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Abstract: Consider a list of jobs that are to be processed in a flexible manufacturing 
machine. To process these jobs a set of tools is required. In order to perform a job, all the 
tools required to process it must be in the machine tool magazine. The number of tools 
required to process all jobs is, in general, larger than the magazine capacity. Hence, tool 
switches are necessary in order to process all jobs. We are interested in determining a 
sequence that minimizes the number of  tool switches to perform all the jobs. We suggest the 
use of a formulation of this problem as a minimum cost network flow problem to solve this 
problem. We hope this formulation is worthwhile to be implemented in practice for machines 
with small sized tool magazine or with relative large magazine capacity (relative to the 
cardinality of the set of tools ) .  
 
Key-words: Minimization of tool switches problem, mathematical formulation, minimum 
cost network flow problem. 
 
 
 
1. Introduction 
 

Consider the situation where one desires to sequence N jobs that require M tools to be 
processed in a machine with a tool magazine capacity of C. All the tools required to process a 
job must be in the machine before it is processed, hence, an implicit assumption is that each 
job requires at most C tools. Assuming M > C, there has to be tool switches in order to 
process all jobs. The minimization of the number of tool switches problem - MTSP consists in 
determining a sequence to process the jobs that leads to the least possible number of tool 
switches. The interest in finding such a sequence is, for instance, when the machine 
interruption time is proportional to the number of tools changed. Therefore, reducing the 
number of toosl switches implies in a larger avaliable machine production time. 

The MTSP was considered by Tang and Denardo (1988), where a linear integer 
programming formulation of this problem is presented. The formulation uses a set of 
assignment constraints (the order in which the jobs are sequenced) together with other 
constrains that impose that the required tools for each job must be in the machine tool 
magazine whenever that job is processed.  

According to Tang and Denardo (1988), their formulation performed poorly using 
commercial software solvers, that is, the computational time require was prohibitive, even 
when solving small instances of the problem. Therefore, these authors suggested the use of 
heuristics to solve the MTSP.  
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Tang and Denardo (1988) argued that MTSP is NP-Hard.  Unfortunately, as pointed out in 
Yanasse (1997) and Crama et al. (1994), their argument has flaws. Crama et al. (1994) then 
reduced the problem of minimal length traveling salesman path on edge graphs to MTSP, and 
demonstrated that the problem is in fact NP-Hard (an even simpler proof uses a reduction 
from consecutive blocks minimization (Garey and Johnson, 1979, [SR17]). 

Other formulations of the problem appeared in Bard (1988) and Crama et al. (1994). They 
propose integer programming formulations with a quadratic objective function. We did not 
find other works in the literature that explore the mathematical model formulation for MTSP 
of Tang and Denardo (1988), or Bard (1988) or Crama et al. (1994).  

Recently Pinto and Yanasse (2001)  performed a series of computational tests trying to 
solve MTSP using the comercial software CPLEX 6.5 in a Sun UltraSPARC II model Ultra 
60 workstation, using Tang e Denardo’s (1988) mathematical formulation of the problem. In a 
set of nineteen instances of varying sizes solved with M varying within the interval [8,10], N 
within the interval [8,10] and C within the interval [3,8], the average time for CPLEX to find 
a solution was 4.87 minutes. The range of the computational times observed was quite spread, 
varying from 0.32 minutes (M = 10, N = 9, C = 8) up to 32.21 minutes (M = 9, N = 10, C = 3). 
Even instances with the the same parameter sizes present such variation. For example, another 
instance of size M = 9, N = 10, C = 3 took less than 2 minutes. This seems to indicate that the 
computational time to solve MTSP with CPLEX 6.5 seems to be quite dependent on the 
problem data. As we increase the size of the instances considered the computational times 
become considerably larger.  
 Considering that, in practice, the magazine capacity is usually fixed, the fact that a large 
variability of time to get a solution for instances of the same size is not a desirable feature, the 
small size of the instances considered and the reasonable amount of computational effort 
necessary to solve these instances, we thought that there would be space for an alternative 
way to solve the MTSP which could handle or reduce some of the above mentioned problems. 
In the next section we present one such alternative which is based in a non-polynomial 
formulation of MTSP as a minimum cost network flow problem - NTFP. In section 3, we 
discuss some practical implementation issues of this formulation and in section 4, some final 
remarks are made. 
 
