
6I - 3dNI 

686L zaqwaoaq pn,taaH 
996T 'q°;°o 'sotqvw2z;vpj pn7ddpr tio 'lvuznop 11vIg o paquqng 

floaq; aq 	a;v€xqsn'-i. oq uaa'iB aw sa7dux avios 'fi7vu1q 
suo vrjuasazdai pasodod aq Jo sasvo qvwads azv suo vuas&zda.z , 905vzvpj 

puo s uoaq;vjj aij 'R7vnqiy uo'vquasazd&z 7DUtLWLW aavtj sbutddvw 
yons suo-tpuoo uaw'ifJns auas aq apun vy uooqs si qj paçtuasazd 

st (Du-Lsva€zowz R7zvssaoau qoU) sBuiddZII 'z 	€zof sBu-z,ddvw 7DOtBO7OZjàzIOW 
&zvuawa7a fo su&za ii-b u q'z.zn suo-z4zxpzasazd&z qtnp fo €z-zvd v 

'atodao stz uj suoi;v?uasa€zdai 7VUflUWI acwq sôwtddvw qons qoiqn zapun 
sDu-LddDw L Suisvazou-b tio suo'uytpuoo ua-vo-LJJns uaa'iB svzj 'nsazjç pyj 

86T 512j ti '505VJ74J 'RDo-jodoq 55'tÇg—ip tio pasvg 7auJa)f fo ;davuoo 
azjç Du-tsn sôu-tddvw jas (V4) quv-uzvau't uo'tqvjsuvz; Bu'tsvawuq. ao; 

sButddnw v-i.Booqd4zow £vuawaqa fo su&zaq ub tia"-pica uotpquasazdaz 
7Dfl fo z'tvd V paOflpOZpfl UOcÃaZjVi/ ')jOoq 926E atij u 

flION - 1WHIV/SV1ÔN- ÕWflH 

	

LSdVI4OON 	NOISH3A 	j 

	

svdwIaaãN 	OySti3A 

$6 

	

20Vd 15V1 	99t'd 30 ON 

	

SWVIVI±1I 	OVd 30 õN 

r 
idalv 

osaroad 

f 	Ida 
NIOlUO 
V1301N0 

0661 Ánituuç 
3J.'VO /V.LVG 

vz8zJv 	10'Lunp c -' 

uotWg 5WUVJ, 	tivaf P2DLZaD 
1 
o 
'o 
1 
1 

ÃD0J0HJU0N IVOIL1VH3HLLWJ ÃR SONIJJWI L13S 
-4 

LTATVIHVANI NoL1TJ79A1VWL aoJ SNOL1VIAMS2Yd2W 
7W4INI7q UVBU 80 arva V 80 LUI7LW -1 

r 

LOH NOIiVOIlBfld 
ÔN OVOI1Bfld 

5.9Lrtz1 

wquatzvosvpz •ra uos7aN' 

t'tN __ 
- Ã8 O3SIÂ3d / tiOS 	- 

zo;oawia 5utsuag aouiay 
vyun vp j  ozaqo zq 

—ÁQ Q3ZtiO44LflV/80d VoVZItiOifl 

L
aaxowisati/vswlsBti  

 C

fl 
 11 

1V3IX3/VNti3IX3 

1V3iNI / VN3iNI 

 

 
tiOKinY  IS

u

N

v

O 
 ÂfleIaISIG/O!ÓtfleItiJ.SG_ 	

a 

13AVSNOSS3ti tio. 
LD070801 SSIN-IIH • ONISS2DOWJ WVNI 

'N0IIIMD03E L?JVHS 'NOLTDV&EX2 2DU2 'SISV2 
'ULN82)I 'DNIJ8VN N770LW 'PIOISOW& 'NOISVUIU 

._—$QtiOMÂ3)j/93P4H3 SVSAV1VS 

r
.o a NOIiV3fl9fld d0.4 NOISVZIMOHSflV 

OVóVOIlefld V8Vd OVÕVZISOiflV 



ACKNOWLEDGE?4ENT5 

TI-te authors are indebted to their coileagues 

from Lhe morphological group aL INPE and, specialiy, to 

Nelson Delfino d'Ávila Mascarenhas and Jeblin António 

Âbrao, who have followed ali Lhe progress of thetr work. 

This work was supported by FAPESP ("Fundação 

de Amparo à Pesquisa do Estado de São Paulo") under 

contract no. 87/2478-9 and SID Informática thrcugh tI-te 

ES-MA project. 



