of linesare reduced in the figures.
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Fg. 2 — Inclination chance resulted from a close goproach
5.2 Effects of the out-of plane velocity at periasis

To study the influence d this angle in the maneuver, the
varidions in energy was caculaed and plotted in Fig. 3 as a
function of g It is possible to see that the effects of the
vaiation in g causes a sinusoidal periodic oscillation. The
amplitude of this oscilation depends on the initid conditions,
but it is never greater than 0.04 canonica units of energy. The
maximums and minimums of those oscillations are dso
dependent on theinitia conditions.

The variaion in inclination is shown in Fig 4. The results
show that this angle plays a very important rule in the

maneuver.
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Simulations were made for the cases @ = 180°, b=0% a =
180°, b =90° a = 360°, b = 0°, but the figures are omitted here
because the varidion in inclingtion was zero for dl the the
vaues of @ Fig. 4 shows some results. The characteristics of
this problem, are: i) The variation in inclination is very smdll
(less then 3° for any value of @) when the passage occurs et the
poles (0 = £ 909); ii) Looking at intermediate vaues, likeb =
+ 450 it is visble the smmetry that occurs both for the
vaues a = 180° and 360°. The values for the variation in
inclination for g= 180° + D (0° < D < 180°) and 180° - D have
the same magnitude and opposite signs; iii) For b = * 459, it
is visible the property that the variation in inclination for gand
- g(=360° - g have the same magnitude and opposite signs
between the two figures for a = 135° and 225°; iv) Forb =(Q°,
there is a Smmetry with respect to g= 1807, v) For a = 270°
and b = 45° and b = — 45° there is aSsmmetry where the values



for the variation in inclination for the range 0° £ g£ 180° are
the same ones tha for the range 180° £ g£ 360° between the
twofiguresfor b=45°and b = - 45°.

Conclusions

In this paper the three-dimensiond restricted threebody
problem is described and used to sudy the swing-by
maneuver. The effects of the close approach in the inclination
of the spacecraft is studied and the results show severa
particularities, like: b = 0° dlows only +180° and 0° for Di,
b =+90° or a = 0° or 180° impliesin Di = 0°, etc. The effects
of an out-of-plane component for the velocity at periapsis
were aso studied and it showed it is importance, changing the
vaues for the variation in inclination, energy and angular
momentum, as described in the plots shown. In this way, this
research can be used by mission designers to obtain specific
misson goals.
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