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Abstract. This paper presents results of the application of the Lindstedt-Poincaré method for the determination of three-
dimensional periodic orbits in the vicinity of the collinear Lagrange points in the restricted circular three-body problem. These 
solutions, known in the literature as "Halo" orbits, are of great practical importance and have been used as reference 
trajectories for several artificial satellites and probes launched in the last 20 years. The principal aim of this communication is 
to introduce a simple and straightforward analytical method for the computation of small-to-moderate amplitude solutions, 
together with an innovative approach for extending this approach to any amplitude, no matter how large. Examples of Halo 
orbits are shown in the case of the Earth-Moon system, and the results compared with numerical integrations of the exact 
differential equations. 
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1. Introduction 

 
Consider the circular restricted three-body problem in a rotating barycentric coordinate system (X,Y,Z), such that 

both massive bodies (i.e. m1 > m2 > 0) are always located in the X axis, and the XY plane coincides with their plane 
of motion. In this scenario we find five equilibrium solutions, the so-called Lagrange points, which are denoted by 
Li (i=1,...,5). Two of them (L4 and L5) are located in the XY plane forming equilateral triangles with the primaries. 
The remaining points all lie along the X axis: L1 between both massive bodies, L2 beyond and L3 between m1 and 
minus infinity. For values of 12 mm  smaller than a critical value, the equilateral points are stable. All three 

"collinear" points, on the other hand, are unstable for all values of the masses. They are usually referred to as fixed 
points of type Center x Saddle x Center; unstable (i.e. Center x Saddle) for motions in the plane, and stable (i.e. 
Center) in the Z axis. Three-dimensional periodic orbits around these unstable points, also unstable by nature, are 
called Halo orbits.  

It seems at first hand that such trajectories are among the least desirable places in which to place an artificial 
satellite. Nevertheless, since the beginning of the 1970s serious studies began to be undertaken on this regard. 
Possibly the first was due to Farquhar. When NASA was still planning possible scenarios for the exploration of the 
Moon, serious consideration began to be placed on the problem of communication between the Earth and a 
hypothetical exploratory base located in the far side of the Moon. It is known that, due to the spin-orbit resonance 
between the Moon's rotational motion and its translation around the center of mass, the far side is always invisible 
from our planet, thus making impossible any contact with ground control. This question was analyzed, among 
others, by Farquhar (1970), Farquhar and Kamel (1973) and Richardson and Kary (1975). As a solution, they 
proposed the localization of a communication satellite in a Halo orbit around the L2 Lagrange solution. Due to its 
periodicity and particular shape, the trajectory would avoid all periodic occultations by the Moon, assuring 
permanent contact with the astronauts. The question of the intrinsic instability of the orbit was solved proposing 
periodic station keeping maneuvers whenever the true trajectory departed sufficiently from the nominal solution. 

Although the end of the Apollo project appeared as a serious blow to these projects, soon other applications of 
halo orbits were proposed and made reality. Examples are the satellites developed for the study of Solar wind in the 
vicinity of our planet. Solar wind consists of atoms and ions that are driven by the Sun. Studying their composition, 
astronomers hope to obtain important data to estimate the chemical composition of the Solar System at the time of 
its formation and, thus, are of great importance for models of planetary formation. However, there exist serious 
difficulties in the detection and analysis of Solar wind. Since it is made up of electrically charged particles, it is 
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deflected by the terrestrial magnetosphere and, consequently, cannot be studied from the vicinity of our planet. The 
only solution is to place a satellite outside the "bow shock".  

Of all the possible orbits for such a satellite, the best suited is precisely a Halo orbit around the L1 point of the 
Sun-Earth system. The main advantage over normal heliocentric orbits is the fact that it is always between the Sun 
and our planet, thus allowing a permanent observation of both bodies without eclipses of any sort. This type of orbit 
was used in 1978 by the probe ISEE-3 (International Sun-Earth Explorer-3), where it remained for several years. 
Almost twenty years later, the Solar wind in the L1 point was once again monitored by the SOHO (Solar & 
Heliospheric Observatory), launched in 1995 and, more recently, by the ACE (Advanced Composition Explorer) 
launched in 1997, and still in operation. Probably the most ambitious projects are yet to come. The GENESIS probe 
(scheduled for 2002) will not only continue the observation of the Sun but will also collect samples of Solar wind 
and, after a three-year mission, bring them back to Earth. Thus it represents the first program, since Apollo, to bring 
extraterrestrial material to Earth. 

