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ABSTRACT 

This paper presents an analytical and simulation study of the stabilization and improvement of the active vibration damping of a 

system modeled by a simple analog harmonic oscillator driven by discrete time control. Initially, this control is the Bilinear (or 

Tustin) s-z mapping equivalent of a continuous-time asymptotically stable Proportional plus Derivative (PD) control. It is tested 

with high values of the sampling period. It is shown that all classical mappings (Tustin, Schneider, etc.) tested may instabilize the 

system. To circumvent this, we propose and use a new (ST1) mapping that behaves better than the classical ones tested under the 

same conditions. We also model an active discrete control of a suspension of a vehicle, and compare the performance between the 

PD controllers designed by Bilinear and by the new (ST1) S-Z mappings, for this example. 

1. Introduction. 

Digital controls of analog plants, including vehicle 

suspensions, are becoming very common today due to their low 

price, extensive programming, logic and arithmetic 

capabilities, etc. Despite these advantages, their time sampling, 

amplitude quantization, and input, processing, and output 

delays are important disadvantages to be considered. They may 

become critical when the plant has oscillation modes that are 

above the Nyquist frequency (half of the sampling frequency), 

as happens in suspensions with some flexible modes. Then, a 

careful study of their consequences on that control and even on 

its stability must be done. 

This paper presents an analytical and simulation study of the 

stabilization of an analog harmonic oscillator driven by discrete 

time controls. This control initially is the Tustin s-z mapping 

equivalent of a continuous-time asymptotically stable 

proportional plus derivative (PD) control. It is tested with high 

values to the sampling period. It is shown that all classical 

mappings (Tustin, Schneider, etc.) tested may instabilize the 

system. To circumvent this, we propose and use a new (ST1) 

mapping that behaves better than the classical ones tested 

under the same conditions. 

2.The harmonic oscillator used 

In this work we analyzed and simulated an (damped or 

undamped) harmonic oscillator given by: 

)t(u)t(x.k)t(x.b)t(x.m =++
•••

,      )t(x)t(y =  (Eq. 1) 

where m );0( ∞∈ , b )m;0[∈ , k );0( ∞∈ , with analog 

transfer function given by: 
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where 
m
k

n =ω  );0( ∞∈  is the non-damped natural 

angular frequency of this vibration mode, and 
m
b=ζ  

)1;0[∈ is its damping ratio. 

 



According to Franklin (1981), the zero-order hold (ZOH) 

equivalent of Eq. 2 may be calculated by: 

).1()( 1
0

−−= zzGH Z




L -1















= STkts

sG

.

 
)(

        (Eq.3) 

Applying Eq. 3 to Eq. 2 we have, after normalizing 
k=1:
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where TS is the sampling period, n.ωζ=σ  );0( nω∈ is the 

inverse of the decay time constant, 
2

nd 1. ζ−ω=ω  ≤ 

nω is the damped natural angular frequency. For an 

undamped harmonic oscillator ( 0=ζ ), Equations 1, 2, and 4 

may be reduced to Equations 5, 6, and 7, as follows: 

)t(u)t(x.k)t(x.m =+
••

,      )t(x)t(y =                   (Eq. 5) 
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3. The Analog PD control 

To simplify the analysis, we used an (stabilizing but noncausal) 

analog PD direct control (Figure 1), given by: 
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                                               (Eq. 8) 

where kp e kd are the control gains for the proportional and 

derivative actions, respectively, and e(t) = r(t) - x(t). 

D(s)

G(s)
-

+
R(s) E(s) Y(s)

U(s)

 

Fig. 1. Block diagram of the closed-loop analog system. 

4. The Discrete-time PD control 

We also used the correspondent discrete-time PD direct control 

D(z) (Figure 2) given by the next sections. 

Gh0(z)

D(z)

-

+R(z) Y(z)

 

Fig. 2. Block diagram of the closed-loop discrete time system. 

 

4.1. Discrete PD control designed by Tustin rule. 

The Tustin s-z mapping is: 
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Substituting Eq. 9 in Eq. 8 we have: 

1z

1z
.