RESUMO 

No seu Livro de 1975, Hatheron introduziu um 
par de representaçes duais escritas em termos de 
mapeamerttos morfológicos elementares para mapeamentos de 
confw-tt.os, invariantes em translaço Ci. t.) e crescentes 
usando o conceito de núcleo. Baseado na topologia Toca-No 
Toca CHit-Hiss), Haragos, na sua tese de Phd de 1985. deu 
condiçes suficientes sobre mapeamentos i. t. crescentes que 
garantem que tais mapeamentos possuem representaçes 
minimais. Neste relatório, um par de representaç5es duais 
escritas em termos de rnapeazrzentos morfológicos elementares 
para mapeaznerttos i. t. (não necessariamente crescentes) é 
apresentado. Mostra-se que as mesmas condiç3es suficientes 
garan tem, que tais rnapearnerttos possuem representaç&s 
minimais. Na verdade, as representaç3es de Matheron e 
Maragos so casos particulares das representaçes 

-posta. Fínalnt-nte, alguns exemplos so dados para 
a tcoria. 
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CHAPTER 1 

1 NTRODUCTI ON 

Let E be a d-dimensional Euclidean space 

(e. g., ), .0 be a cailection aí' subsets aí' E, that is, 

ii c .2(E) »  and w  be a rnapping from .0 te .P(E). In Lhe field 

of image processing, that motivates this paper, d is 2, 0 

represents the coilection ef shapes, obJects ar irnages aí' 

interest (Lhe terminology varies trem author te author) and 

W represents a particular shape transformation. 

The objective 0V this paper is te present a 

pair ei' rninimal representations in terrns of elementary 

mappings of the rnathernatical rnerpholegy (eresien and 

dilation) for p  in the general class 0V trcnsLatíon. 

znvariant (Li.) rnappings (i.e., .(Xh )  = (w(Xfl h . where 

represents Lhe transiate ei' X by a vector h ef E), in the 

sarne way as Maragos (1985. 1989) and Dougherty and Giardina 

(1986) have dane for w in Lhe restricted class ef 

£acreasing t.i. rnappings (i.e. , X c X 9 yi(X 1 ) c ,(X)). 

In irnage pracessing this may be impertant because cornrnen 

transf'orrnations, such as edge extraction ar shape 

recognition, are nc't. increasing. 

Actual }y, Maragos' mi irnal representation 

are mi ni mal forms ei' Matheron's representations for 

increasing t.i. mappings. Matheron (1975) has shown that 

any increasing t.i. mapping p  can be represented as Lhe 

suprernum ai' a fam.Lly aí' elementary mappings ef Lhe sarne 

type called erasions ar as Lhe infimum ei' a Vamily of 

elementary rnappings ef Lhe sarne type call.ed dilatians. In 

representation for w by a suprernurn. Lhe structuring 

ciemenls, whicli caracterize Lhe eroions, belong La a set 

coilection called kernel aí' W. The powerful concept of 

kernel, intraduced by Matheran »  consists ei' assaciating te 
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each L.j. rnapping 'p a subcollection of 4. Lhe kernei of w. 
dertoted EK('p) and given hy 

= {x E 4: O E 

where o is Lhe nuli vector of E. 	Hence, 	for any inereasing 

Li. mapping w. Lhe Hatheron's representation by a supremum 

leads to Lhe expression 

(X) = U {x e 	A e 9()} 	CX 

where X e A is Lhe eroslan af )C by Lhe structuring eJ.ement 

A (see Chapter 2 for the definition ci' erosion). 

The MaLheron's represenLation by a supremum 

works for three reasons: first, Lhe Li. assumplion on 

implies LhaL Lhe mapping 9C(•) is a laLtice-isomorphism 

(i.e., 9((') is bijective. LhaL is, one-to-one and onto, and 

increasing Lwo-sided , LhaL is, 

w(X) c w(X) (X c 4) 	flvs) c fK(yi) ); 

second, Lhe increasing assumption implies Lhat X(w)  is a 

dual ideal of (4, c) (!.e., if x € 9C(ys) and Y €4, Lhen 

X c Y implies LhaL Y E (w)); third, Lhe kerriei of erosion 

by A is Lhe coilection of ali subseLs of E in 4 which 

contain A. 

When s is noL increasing Lhe Matheron's 

representation by a supremum fails, because Lhe above 

aecond reaso does not appiy any more. 