In the present paper we review the determination of Halo orbits in the circular restricted three-body problem via 
a classical analytical method known as Lindstedt's Device or the Lindstedt-Poincaré method. Its main advantage 
over other analytical approaches lies in its simplicity and high precision. An important drawback, however, is the 
fact that it is only convergent for low to moderate amplitudes of the periodic orbits. We will therefore briefly 
introduce a modification of the equations of motion that allows us to overcome this limitation. The manuscript is 
organized as follows: Section 2 presents the equations of motion in the vicinity of a Lagrange fixed point, together 
with Richardson's expansion of the pseudo-potential terms. These equations form the basis for the application of the 
analytical method. Lindstedt's device is reviewed in Section 3, and explicit formula for Halo orbits are presented as 
well. Section 4 discusses the extension of the method for large-amplitude orbits. Section 5 shows examples of Halo 
orbits in the Earth-Moon and Sun-Earth systems, while comparisons with exact numerical simulations follow in 
Section 6. Finally, conclusions close the paper in Section 7. 

 
2. Orbits in the Vicinity of the Collinear Lagrange Points 
 

Since we are basically interested in orbits in the vicinity of one of the collinear equilibrium points, let us begin 
by introducing a transformation of coordinates (X,Y,Z)� (x,y,z) to new variables centered around Li: 

 

,zZ

yY

AxX

i

i

i

γ=
γ−=

+µ+γ−=

                      (1) 

 
where γi is the distance from Li to the nearest primary, and 11A γ+−=  (for  L1), 21A γ−−=  (for L2). In terms of 

these new variables, the equations of motion can be written as (see Szebehely, 1967): 
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Here ( )212 mmm +=µ , 2222
1 zy)x(r ++µ−=  and 2222

2 zy)1x(r ++µ−+= .  In order to develop the 

nonlinear terms in the right-hand side, we expand them as function of Legendre polynomials Pn, defined by means 

of the expression: 
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with 2222 cbaD ++=  and 2222 zyx ++=ρ . After some straightforward calculations (see Richardson, 1980) 

the equations of motion for the massless particle can be written in power series of the coordinates as: 
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The cn coefficients are given by: 
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where the upper sign is used for L1 and the lower for L2. Functions nn RT ,  can be obtained by the following 

recurrence relations: 
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with initial values T0 = 1, T1 = x and R0 = 1; R1 = -3x. 

 
Equations (4) constitute our final expression for the motion of a massless particle in the vicinity of the collinear 

libration point Li. Note that the right-hand side contains only nonlinear terms and that the expansion (3) in Legendre 
polynomials is convergent only for values of 1<ρ ; this then constitutes a limit for the possible values of the 

amplitudes of the Halo orbits determined via this approach. 
 

3. The Lindstedt-Poincaré Method 
 
Amongst the various perturbation techniques applied to the problem of halo orbits, probably the simplest and 

most straightforward is the Lindstedt's device. Contrary to other approaches, it does not require extensive knowledge 
of the Hamiltonian perturbation methods or the development/use of complex algebraic computer software. Although 
the sheer size of the formulas may seem uncomfortable at first, they are very easily understood and, once the basis 
of the method is grasped, can be reproduced and extended with very little trouble.  The basic idea of the method is as 
follows:  Starting from the linearized system  (i.e. zeroing all the right-hand members of Eq. (4)), we can determine 
the linear solution as: 
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where ,0ω  0ν  are the linear planar and off-plane frequencies of motion and α, β are the amplitudes (in complex 