2. MTSP as a NTFP  
 

The total number of combinations of M tools into sets of C tools is given by n = 







C
M . 

Consider an undirected graph where each node represents one of such combinations. Any two 
nodes Ni and Nj of this graph is connected with an arc with cost Cij given by the number of 
different tools in nodes Ni and Nj, that is, the number of tool switches that will occur when we 
move from node Ni to node Nj or vice-versa. 
 Consider two additional nodes in this graph, an origin node O and a destination node D. 
Nodes O and D are connected to all nodes Ni, for all i, in the graph and the cost of these 
connecting directed arcs are all equal to 0.   

Let J1, J2, …, JN, be the N jobs to be processed and let S1, S2, …, SN, be the set of all nodes 
in the graph such that they contain all the tools required to perform jobs J1, J2, …, JN, 
respectively. The problem we want to solve is to send a unit of flow from node O to node D, 
at a minimum cost, with the additional constraints that at least one unit of flow must enter 
some node in sets S1, S2, …, SN, from some other node not in S1, S2, …, SN, respectively.  

A solution to this problem defines a path joining O to D visiting at least one node of the 
sets S1, S2, …, SN, since there is an inflow to at least a node in set Si, for any i = 1, 2, …, N,. 
Following this path from O to D, we can determine the sequence in which the path visits 
(some node of) the sets S1, S2, …, SN. The node visited defines the tools that will be present in 
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the magazine. Observe that if we are in some node of set Si, the tools required by job Ji, i = 1, 
2, …, N, are available, therefore, job Ji can be processed. Hence, since we visit at least one 
node of the sets S1, S2, …, SN, following the path we are able to process all jobs required. In 
other words, any feasible solution to this flow problem is a feasible solution to the tool 
switches problem. Conversely, any feasible solution to the tool switches problem is a feasible 
path in the flow problem considered. Therefore, any minimum cost solution to the flow 
problem will provide an optimal solution to the MTSP.  

Let xjk be a decision variable representing the flow going from node j to node k. Consider 
the following network flow problem model with side constraints: 
 
Problem (P)    

Min ∑∑ Cij xij             (1) 
 

Subject to 
      ∑

j

xij - ∑
k

xki = 0  for i = 1, 2, …, n     (2) 

      ∑
j

xOj  = 1              (3) 

      ∑
k

xkD = 1              (4) 

      ∑
∉Ski

∑
∈Skj

xij = 1, k = 1, 2, …, N        (5) 

     ∑
j
∑

k

xjk ≤ N+1             (6) 

  ∑
∉Qi

∑
∈Qj

xij = 1, for all possible subsets Q    (7) 

xij =  0 or 1 for all i and j.          (8) 
 
The objective function (1) together with constraints (2), (3) (4) and the non-negativity of 

the decision variables would compose a regular minimum cost network flow cost where a unit 
of flow is being sent from node O to D. For this particular flow problem, constraint (8) is 
automatically satisfied since the optimal solution given by some simplex based method would 
provide a 0-1 integer solution.  

We introduce the side constraints (5), (6) and (7). Constraints (5) simply state that a unit of 
flow, from some node outside set Sk, must enter into some node in Sk, k = 1, 2, …, N. 
Constraint (6) imposes that the flow must pass through at most (N+1) arcs. The flow has to go 
from node O to node D passing through some nodes i = 1, 2, …, n. In fact the flow has to pass 
through N sets of nodes (Sk, k = 1, 2, …, N), according to (5). Hence, there must be at  most 
N+1 arcs where the flow must pass to form a path from O to D passing in one node of each set 
Sk, k = 1, 2, …, N.  