In t.hi paper, iL is shown thaL, by choosing 

a siightiy clifferenL class of elernentary m.ppings, any L.i. 

rnapping (noL necessariiy increasing) also has a 

representaLiori In Lerms of a supremum. More preciseiy, Lhe 

proposed representaLion by a suprernum ieads to Lhe 

t two-stded stands for Lhe dotzble im.pltcation C+.). 
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expression 

W(X) = ti {x a (Á, 9): (A, 9) € St(w) } 	cx E 

where X o (A, 9) is Lhe resuit aí Lhe intersectiori aí Lhe 
. 	 e erasian aí X by A and Lhe erassan aí X by 9

e 
 • LhaL is, 

X o (A. 9) = (X e ) n (Xc  e C) 

and R() is a set ar exLremity pairs aí Lhe ciosed 

intervais contained in Lhe kernel of p (see Sectiort 3.1 for 

Lhe deíiniLiori aí a clased iraterval). Furthermore, as in 

Lhe case aí iricreasing mappings, a dual representation for 

L.i. rnappings (not necessarily increasing) is derived, In 

Lerms aí Lhe infimum aí a family oí dual elementary 

mappings. More precisely. Lhe dual representaLion leads to 

Lhe expressi an 

W(X) = fl {x o (A, 9): (A, 9) e R(P*)} 	(X e Á). 

where 	• o (Á, 8) and 	are Lhe dual 	mappings, 

respecLively, of 	o (A, 9) and w (see end of Chapter 2 for 

Lhe definition aí dual). 

One aí Lhe reasons for Lhe general 

represenLaLion by a supremum to work is LhaL Lhe kernel of 

Lhe elemenLary niapping • o (A, 9) is Lhe collecLion af ali 

subseLs aí E In Á which are In beLween A and B. Compared 

to Lhe kernel aí Lhe erosion by A, Lhis kernel is "limited 

above by B" which is Lhe key idea La set up Lhe general 

representaLian by a supremum. 

In bis Lheory af minimai elemenLs, Maragos 

has shawn LhaL MaLheran's representaLions can be siniplifiud 

in Lhe sense LhaL, usually, an increasing L.i. mapping w 

can be represerited as Lhe supremum aí a smnller farnily aí 

erosians ar as Lhe infimum af a smctlter farnily of 

dilaLions. In Lhe case aí a supremurn, for exemple. Lhis 

occurs because Lhe kernel aí Lhe erosion is decreasing wiLh 
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respect 	to 	iLs 	structuring 	element 	(i.e. 

A c A .. %(• e A D %( e A)). A smaller faSly of 

erosions is Lhen abtained by lookirig for Lhe minimal 

elements of Lhe kernel oí' w.  The coliection 2 (w) of Lhe 

minimal elements af Lhe kernel of yi is called, by Maragos. 

Lhe basis of p  (Dougherty's and Giardina's basis definition 

is slighLly different). Under a semi-continuity condition 

cri w. Maragos has prcved Lhat Lhe basis £(w) cari be used to 

derive a niinimal representation for Increasing Li. 

mappings leading to Lhe expression 

	

w(X) = u 	e : A E .R(w)} 	CX € 

In Lhe sarne way. Lhe proposed representations 

for L.I. mappings (noL riecessarily Increasing) appear to be 

redundant and minimal representaLions cari be derived. In 

Lhe case of a represenLaLion by a supremum, Lhis occurs 

because Lhe kernel af the elemenLary mapping ' O (A, B) is 

increasing wiLh respecL to iLs pair af st.rucLuring elements 

= (A. B). under some defined parLial order, denoted 

(i. e. 	 X( o 	c 	° 	see Section 3.1 for 

Lhe definiLion of ). In Lhis paper, Lhe coilection $(y) ef 

maximal elernenLs ar R(w) Is called bass of w and iL is 

shown LhaL • under Lhe sarne semi -conLi nul Ly condi Li on on W. 

Lhe basis 	Ep) can be used to derive a minimal 

represenLaLion for L. 1. mappings leading to Lhe expression 

	

= U 	O (A, R): (A, R) e !R(w)J 	CX E 

As in Maragos, Lhe semi-canLinuity Is expressed in terms of 

Lhe HiL-Miss Lopology. 

