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Abstract. The relationship between reflectance and suspended sediment con-
centration (SSC) is dependent upon the wavebands sensed and the viewing
geometry of the sensor. The laboratory experiment reported in this paper
investigated these dependences. The reflectance in four wavebands (two visible and
two near-infrared) of a large water-filled and wave-free tank were recorded as
three variables were changed, namely SSC. sensor viewing angle and relative
sensor azimuth. The strength of the positive relationship between reflectance and
SSC was shown to vary with (i) wavelength, as the maximum reflectance and SSC
class separability occurred at the longer visible wavelengths, and (ii) viewing
geomeltry. as the reflectance/SSC asymptote was dependent upon both the angle
and azimuth of the sensor. The optimum conditions for the sensing of SSC were
concluded to be nadir in visible (0-55 and 0-65 um) and near-infrared (0-75 ym)
wavelengths.

1. Introduction

Most objects on the Earth's surface arc non-Lambertian (Slater 1980) with
reflectance being dependent upon both the direction of irradiating energy and the
direction along which reflected cnergy is detected (Ranson er al. 1985). In recent years
much work has been undertaken on these bidirectional reflectance properties for
vegetation surfaces (Kriebel 1978, Kimes ¢r «/. 1980, Koilenkank er al. 1982, Wardley
1984. Ranson er al. 1985, Milton and Wcbb 1987). Although the bidirectional
reflectance properties of water are well documented (Jerlov 1976, Preisendorfer 1976,
Coney and Salzman 1979, Alifoldi 1982, MacFarlane and Robinson 1984) the specific
influence of viewing geometry on the relationship between remotely-sensed re-
flectance and suspended sediment concentration (SSC) has received scant-attention
(Curran and Novo 1988). This can be attributed to the problems of performing
experiments in the field where water properties are in constant flux or in the
laboratory where it is difficult to simulate the multiple scattering that occurs within an
unbounded water body (McCluncy 1976). Despite these problems, detailed labora-
tory studies have provided useful results (Scherz er al. 1969, Scherz 1972, Moore 1977,
Whitlock er al. 1982) that complement the necessarily less detailed field studies
(Bartolucci et al. 1977, Holyer 1978). For instance, such laboratory studies have
clearly demonstrated positive but asymptotic relationships between SSC and re-
flectance: the influence of bottom reflectance when SSC is less than 10 mg/l and the
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long wavelength shift in the start of the reflectance asymptote at high levels of SSC.
Building upon this information several workers have developed empirical models
with which to estimate SSC from remotely-sensed measurements of reflectance
{(McCauley and Yarger 1976, Ritchie ¢t al. 1976, Khorram 1981, Curran er al. 1987.
Rimmer et al. 1987). Such models have been applied under a wide range of sub-
optimal conditions including a fixed viewing geometry, no atmospheric correction
and high levels of SSC. As a result the accuracy with which remotely-sensed
measurements have been used to estimate SSC has been low (Curran er al. 1987).

The objective of the research reported here was to use a laboratory study to
cvaluate the influence of viewing geomctry on the relationship between SSC and
reflectance, an evaluation which is essential if remotely-sensed reflectance is to be
employed to estimate accurately the SSC of natural waters.

2. Remotely-sensed reflectance of water
2.1, The effect of SSC on reflectance

Irradiance on a water surface comprises direct and diffuse solar radiation (figure 1).
both of which are partially reflected from the water surface. Any remaining
radiation is transmitted via the water surface to be absorbed or scattered by water
molecules, particles and suspended sediments. In shallow water, transmitted radiation
can be backscattered partially by bottom material, partially absorbed within the
water mass and partially internally reflected at the surface. In deep water, transmitted
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Figure 1. Optical processes in the remote sensing of SSC.
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radiation can be absorbed or backscattered by successive water laminae. Back-
scattered light from the water body contributes to the reflectance from the water
body. its various components and the bottom material. Of these, only the water body
or sub-surface reflectance will be affected by SSC as it represents the backscattered
radiation from within the water body itself (Holyer 1978). However, the relative
proportion of sub-surface and water surface (Fresnell) reflectance detected by the
sensor as total reflectance (hereon called reflectance) will vary according to the
viewing geometry.