Unfortunately, these constraints are not enough to prevent cycles. We have to introduce 
constraints (7) to prevent cycles. The subsets Q are unions of the sets S1, S2, …, SN, and we 
have to consider all possible combinations. These constraints impose that for any subset of the 
sets S1, S2, …, SN, there must be a unit of inflow coming from node O or nodes not belonging 
to the combined subsets. Observe that in constraints (7) constraints (5) are included. We are 
presenting both in this way for convenience of the discussions presented in the subsequent 
sections.  

In the next section, some issues concerning this formulation and computational 
implementation are considered. 
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3. Implementation issues 
 

We can see that there are a few drawbacks with the proposed approach. The first issue that 
deserves attention is the number of nodes n necessary to be considered. Let us assume, for the 
moment, that the integrality constraint of the proposed 0-1 linear integer problem can be 
relaxed and the problem can be solved using any commercial LP code. LP solvers, nowadays, 
are quite efficient and can solve quite large problems. Therefore, for n not very large, the 
proposed approach would be better or competitive to other approaches already suggested in 
the literature. n is the number of possible combinations of all tools in sets of size C. 
Therefore, n will be “small” when C is small or when C is relatively large with respect to M 
(the total number of tools). In Table 1 we provide the value of n for some values of C and M.   

       
M C n M C n M C n 
10 2 45 10 8 45 20 2 190 
10 3 120 10 7 120 20 3 1140 
10 4 210 10 6 210 20 4 4845 
10 5 252    20 5 14535 
9 2 36 9 7 36 20 6 33915 
9 3 84 9 6 84 20 7 62985 
9 4 126 9 5 126 20 8 125970 
8 2 28 8 6 28 30 3 4060 
8 3 56 8 5 56 30 4 27405 
8 4 70    40 3 9880 
11 2 55 11 9 55 40 4 91390 
11 3 165 11 8 165 50 3 19600 
11 4 330 11 7 330 50 4 230300 
11 5 462 11 6 462 60 3 34220 
12 2 56 12 10 56 60 4 487635 

Table 1 – Number of nodes in the graph as a function of M and C 
 
From Table 1, we can see that for instances with M varying within the interval [8,10], and 

C within the interval [3,8], the largest graph will have at most 252 nodes (not counting the 
nodes that are replicated). For such a size, the LP relaxation of the problem can be solved 
without much difficulty. 

We may be able, in certain cases, to reduce the total number of nodes to be considered with 
a pre-processing analysis of the data. Consider that there are C tools in the tool magazine but 
these tools are not sufficient to process any of the required jobs. This combination, therefore, 
will never be used in a practical solution to the problem, hence, there is no need to be 
considered in the graph problem as well, that is, a node corresponding to such a combination 
can be deleted from the graph. Consider, for example, the instance given in Table 2 with M = 
5, N = 8 and C = 3. In Table 2 the tools required by each job are indicated with an 1; an 0 
indicates that the corresponding tool is not necessary to process that job; the job number is 
presented in the first column.  

 For this instance, the number of nodes to be considered in the graph is 







3
5  = 10 nodes and 

they are listed in Table 3. Among these nodes, node 1, corresponding to the combination 123, 
does not need to be considered since with these tools in the magazine none of the 8 jobs can 
be processed. This can be also verified in Table 4 where the nodes contained in the sets S1, S2, 
…, S8 are indicated. 
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Tools Jobs 

1 2 3 4 5 
1 1 0 0 1 0 
2 1 0 1 0 1 
3 0 1 0 1 0 
4 0 0 1 1 0 
5 1 0 0 0 1 
6 0 0 1 0 1 
7 0 0 0 1 1 
8 1 1 0 1 0 

 
Table 2: Problem instance, M = 5, N = 8 and C = 3. 