T

2
.kk)z(D

S

dp +
−

+= , or                                  (Eq.10) 

1z

k.2T.k

k.2T.k
z

.
T

k.2
k)z(D

dSp

dSp

S

d

p +












+

−
+









+=                                (Eq.11) 

4.2. Discrete PD control designed by Schneider rule 1. 

The Schneider s-z mapping 1 is: 



        
( )

1z8z5

1z.z
.

T

12

)z(U

)z(E
~s

2

S −+

−
=                                 (Eq.12) 

Substituting Eq. 12 in Eq. 8 we have: 
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5. PD control of an harmonic oscillator 

The harmonic oscillator control is interpreted here as a kind of 

active vibrational control. The idea here is: initially, to study an 

active control of an harmonic oscillator; and later, to extend it 

to the attitude control of a model of a system with some 

flexible modes, as done in Tredinnick (1999a, b), considering 

the appendage vibrations as the principal disturbances on the 

satellite attitude. 

5.1. Analog PD control of an analog harmonic 

oscillator 

For the totally analog case we specified m, b, k, and transients 

with: peak time tp ≅ 0,6 segundos; settling time ts ≅ 5 segundos; 
overshoot MP ≅ 0,15 Nm, which gave kp, kd. 
 

5.2 Tustin PD control of a ZOH equivalent of an 

harmonic oscillator. 

The closed-loop transfer function H(z) of the system shown in 

Figure 2 (without canceling the pole of D(z) with the zero of 

Gh0(z)) is given by:

 

[ ]

[ ]
)1z(

k.2T.k

k.2T.k
z.(

T
k.2

k

  .  
1z).T.cos(.2z

)1z.()T.cos(1
       1

1z).T.cos(.2z

)1z.()T.cos(1

)z(R

)z(Y
)z(H

dSp

dSp

S

d
p

Sn

2

Sn

Sn

2

Sn

+












+

−
+






 +

+ω−

+ω−
+

+ω−

+ω−

==
                                           (Eq. 14)

or, after rearranging: 
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If we cancel the pole of D(z) with the zero of Gh0(z) in the denominator of the equation, Eqs. 14 and 15 become respectively Eqs. 

16 and 17 below: 
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Eqs. 16 and 17 have the following characteristic equation: 
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or, after rearranging: 
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6. Analysis and simulations with classical methods. 

6.1. Analog PD control of an analog harmonic 

oscillator. 

Figure 3 shows the root locus in the s-plane of the analog  

 

Fig. 3. Root-locus for G(s) of Eq.2 and D(s) of Eq. 8 varing 

kp/kd. 

 

 

 

 

 

system of Figure 1 with the G(s) of Eq.2 and the D(s) of Eq. 8 

varing kp/kd. Figure 4 shows its unit impulse response. 

 

Fig. 4. Unit impulse response for G(s) of Eq.2 and D(s) of 

Eq.8. 



 

6.2. Tustin PD control of the ZOH equivalent of an 

undamped harmonic oscillator 

Figure 5 shows the root locus in the z-plane of the discrete-

time system of Figure 2, with G(z) of Eq. 7 and the D(z) of Eq. 

10 for Ts = 0,1 s varing kp/kd. Figure 6 shows its unit pulse 

response. 

 

Fig. 5. Root-locus for G(z) of Eq. 7, D(z) of Eq. 10 and TS = 

0,1 s varing kp/kd. 

 

Fig. 6. Unit pulse response for G(z) of Eq. 7, D(z) of Eq. 10 

and TS = 0,1 s. 

Figure 7 shows the root locus in the z-plane of the discrete-

time system of Figure 2, with G(z) of Eq. 7 and the D(z) of Eq. 

10 for Ts = 1,6 s varing kp/kd. Figure 8 shows its unit pulse 

response. 

 

 

Fig. 7. Root-locus for G(z) of Eq. 7, D(z) of Eq. 10 and TS = 

1,6 s varing kp/kd. 