2.2. The effect of viewing geometry on reflectance

Both theory and experiment indicate that water reflectance is partly a function of
the solar zenith angle (Jerlov 1976, Preisendorfer 1976). Variations in solar zenith
angle (0,) during data acquisition have produced changes in reflectance that are
unrelated to water properties (figure 2); for example, a 9 per cent increase in
reflectance as 6, increased from 0° to 70° has been reported by Jerlov (1976). In
addition, as SSC is increased, there is a corresponding increase in the amount of
forward scatter. Water bodies with high SSC are therefore subject to variations in
reflectance with changes in sensor viewing angle (0,). Further variations in the relative
azimuth angle (¢) will influence the effect that 0, has on reflectance. For example,
when ¥ =0°, variation in 8, will cause only minor changes in reflectance since the Sun
and sensor are in the same plane whereas when ¢ =90°, variations in 8, into and away
from the Sun will cause large changes in reflectance. To minimize the Sun glitter
detected with the sensor looking towards the Sun, Clarke and Ewing (1974)
recommend that radiance is measured vertically or at predetermined angles away
from the Sun. In many remote sensing situations, it may not always be possible to
adhere to these recommendations and in such cases a reliable method of assessing
changes in the reflectance of water as a function of viewing geometry is essential.

ind

8z = solar zenith angle

Bv = sensor viewing angle

@z = solar azimuth angle

Gv= sensor azimuth angle
Sensor ¥ = relative azimuth angle (Ov -9z +180°)
h = sensor height

instantaneous fietd
of view of sensor

V = Oy~ 07+ 180°

Figure 2. Viewing gcometry parameters.
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2.3. The effect of varying SSC and viewing geometries on reflectance

The specific aims of this paper are to establish, under laboratory conditions. the
following interrelationships between SSC, viewing geometry and reflectance in both
visible and near-infrared wavelengths.

(a) Water reflectance increascs with increasing SSC although the sensitivity of the
relationship is affected by viewing geometry.

(h) Sensor look directions affect the recorded reflectance with decreasing re-
flectance away from nadir at high SSC’s and small increases in reflectance
away from nadir at low SSC'’s.

(¢) The effect of viewing geometry on the SSC/reflectance relationship is
wavelength-dependent.

3. Experimental method

The method comprised three components, (a) the variation of SSC. (b) the
measurement of each SSC at different viewing geometries and (c) the variation of
viewing geometry.

Variation of SSC was achieved using a glass tank (75cm long, 42cm wide and
56cm deep) whose base was lined with dark material to minimize bottom effects
(McCluney 1976) and whose walls were covered with aluminium foil (Scherz er al.
1969) to simulate the effect of multiple scattering. The tank was filled with approxi-
mately 3001 of tap water into which increasing amounis of pre-weighed, powdered
china clay (kaolin) were mixed. China clay was chosen to simulate, albeit crudely. a
clay sediment with a grain size distribution of 1-20 ym. To derive the SSC/reflectance
relationship, 14 SSCs ranging from 0-0 mg/l to 1050 mg/l were used.

A Milton multiband radiometer (Milton 1980) was employed in the measurement
of water reflectance in four spectral bands; band 1 centred at 0-55 ym, band 2 centred
at 0-65 um, band 3 centred at 0-75 ym and band 4 centred at 0-87 um. Although theory
supports the use of the red band for SSC estimation in the field, spectroradiometric
data collected in the laboratory using an infrared intelligent spectroradiometer (IRIS)
demonstrated that for all four bands sensed by the Milton multiband radiometer SSC
was positively related to reflectance (figure 3). Reflectance data were derived from
near-sequential measurements of relative radiance from the target and a calibrated
reference panel for each SSC and viewing geometry.

Simulation of viewing geometry involved establishing the sensor’s field of view
(FOV), assessing the area ‘seen’ by the sensor at different heights and look angles and
definition of the viewing geometries to be tested. The effective FOV of the sensor was
determined by measuring changes in ground reflectance as a white card was
progressively moved away from a nadir position beneath the sensor. Sensor response
against card distance away from normal identified the area contributing to the signal.
For the 27° FOV of the sensor and at a height of 100 cm this was 0-180 m?2, 0-186 m>.
0-220 m? and 0-285m? for 8,5 of 0°, 10", 20° and 30° respectively. As the effective tank
area was only 0-315m?, the sensor height was fixed at 50cm to ensure a large gap
between the area sensed and any possible side effects.

Two off-nadir look directions were used: negative viewing angles to represent
looking away from the Sun and positive angles to represent looking towards the Sun
(figure 4). The table summarizes the viewing geometries used in the experiment. No
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a = tap water

20.0+ b = SSC of 300 mg/1
—_— 1 1. MMR band 1 - 0.55 pm
® 3 2
x 2. MMR band 2 - 0.65 um
8 3 3. MMRband 3 - 0.75 pm
§ 10.07 4 4. MMR band 4 - 0.87 um
[*]
2
@
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oo T T T Ll 1
0.40 0.82 1.24 1.66 2.08 2.50
Wavelength (um)
Figure 3. Percentage water rcflectance as a function of SSC.
Sensor head
Ov+ - viewing angle vanation towards the light source
T 650 Want o =  @v~ - viewing angle variation away from the light source
Haiogen
T amp "H/\ 92 - light zenith angle of 30

v - relative azimuth angle

Glass tank

\—\

Figure 4. Experimental set up. The labelled items are: (A) lamp position for azimuth angle of
0°, (B) lamp position for azimuth angle of 90°.
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attempt was made to simulate real surface geometry in the form of waves and a stilled
water surface was used throughout.