  
 

Tools Nodes 
1 2 3 4 5 

1 1 1 1 0 0 
2 1 1 0 1 0 
3 1 1 0 0 1 
4 1 0 1 1 0 
5 1 0 1 0 1 
6 1 0 0 1 1 
7 0 1 1 1 0 
8 0 1 1 0 1 
9 0 1 0 1 1 
10 0 0 1 1 1 

 
Table 3: Nodes in the graph for instance given in Table 2 

 
 

Nodes Sets 
1 2 3 4 5 6 7 8 9 10 

S1  x  x  x     
S2     x      
S3  x     x  x  
S4    x   x   x 
S5   x  x x     
S6     x   x  x 
S7      x   x x 
S8  x         

 
Table 4 – Nodes contained in the sets Si , for the instance given in Table 2 

 
In some cases, it is possible to reduce the number of constraints (5) in problem (P). 

Consider the instance given in Table 2. From Table 4, we see that node 2 is the only possible 
node that satisfies the requirements for J8. Therefore, in an optimal solution, a flow of one will 
necessarily pass through node 2. Since we already know that this node will be part of the path 
in an optimal solution, then there is no need to include constraint (5) for k = 1 and k = 3 since 
they will be automatically satisfied. Similarly, node 5 is the only possible node that satisfies 
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the requirements for J2, therefore there is no need to include constraint (5) for k = 5 and k = 6 
since they will be automatically satisfied.  If we delete the rows corresponding to S1, S3, S5 
and S6 we obtain Table 5. 

 
Nodes Sets 

1 2 3 4 5 6 7 8 9 10 
S2     x      
S4    x   x   x 
S7      x   x x 
S8  x         

Table 5 – Set Si needed to be considered, for the instance given in Table 1 
 
Suppose we already reduced the number of constraints (5). In correspondence with 

constraints (5), the right hand side value of constraint (6) will become 5 (the flow has to go 
from node O to node D passing only through these 4 sets, S2, S4, S7 and S8) instead of 9. Also, 
the combinations to be considered in constraints (7) are reduced accordingly. 

It is also worthed noting that if the number of tools M and the capacity of the magazine C 
are fixed, the cost matrix to be considered in the model is totally defined and is independent 
of the instance being solved. For instance, for the instance being considered in Table 2 and all 
problems of sizes M = 5 and C = 3, the matrix cost is the one given in Table 6. Recall that the 
cost are determined by computing the number of tool switches that occur when we move from 
a node to another. For instance, when we go from node 5 to node 6, the cost is 1 since there is 
a single switch of tool 3 to tool 4; when we move from node 1 to node 10, the cost is 2 since 
there are two switches, tools 1 and 2 for tools 4 and 5, and so on.  
  
Cij 1 2 3 4 5 6 7 8 9 10 
1 0 1 1 1 1 2 1 1 2 2 
2 1 0 1 1 2 1 1 2 1 2 
3 1 1 0 2 1 1 2 1 1 2 
4 1 1 2 0 1 1 1 2 2 1 
5 1 2 1 1 0 1 2 1 2 1 
6 2 1 1 1 1 0 2 2 1 1 
7 1 1 2 1 2 2 0 1 1 1 
8 1 2 1 2 1 2 1 0 1 1 
9 2 1 1 2 2 1 1 1 0 1 
10 2 2 2 1 1 1 1 1 1 0 

 
Table 6 – Costs matrix C for problems of sizes M = 5 and C = 3 

 
The costs COj and CjD, for j = 1, 2, …, 10 are zero (and CjO and CDj, for all j are infinite).  

Let us discuss now the dificulties in solving the proposed network flow problem (P). If 
there were no side constraints (5), (6) and (7), an integer optimal solution can be obtained 
easily relaxing the integrality constraint and using any specialized simplex method for solving 
a minimum cost network flow problem. 

 
Suppose we solve problem (P) by the simplex method with the constraints (8) replaced 

solely by constraints requiring the non-negativity of the decision variables. If the solution 
obtained is integer, the solution is also optimal for (P) and we are done. The problem is that 
there is no guarantee that the solution obtained with the relaxed problem will be integer.  
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Every solution obtained by the simplex method will determine a path or paths from O to D 
where some positive amount of the commodity is flowing from O to D. If there is a single 
path with positive flow, then we are done (the amount of the commodity flowing should be 1). 
Otherwise, a fractional value of the commodity is being sent using different paths from O to 
D.   