notation) in the x and z axis respectively.  Finally, κ is a constant that relates the amplitude in the y-axis with that in 
the other planar dimension. Now, we know that the inclusion of nonlinear terms (i.e. right-hand side of (4)) will 
yield a solution that will contain contributions from both the linear planar motion as well as the linear motion in the 
z axis. Thus, we can write the general solution as a Fourier series of the type: 
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in terms of new complex coefficients l,k,j,il,k,j,il,k,j,i Z  ,Y  ,X . We suppose similar expansions for the coefficients 

nn R,T  in the right-hand sides. The values of the coefficients of Eq. (8) are obtained introducing these series into 

the original differential equations, identifying terms of equal harmonic and degree (in � and �) and solving the 
resulting algebraic equations. The new frequencies (also affected by the nonlinear terms) can be obtained as power 
series of the linear amplitudes α, β in the form: 
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where 00,000,0  , ν=νω=ω . 

 
The general quasi-periodic solutions, in which ν≠ω , are usually referred to as Lissajous orbits and are of 

limited practical importance since they periodically cross the line of sight between both primaries. Halo orbits can 
be considered as a particular case of Lissajous trajectories, in the case of ν=ω . Unfortunately, periodic orbits, 
although present in the nonlinear system, have no linear counterpart. Thus, in order to use the Lindstedt-Poincaré 
method, we must reformulate our original system Eq. (4). This can be accomplished introducing a new function ∆ 
(which will ultimately be set to zero) and rewriting the differential equations as:  
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Once again, this function can be expanded in power series of the amplitudes: ji

j,i j,i βα∆=∆ ∑ . The linear 

terms ∆1,0, ∆0,1 are  now chosen so as to generate a periodic orbit in the linear system. The high-order terms ∆i,j are 
finally chosen so as to guarantee ∆ = 0 (see Gomez et al. 1998, Andreu and Simo 1999,  Gomez et al. 2000). 

 
4. Extension to Large-Amplitude Orbits 

 
The formula deduced in the previous section is convergent for all Halo orbits with amplitudes smaller than a 

certain critical value associated with ρ = 1 (see equation 3). This limit is not critical for most practical applications 
since the trajectories of most Halo-type artificial satellites do not extend beyond ρ = 0.8. Nevertheless, in some 
cases it proves important to (at least) analyze the structure of Halo orbits beyond this limit. In such a scenario, the 
formula deduced from Richardson’ s expansion proves useless, and a different methodology must be employed. In 
this section we introduce such an approach. Although it implies a certain complication in the formula (and thus is 
not recommended for ρ < 1) it is convergent for all values of the amplitude. 

We begin with equations (2). However, instead of expanding the right-hand sides in Legendre polynomials, we 
introduce two additional variables to our system: 
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Differentiating these expressions, we can rewrite our new (extended) system as: 
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The procedure to solve this system is similar to the one detailed in Section 3. We use the Lindstedt-Poincaré 

method in exactly the same manner. The difference with Richardson’ s technique, however, lies in the expansion of 
the right-hand side of the last two equations. Instead of using Legendre polynomials, we work with operations on 
Fourier series. First, we use Eq. (8) to obtain a Fourier series of r1, r2. Since these quantities are always greater than 
zero, we can invert these series and obtain expressions for the coefficients of the series (r1)

-1, (r2)
-1. This can be done 
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analytically with little trouble, although a certain care must be taken with the manipulation of the coefficients. 
Introducing these into Eq. (12), we finally obtain formula analogous to those used in classical studies.  