In ChapLer 2 some useful known def'InitIons 

and properLies af Lhe kernel of a L.i. mapping are 

recalled. In ChapLer 3 Lhe pair of dual represenLaLions for 

L.i mappings is derlved. In ChapLer 4, a new class of so-

called inf-separable rnappings is inLroduced. Lhe cases of 
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increasing. decreasing and inf-separable t.i. mappings are 

studied and, in Lhe former case, Lhe Matheron's 

representation by a supremum is derived from Lhe proposed 

one. Chapter 5 corttains Lhe definition of Li. mapping 

basis and sufficient conditions under which Li. mappings 

have rninirnai representations. Finaily, in Chapter 6, some 

simple exarnples are given to iliustrate Lhe theory. 

The material in this paper is original except 

Lhe one in Chapter 2. 



CHAPTER 2 

TRANSLÁTI OU 1 NVARI ÂNT M.4PPI NGS 

Ali Lhe mairi results in Lhis chapter can be 

found In Matheran (175). They are presented here for Lhe 

sake of campleteness and because of their fundamental role 

In this paper. 

LeL Á be a non empty coilectlon of subsets of 

a non empty seL E. LhaL is, 34 c P(E), 4'. be Lhe Lhe set af 

ali mappings w() or, simply, w Vram .% to i(E) and < be Lhe 

partial order for W44 defined by 

< 	itt w(X) c w(X) LX E .4). 

The poset (W. <) Is a complete lattice. 1V 

n {w.: 1 € i} and U 1 e i} denote, respectively, Lhe 

ir3fimum and supremum ar Lhe family {w.: 1 e i} of mappings 

In Lhen 

(fl {wj : 1 e I})(x) = fl {wj cx: i e i} 	(X e Á) 

and 

(LI {w j : 1 e I}xx) = u {W, (x): 1 €I} 	CX e 

In this paper, an important subclass of 	is 

studied, when Lhe set E is an Abelian graup with a blnary 

operation. denated +, and a zero element, denoted o. Some 

preliminary definitions are first recalled. 

LeL h € E and X e 5'(E), then Lhe set X  given 

ri 
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= {u € E: u = h + x and x E x} 

ar, equivalentiy, 

= {u E E: ii - h E X} 	 (2.1) 

is called Lhe transiate of X by h. In particular, X a = X. 

For any 4 c 2(E) and h e E, let 
4h 

 denote Lhe 

coliection af translates aí' Lhe elernents af 4 by h, Lhat 

is, 

= {x € 2(E): 	
E 

	
(2.2) 

In particular, 4 = 

For 	any 	h E E. 	
'4hh = 4 
	and 

4' c 4 4+  4j 
 c 4h This implies t.hat intersection and union 

comçuLe with Lranslatioix, thaL is, 

	

4h = "' 	h and U 	= cu -4)  h' 	
(2.3) 

The caliection 4 c 2(E) is said to be closed 

under tran.slatiort 1ff for any h e E, J«h  = 

LeL 4 c 2(E) be clased under transiatian. A 

mapping w from 4 to P(E) is said to be translation 

tnuarzant (ti.) 1ff 

= (w(X))h (X € 4, h e E). 

	

Let 	denote Lhe set of ali Lhe ti. rnappings 

from 4 (ciosed under transiation) to 2(E) '(§ c W4). Frorn 

(2.3), Lhe infimurn and Lhe supremum af any family ar t.i. 

mappings are L.i. mappings. Therefore. Lhe subposet ( j4I <) 

is also a complete lattice. 
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defined by 

	Lei. fl) be Lhe niapping from ¶4 to .2(4) 

= {x E 4: O E w(X)}. 	 (2.4) 

for any yi ¶4. ftp) Is called, by Matheron, Lhe kernel of 

VI. 

In what foliows, 

mappirzg 	SC•) 	Is 	a laiLice 

laLLice-morphism and a bijection) 

foliowing important property ot 

inappi ng. 

iL is proved LhaL Lhe 

isomorphlsrn (i.e., a 

Let us recail first Lhe 

Lhe kernel of a Li. 

PROPERTY 2.1 - Let 4 c .2(E) be ctosed under tran.slattort, V/ 

be a t.L. ntappirtg frota Á to .2(E) and ¶A(tp) be its )ternel, 

defirted by (2.4). For any X e 4, 

)C E tp(X) Itt X E 

PROOF: For any X e Á, 

from (2.1), 	 XEW(X)4+OE(W(X)) -x 

by L.i. definition, 	 1+0 E w(x_). 

traiu (2.4). 	 4+ X_ e 

(tom (2.2), 	 4+ x € 

LeL Ø be Lhe mapping traiu .2(4) to 	detined 

by 	

Ø(X) = {x € E: X 
€ 	

(X e 4), 	 (2.6) 

for any60  E .2(4). 