We are confident that in practice, in most of the instances, a traditional branch-and-bound 
method that sets the values of the decision variables to 0 or 1 for some of the fractionary 
variables will quickly converge to an integer solution. Following a path with positive flow, we 
propose that the variable that should be set to 0 or 1 corresponds to the first arc in the path 
from O to D that is fractionary. Once this is done, all the subsequent arcs in the path that had 
fractionary values will be forced to be integer (0 or 1). Observe that setting some other 
fractional value variable to 0 or 1 will force the subsequent arcs in the path to 0 or 1, but not 
necessarily all the previous arcs in the path. 
 Unfortunately, for the time being, we have no theoretical based support to guarantee that 
this quick convergence to an integral solution will happen. Some limited computational tests 
will be performed to verify empirically whether this proposed approach is effective. 
 Let us discuss now the constraints (7) that prevent loops. If N is the number of sets S1, S2, 
…, SN, the total number of possible combinations is 2N. For N ≤ 10, 210 ≤ 1024, that is, the 
number of constraints is large but not that much. For larger values of N the number of 
constraints increases rapidly. We propose to solve problem (P) without the constraints (7) 
(only with constraints (5)) and we introduce them when necessary. Whenever a solution with 
a loop is found we introduce the corresponding constraint (7) that prevents that loop to occur 
and we solve the problem again. We are also confident that the number of constraints to be 
considered  until an optimal solution is obtained will not be large because of the constraint 
(6). We also have to perform some computational tests to verify this feeling. 
  
4. Final remarks 
 

In this work we present a minimum cost network flow problem formulation with side 
constraints for the minimization of the tool switches problem. 

The proposal seems to be promising, mainly for practical instances of small sizes or with 
small tool magazine capacities or even with relatively large tool magazine capacities. Observe 
that in practical settings, M can vary from instance to instance but the machine capacity C is 
fixed. Assume that M ≤ U, for some U > 0 and integer. Then, it is possible to generate 
beforehand the graphs associated to any instance of the problem and the corresponding cost 
matrix C. In fact, it is sufficient to generate the graph GU associated with an instance with M = 
U and corresponding cost matrix CU. Any other instance with M < U can be obtained from the 
graph GU by deleting some nodes and the corresponding cost matrix can be obtained by 
deleting some rows and columns of CU. So, in practice, to solve an instance, only the 
constraints (5), (6) and (7) associated to the instance need to be generated.  

The proposed network flow formulation of the problem has some special features that may 
be explored to develop a specialized algorithm that can solve it in a more efficient way. There 
is also space for research to build some theoretical support to guarantee that the solution 
procedure suggested will quickly converge to an integer solution. 

It is worthed observing that in the pre-processing process suggested there are sometimes 
some useful information that arises. For instance, from Table 5 and the cost matrix C, one can 
easily observe that unless node 10 is in the optimal flow path, the lower bound of 2 (an 
immediate lower bound for the number of tool switches in this instance is M - C = 2; see 
Yanasse, 1997) for this instance of the problem cannot be achieved since all Cij are greater or 
equal to 1 for all i ≠ j and if node 10 is not part in the optimal path, then the flow from O to D 
must pass through at least 4 nodes (nodes 2 and 5 plus at least two other nodes). Therefore, 
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we can solve this instance imposing that a flow will have to pass through node 10. We may 
obtain a solution of 2, in which case we know it is optimal, or a solution of 3 or more. If the 
solution obtained is 3, we are also done. There is no other solution better than 3. If the 
solution is larger than 3, we have to proceed with the search, checking for paths not passing 
through node 10. 

Finally, another possibility that is being explored by these authors is the use of an 
alternative network flow formulation for the problem using two commodities as described in 
Ahuja, Magnanti and Orlin (1993), p.624, that avoids the enumeration of constraints (7). 
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