In Figure 7 we may observe the pole outside the unit circle that 

unstabilize Figure 8. 
 

 

Fig. 8. Unit pulse response for G(z) of Eq. 7, D(z) of Eq. 10 

and TS = 1,6 s. 

6.3. Tustin PD control of the ZOH equivalent of a 

damped harmonic oscillator 

Figure 9 shows the root locus in the z-plane of the discrete-

time system of Figure 2 with G(z) of Eq.7, with damping ratio 



ζ = 0.1, and the D(z) of Eq. 10 for Ts = 0,1 s. Figure 10 shows 
its unit pulse response. 

 

 

Fig. 9. Root-locus for G(z) of Eq.7, ζ = 0.1, D(z) of Eq. 10 and 

TS = 0,1 s. 

 

Fig. 10. Unit pulse response for G(z) of Eq.7, ζ = 0.1, D(z) of 

Eq. 10, TS = 0,1 s. 

 

6.4 Schneider PD control of the ZOH equivalent of a 

damped harmonic oscillator 

Figure 11 shows the root locus in the z-plane of the discrete-

time system of Figure 2, with G(z) of Eq. 4, D(z) of Eq. 13, ζ 

=6, Ts = 1,6 s varing kp/kd. Figure 12 shows its unit pulse 

response. 

 

Fig. 11. Root-locus for G(z) of Eq. 4, D(z) of Eq. 13, ζ =6, Ts 

= 1,6 s varing kp/kd. 

 

Fig. 12. Unit pulse response for G(z) of Eq. 4, D(z) of Eq. 13, ζ 

=6, Ts = 1,6 s. 

By Schneider rule with kp = 3.2 e kd = 4.8, TS = 1,6 s we still 

have instability and even with ζ = 120, as shown in Figures 13 
and 14. 



  

Fig. 13. Root-locus for G(z) of Eq. 4, D(z) of Eq. 13, ζ =6, Ts 

= 1,6 s varing kp/kd. 

 

Fig. 14. Unit pulse response for G(z) of Eq. 4, D(z) of Eq. 13, ζ 

=6, Ts = 1,6 s. 

 

By Schneider rule with kp = 3.2 e kd = 4.8, TS = 1,6 s we still 

have instability and even with ζ = 0, as shown in Figures 15 
and 16. 

 

Fig. 15. Root-locus for G(z) of Eq. 4, D(z) of Eq. 13, ζ =0, Ts 

= 1,6 s varing kp/kd. 

 

Fig. 16. Unit pulse response for G(z) of Eq. 4, D(z) of Eq. 13, ζ 

=0, Ts = 1,6 s. 

Figures 11 - 16, show that all cases controlled by Schneider PD 

rule are unstable. 

6.4.1 Schneider lead control of the ZOH equivalent of a 

damped harmonic oscillator 

The Schneider rule 1 (Eq.12) cannot be used in the PD 

controller (Eq.8) design because it presents a pole outside the 

unit circle. as hinted above and shown in Tredinnick(1999). 

Figure 17 shows the discrete root-locus for Gh0(z) = 1, with 

D(z) of Eq. 13 with kp = 0, and Ts= 1,6s, having: a) a (stable) 

pole inside the unit circle at z1 = 0.116; and b) a (unstable) pole 

outside the unit circle at z2 = -1.716. This unstabilizes 

derivative actions when designed by Schneider rule 1. 



 

Fig. 17. Root locus for Gh0(z) = 1, with D(z) of Eq. 13 with kp 

= 0, and Ts= 1,6s. 

7. Proposal of new-s-z mapping. 

The limitations of the classical methods presented so far in 

preserving the stability for high gains and high sampling 

periods suggested us to propose new s-z mappings. This begun 

in the work of Tredinnick (1999a, b) through the difference 

equation: 
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Applying the z-transform (Franklin, 1981) on it we have the 

new s-z mapping 1: 
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which shifts the pole from z = -1 in the Tustin rule to z' = -ξ, 0 
≤ ξ ≤ 1. This avoids or retards the instabilization in closed loop 
systems, by using ξ as a new design parameter (besides the 
control gains and the sampling period). The new rule 1 

becomes: the Tustin rule for ξ = 1; and the backward mapping 
for ξ = 0. Its inverse is given by: 
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The new rule also maps the left half s plane into a circle with 

center between z = ½ and z = 0 and radius between ¼ and 1, 

respectively, always inside the unit circle in plane z as proved 

in Tredinnick(1999).  