This way of constructing a mapping traiu Á to 

.2(E) is usetul in Lhe sLudy af Lhe properties af Lhe 

w.apping St( '). 
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PROPERfl 2.2 - let 4 c 2(E) be closed ,rnder trartsLation, yi 

be a Li. rAappin6 frcn .4 to 2(E) and X'p) be its herrtei, 

defined by then. Lhe mctppirtg #x(w) front .4 to 2(E), 

defned hy (2.5) (wth 	= 9(('fl, is W. that is, 

= 

or, eqtivaLerttLy, 

w(X) = 	€ E: X 	(9cXw))} 	(X e 4). 	 um 

PROCE: For any X € 0, 

trem (2. 5). 	
(w) 

= 	€ E: X € (9C( wfl}. 

by Property 2.1, 	 = {x e E: x e w(X)}. 

= 

LEMUÁ ai - LeL 4 c 2(E). The mappirt !k(') front 	to  

defined by (2.4), Cs injectiue Cone to on.e.). 	 c 

PPOOF: ProperLy 2.2 is a sufficient, condition for the 

mapping !k(') te be injective (see Property 6.3 p. 14 in 

DugundJi (1986)). 	 o 

The mappings Ø trem . to 2(E), defineci by 

(2.5), have the foliowing property. 

PROPERTY 2.3 - LeL 0 c 2(E) be cLosed under transiation and 

cd. The naplrtg 4 from. 4 to 9(E), defirted by (25). is 

Li., thaL is, <P and its kernet, defn.edb, (2.4), 

È5 & that 

o 



PROOF: 1. For any )C E E and X € 4, 

Vram (2. 5), 	 (X) =íu € E: X e 
x 	uj 

from(2.2), 	 = {uEE :  XE }. 

Vram (2.5), 	 = 	E E: U - )C E 

Vram (2.1), 	 = 

that is, <P is Li..
bo  

2. From (2.4), 

= {x € Y(E): o e 

Vram (2. S), 	= Y. € Y(E): O E 	E E: X € 

= {x € ( E): X 
€ 	= 

e. 	 L!J 

LEMMA 2.2 - te  s c 9(E). The mappLn X(•) frora 	to .PC4), 

defirted by (2.4), is sttrjectiue Conto). 	 o 

PROCE: Property 2.3 is a sufficient condition for tbe 

ntaopinq fK(') to he urjecL±ve (ses Property 6.9 p. 14 in 

DugundJi (1965)). o 

LEMMA 2.3 (Malheron (1975)) - Let 4 c Y(E) be closeci uncler 

transtation. The mapping fA(') frora § to Y(4), defined by 

(2.4), is bijective. o 

PROCE: This is a consequence oV Lemmas 2.1 and 2.2. 

o 

The foliowing lemma states another important 

property oV fÍC(). 
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LEMHÁ 2.4 - Let Á c (E). the mappirtg 9C•) from. § to  

defined by (2.4), is increasing tow-sided, that is, /or any 

and 	 s %() c 	 0 

PROOF: 1. TI-te anly If part: w(X) c w2(X) (X e s) implies 

that for any X E flç), from (2. 4), o E w(X) c w(X), 

which proves, from (2.4), that X E 9<Cyi2 ) and, consequently, 

c Xiwy. 

2. The if part: leL X € Á and x E w(X). Lhen, by 

Property 2.1, X E ( 9c(v')) c ((w2 )), but this implies, by 

Property 2.1 1  tI-taL X E w2(X) which proves that 

V1(X) c w(X). 	 o 

The posets ( 4.. <) and (Y(Á), c) are complete 

lattices, hence ali Lhe above iemmas, relative to Lhe 

mapping 9C('), can be resumed itt Lhe failowing lemma. 

LEMNA 3.5 - LeL 4 c Y(E) be closed urtder transtation. The 

mappirt 5t() froat § 	 onto 
	

ie/irted by (2.4), is a 

taL tice-isomorphisrrt. 	 a 

PROOF: Lemmas 2. 3 and 2. 4 Logether are equivalent to say 

that 9C(') is a lattice-lsomorphism (soe Lemma 2 p. 24 in 

Birkhoff (1967)). o 

LeL {wj : i. c iJ be a family of L.i. mappings 

from Á to 2(E). The above Lemma 2.5 says itt particular LI-taL 

fK(U {w: i E I } ) = u 	i e i} 

and 

9C(fl {wj : i. e 	= n {flwj ): i € i}. 