 
5. Results 

 
This method was implemented and applied to both the Earth-Moon and the Sun-Earth sub-systems. In each we 

generated several Halo orbits around the Lagrangian point L1 for different values of the linear amplitude β. Figure 1 
shows the three-dimensional view and the x-y, y-z and x-z projections for the Earth-Moon case. Figure 2 shows the 
same views in the Sun-Earth system. The values used for β varied from 0.1 to 0.9 in steps of 0.1. Values of β higher 
than 0.9 gives very poor results and are not shown here. Figure 3 shows the variation of the non-linear frequency ω 
as a function of β. We can see that the period of the Halo orbit is very sensitive with respect to this amplitude; its 
value being significantly higher for the Earth-Moon system than for the Sun-Earth case. Figure 4 shows the variation 
of the amplitude in the x-direction α as a function of β. It is visible that the relation is close to linear for both 
systems and that the amplitudes are higher for the Sun-Earth system. 
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Fig. 1. Halo Orbits in the Earth-Moon System (3-D, X-Y, Y-Z,X-Z). 
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Fig. 2. Examples of Halo Orbits in the Sun-Earth System (3-D, X-Y, Y-Z, X-Z). 
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Fig. 3. Frequency of the Halo orbit as a function of β for the Earth-Moon system (left) and Sun-Earth system (right). 
 
 



���������	
� ��� ����������������������� ��������������������� �����	�������	� �� ������ ���� � ��$

0.10

0.15

0.20

0.25

0.30

0.35

    
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
 

Fig. 4. Amplitude in the x-direction (α) of the Halo orbit as a function of β for the Earth-Moon system (left) and 
Sun-Earth system (right). 

 
6. Comparison with Numerical Simulations 

 
Having determined a number of solutions with the analytical approach, the next step was to check these results 

against the exact numerical integration of the restricted three-body problem. The results of this comparison are 
shown in Figs. 5 and 6 for different values of β for the Sun-Earth system. Initial conditions for the orbits generated 
by numerical integration  were taken equal to those deduced from the analytical estimation. Figure 5 shows the 
difference between the two orbits, also as function of time. This difference is calculated at every instant of time by 
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Where δx, δy, δz are the differences in the components of the position vector between the trajectory given by 

the analytical approximation and the trajectory given by the numerical integration and δvx, δvy, δvz are the 
differences in the components of the velocity vector between the same trajectories. Figure 6 shows both sets of 
orbits superposed as function of time. Each plot has a collection of orbits generated by the same initial conditions, 
but integrated over different periods of time. The numbers written at the right of the plots represents the integration 
time of each trajectory in canonical units (one canonical units is defined such that the period of the orbit is 2π). This 
procedure was used to determine the time that the orbit is destroyed. Figure 7 shows the orbits individually for the 
case β = 0.32. It is visible that the destruction of the orbit occurs for a time between 7 and 8. 

We can clearly see that the accuracy of the analytical method decreases with larger values of β; this is expected 
since the size of the non-linear terms is a direct function of the amplitude. Nevertheless, even for moderate-to-large 
values of the amplitude, the approximation obtained by the Lindsted-Poincaré method is very good. 
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Fig. 5. Difference Between the Two Orbits (Analytical and Numerical) as Function of Time. 
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Fig. 6. Analytical and Numerical Trajectories for β = 0.01, 0.08, 0.16, 0.32, 0.64, 0.90. 
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Fig. 7. Time Evolution of the Trajectories for β = 0.32. 
 

7. Conclusions 
 
In this communication we presented an analytical algorithm to calculate Halo orbits in the circular restricted 

three-body problem. Several periodic orbits were generated for both the Earth-Moon and the Sun-Earth systems. 
Comparisons with numerical simulations of the exact equations show that the orbits remain close to each other for 
about three revolutions, although the exact time is a function of the amplitude. After this interval, the differences 
between the full and the truncated solution become significant. It is important to bear in mind that these periodic 
orbits are unstable; thus, any discrepancy between the initial conditions and the center manifold will grow 
exponentially with time. For this reason, the proximity between the analytical and numerical solutions for as long as 
three complete revolutions is more than adequate. Another characteristic visible in the results shown in this paper is 
that in the Sun-Earth system the trajectories are closer to each other than in the Earth-Moon system. This fact occurs 
because the mass of the Moon (in the Earth-Moon system) relative to the total mass of the system is higher than the 
mass of the Earth (in the Sun-Earth system) and as a consequence its gravity field acts stronger in the trajectories.  
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