The light source used to simulate the Sun was a 650 W tungsten-halogen lamp.
This provided a most suitable stable, directional and controllable source of broad-
band illumination.

4. Results and analysis
4.1. Effects of viewing geometry on the sensitivity of reflectance to SSC changes
Whilst reflectance increased with increasing SSC at low concentrations, the
relationship tended to become asymptotic at higher concentrations in all viewing
geometries, with the upper asymptote being reached at different SSC’s when viewed
under different geometries (figure S5). Variation in the relative azimuth angle ()
changed the point at which reflectance reached the asymptote under a constant
viewing angle. At nadir viewing, reflectance reached the asymptote at a higher SSC
when y =0. However, when { =90°, reflectance responded more sharply to low SSC
variation. For most SSCs, the reflectance was higher when y =90° than when  =0°.
Variation in the sensor view angle (6,) changed the point where reflectance
reached the asymptote for both { angles. Positive and negative 6, increases caused a
fall in the sensitivity of reflectance to SSC changes, which was sharper when  =90°
than when =0°. Overall the message of figure 5 is that the reflectarice,SSC
relationship is sensitive to viewing geometry, especially at low SSC.

4.2. Effects of viewing geometry on the reflectance/SSC relationship in different
wavelengths

A consistent trend of increasing relectance with increasing SSC in the visible
{green and red) wavelengths was observed when reflectance was plotted against
wavelength for two values of  (figure 6). However, such a clear trend did not emerge
in near-infrared wavelengths centred at 0-75 yum and 0-87 um, as reflectance was
almost invariant with SSC due to absorption of radiation by water. In visible
wavelengths  affected the overall levels of reflectance but it did not affect the
increasing trend itself. In addition, at SSCs greater than 350 mg/l, the maximum
reflectance shifted from band 1 (green) and band 2 (red) independently of i (figure 6).
This shift in maximum reflectance towards longer wavelengths with increasing SSC
(Moore 1977) is depicted in diagrammatic form in the figure 6 inset.

The effect of sensor viewing angle (0,) on the reflectance/SSC relationship can be
examined in figure 7 when  =0°. In this case positive increases in 8, decreased the

Viewing geometries used.

Relative Sensor viewing Relative Sensor viewing
azimuth () angle (0,) azimuth (¢) angle (0,)

® ©) ©) 1

0 0 90 ‘ 0
0 +10 90 +10
0 +20 90 +20
0 +30 90 +30
0 —10 90 -10
0 -20 90 -20
0 -30 90 -30
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Figure 5. Reflectance and SSC at differcnt viewing geometries (green band).

separability between SSC classes in the visible bands but maintained the reflectance
shift towards longer wavelengths. Negative increases in 0, also produced decreases in
SSC class separability but did not always maintain the shift towards longer wave-
lengths. When ¢ =90°, similar trends were seen although the main difference was that
the strength of the reflectance/SSC relationship decreased more rapidly when 8, was

increased.
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Figures 6 and 7 illustrate that the effect of viewing geometry on the
reflectance/SSC relationship was wavelength-dependent, with shifts in maximum
reflectance towards longer wavelengths in the visible region as SSC increased.

4.3. Effects of look direction on the reflectance{SSC relationship

Variation of reflectance as a function of viewing geometry for the seven classes of
SSC showed the effect of  and 8, on reflectance to be dependent on SSC (figure 8). In
the visible wavelengths, maximum reflectance shifted towards low negative 0, as SSC
increased, except for the highest SSC classes in the green band (0-55 um) where this
trend did not occur. At high SSCs, the forward scattering of light by the particles was
increased (Preisendorfer 1976) and at 6, = + 30° this increase in scattering may have
come from the first few cm of surface water. However, as 6, decreased towards nadir,
the water volume contributing to the signal increased and reflectance increased
(figure 8). With larger negative values of 0,, the reflectance dropped due to light
attenuation by increased water absorption and scattering.

At low SSCs, the sensor may have detected some reflection at the water surface
when @, was positive. For example, at 0,= +10° to +20° and § =90°, the sensor
probably detected the image of the tungsten-halogen lamp as the reflectance values
increased suddenly (figure 8).

Figure 8 suggested that the viewing geometry per se had only a secondary
influence on the reflectance/SSC rclationship; the changes in reflectance due to SSC
variations were for the most part of greater magnitude than those due to viewing
geometry changes. Increasing sensor look angles away from nadir resulted in
decreasing reflectance (up to 35 per cent) at high SSCs, in spite of a maximum
reflectance shift towards low negative 0,, while at low SSCs, only small (1-4 per cent)
increases in reflectance occurred away from nadir.