 

 

7.1. New-rule designing the PD control 

A PD controller designed by new-rule 1 is given by: 
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8. Simulations with the new-rule. 

8.1. New rule 1 PD control of a ZOH equivalent of a 

damped harmonic oscillator. 

Figure 18 shows the root locus in the z-plane of the discrete-

time system of Figure 2, with G(z) of Eq. 4 with damping ratio 

ζ = 6, and the D(z) of Eq. 44 for Ts = 1,6 s varing kp/kd. Figure 
19 shows its (asymptotically stable) unit pulse response for kp 

= 3, kd = 4.8, TS = 1.6 s, ξ = 0.2: 

 

Fig.18. Root-locus for G(z) of Eq. 4, D(z) of Eq.44, ζ =6, Ts = 

1,6 s, ξ = 0.2 varing kp/kd. 

 

Fig.19. Unit pulse response for G(z) of Eq. 4, D(z) of Eq. 44, ζ 

=6, Ts = 1,6 s, ξ = 0.2, kp = 3, kd = 4.8,. 



 

9. Improving the performance of the active suspension of a vehicle control of by a new s-z mapping 

 
Fig.20. Active Digital Suspension System 

 

Digital
Controller

Discrete
Equivalent
of the Plant

+
r(z) e(z) u(z) y(z)

 
Fig. 21. Discrete-time active control of the vehicle suspension. 

 

The vertical and rotational equations of motion in Fig. 20 are: 
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where m and J are the mass and the polar moment of inertia of 

the vehicle, k1, k2 are the elastic constants of the springs, c1, c2 

are the damping coefficients of the piston, with values: 

 

m = 1800 kg; 

J = 630 kg.m
2
; 

c1 = c2 = 0.2; 

k1 = k2 = 0.2; 

l1 = 1.3 m; 

l2 = 0.5 m; 

 

Doing now: 
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we have,
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We may calculate the vibration modes of this system doing: 
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Considering the damping, we have: 
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and, the damped modes are: 
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Writing in the space of states equation: 
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Supposing that only the vertical position is observed, we have: 

( )0001=C  

Finally, the analog transfer function G(s) is:
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The Zero-Order Hold discrete-time equivalent of G(s), is given 

by: 
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                                                                                         (Eq.29) 

Using a sampling period of TS = 1 second, we do not have the 

aliasing fenomenon. This simulation is only to compare the 

performance between the PD controller designed by Tustin and 

ST1 rules without the aliasing fenomenon. A more realistic 

case must consider the digital control with an analog plant. 

As we may see in Tredinnick (1999a), the PD controller 

designed by Bilinear rule is given by: 
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and the PD controller designed by ST1 rule is given by: 
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where the control gains are: 

kp = 0.01; 

kd = 0.10; 

The parameter ξ = -0.15. 
The following figures shown that the ST1 rule presented as a 

better kind of design in comparison with the Bilinear method. 

 

 
Fig.22. Vertical displacement response due a unit pulse input, 

with a PD controller designed by a ST1 rule. 

 
Fig. 23. Vertical displacement response due a unit pulse input, 

with a PD controller designed by a Bilinear rule. 

 

10. Conclusions 

In this work we tried some classical methods to preserve the 

stability of a flexible plant controlled by a discrete PD 

controller, but they all fail for a growing sample period. We 

also tried the Schneider mapping 1, and we showed that it fails 

for the PD controller and for any controller with derivative 

action. Then we proposed a new s-z mapping. The analysis and 

simulations so far suggest that this s-z mapping preserves the 

stability and improves it better than all other methods tried. 
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