4.4. Assessing the effect of viewing geometry on the reflectance{SSC relationship

To assess the strength of the relationship between reflectance and SSC, corre-
lations were performed for each combination of 6, and ¥ in each of the four
wavebands (figure 9).

The changes in correlation coefficient (+) with 8, were not symmetric about nadir
for either of the y angles. In the visible bands, the values of r fell as 0, increased away
from the light source. This is in conflict with the suggestion that for the remote sensing
of water, off-nadir angles away from the light source are preferable to avoid Sun
glitter (Austin 1974, Clarke and Ewing 1974). However, the hypothesis that the effect
of viewing geometry on the reflectance/SSC relationship is wavelength-dependent was
supported (figure 9). Similarities existed in the two visible bands centred at 0-55 um
and 0-65 pm but significant differences occurred for the other two bands. In the visible
bands when =0 the r value dropped to 0-72-0-77 for negative 0, but high
correlations of about 097 occurred for positive 8,. When ¢ =90°, the variation in
r values with 6, increased. Other things being equal, 0, had a slightly greater effect on
r values than did .

In the near-infrared band (0-75 um) the opposite trend occurred as r values
decreased when 8, increased towards the light source. High and constant correlations
occurred for 8, of +10° to —30° independent of ¢. Since the maximum irradiance of
the halogen lamp used was around 0-7um, it is possible that lamp-glitter was
excessive at positive 6, in this band. Low and sometimes negative correlations
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between reflectance and SSC occurred in the near-infrared band (0-87 um), the
pattern of variation between ¢ =0° and ¢ =90° being statistically insignificant except
for extreme off nadir angles.

Two explanations may be proposed for the unexpectedly small impact of viewing
geometry on the correlation between reflectance and SSC. The first relates to figure 7
where it was shown that, irrespective of the combinations of 8, and , increases in
SSC resulted in increases in reflectance. Reiterated in figure 8, viewing geometry
appeared to be a secondary influence only. The second explanation is drawn from the
geometry of the sensors 27° field of view. This wide FOV caused overlap in the area
seen by the sensor at adjacent 0,. For example, at 6, =30°, the sensor ‘sees’ almost 70
per cent of the area ‘seen” at 20°, and almost 45 per cent of the area ‘seen’ at 10°. The
overlap effect leads to a reduction in the magnitude of changes in viewing geometry
on the reflectance/SSC relationship.

S. Summary and conclusions

The primary aim of the work reported in this paper was to evaluate the effects of
variation in viewing geometry on the relationship between reflectance and SSC. What
emerged from the work is the utility of a laboratory experiment in isolating the factors
that contribute to reflectance and thus permitting assessment of their significance. By
gradually increasing SSCs a positive relationship between reflectance and SSC.
particularly in the visible bands, was established in agreement with work elsewhere
(Scherz et al. 1969, Scherz 1972, McCauley and Yarger 1976, Jerlov 1976, Holyer
1978, Alfoldi 1982). Variation in viewing geometry affects the sensitivity of reflectance
to changes in SSC so that the asymplote of the reflectance/SSC relationship was
reached at different points under different geometries. However, the effect of viewing
geometry on the reflectance/SSC relationship appeared to be wavelength-dependent.
Consistent increases in reflectance with SSC in the visible bands occurred but positive
increases in 6, decreased the separability between SSC classes whilst maintaining the
shift in maximum reflectance towards the longer wavelengths.

An increase in forward scattering with an increase in SSC was found in agreement
with Jerlov (1976) and Preisendorfer (1976), yet the strength of the relationship
between reflectance and SSC decreased for off-nadir view angles. This is inconsistent
with established theory that suggests off-nadir viewing away from the light source to
be preferable in the remote sensing of surface waters to avoid Sun glitter.

Several points emerge from the above that deserve more detailed attention. For
instance, some wavelengths were more critically affected by changes in view geometry
and a decrease occurred in the strength of the reflectance/SSC relationship for view
angles away from the light source. The range and classes of SSC used may be another
effect as might varying the colour, grain size and shape of the sediment suspension.
The type of clay used here may only occur in specific environmental situations; use of
a range of natural sediments of different colours and grain size distribution will
andoubtedly yield results that can be applied better to real-world situations. Such a
research programme is in hand. Future experiments could also focus on reduction of
the effective FOV to less than 15°, on selecting view angles to eliminate the overlap
effect and on simulation of surface waves. Only by isolating and varying all the
elements of simulation for a range of conditions will models eventually emerge that
are robust enough to cope with airborne or satellite remote sensing applications.
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