In other words. Lhe kernel of the supremuin (under <) of a 
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family of Li. mappings is Lhe union (ar suprernum under c) 
of Lhe set af Lhe corresponding kernels. 

Before ending this chapter, important Li. 

mappings are given and some duality properties recalled. 

Let Á c *E) be closed under transiation. If 

WL 
and p 	are twa t.i. 	mappirigs, respectively, 	from Á to 

.(F) 	and frorn P(E) te D(E), 	then w 	Lhe composition cf 

and w2 . 	that is, 	w =W 
2 a

w1. 	is 	a t.i. 	mapping from 0 to 

P(E). 	This can be seen as foliows: for any X e Á and h E P. 

w(Xh) = wz(wj (X h )). 

by t.i. definition, 	 = 

by Li. definition, 	 = ( wz ( wf ( X ))) h. 

= ( w( X )) h. 

LeL Á c P(E), and C Lhe mapping from Á toJO 
P(E) defined by 

ej = 	€ E: x e x}. 	 (2.6) 

for az» X E Á. C(E)X.  Lhe complementary set of X, is 

denoted C. Let 	be Lhe image of Á by C o. t.hat is, 

=c 	= 	c P(E): Xc  e .øj. 

Iri particular, .P(E) = 

LeL Á c P(E) be closed under transiation, 

then, froin (2.6), for any X e Á. 

= {x € E: X E 	E 4: o e 

Therefore, 	by 	identifying 	with 	expression 	(2.6), 
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e = 	e 4: o € y and, by applying Property 2.3, C is a 

t.i. mapping. 

Tbe Li. propert.y for C4  implies Lhat 1' is 

closed under transiation, for 

	

= (C) = 	
=C .%r

4= .1' 

Let 4 and si c 7(E) be closed under 

	

i 	 2 

transiatian. LeL 	and w  be two mappings froin, 

respectively. Á and .0 to 7(E). w and W are said to be 

dual 	1ff 	.4 = .O, 	o,-, 	equlvalently, 	Á = .1' 	and 

	

= CD(E. 	w2 	C 	 or, 	 equivalently, 

	

= Cp(E) 	a c. In other words yi and W are dual 

1ff 

	

w(X) = (p(Xc)Y 	CX e 

The dual mnpptng of a mapping t trem Á c 7(E) to 7(E), 
denoted W is defined by 

c = 	 W O Cj. 

Hence, w and V. are dual 1ff W, = 	ar. equivalently, 

vi2 =  W í - 

If 'i is a t.1. mapping then, by composition 
* 

af t. i. mappinqs, p is also a Li. mappsng. 

Furthermore, if W,  and W.  are two mappings 

fron 4 to 7(E), then, by Morçan's law, Lhe dual of their 

supremum, under <, is Lhe infimum, under <, of thelr dual. 

that is, 

(w u v'2) = 
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PROPERTY 2.4 - Let Á and Á c .2(E) be ctosed under 

translatLort. Let and W be twa t.. rnappins frora, 

respectzuety, Á and Á to .2(E) and leL 9C(ip) and X(yi) be 

their respecUve herneL, defrted by (2.4), then w, = itt 

Á = Á; and X c K(w) 4+ 
x  

e 	(X € Á). 	 O 

PROCF: 1. For any X E Á, 

from (2.4), X E 
	

44 O E 

by dual definition, 	44 O E 

$4 o e 

frorn (2.4), 	 4+ Xc e 

2. For any X E Á, 

by Property 2.2, w, (X) = 	€ E: X 

by assumption, 	 = 	E E: Xc € 

= 	E E: Xc E 

by Property 2.2, 	= ( w (Xc))c . 	 1.1 

The HLnhowski add'.tton e (Minkowski. 1903; 

Hadwiger, 1957) is defined in .2(E) by 

A S 8 = 	E E: x = a + b, a E Á and b e 

Let Á e .2(E), Lhe symmetrical set at A, 

denoted X, is: 

= tx
E E: -X E A).. 
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LeL Á c 5'(E), X E Á and A € Y(E), Lhe set 

X e £. is calied, by Matheron (1975), Lhe dilatiLon of X by 

Lhe stntctv.raL elemertt Á. For Haraijck et ai. (1987) and 

Giardina and Dcugherty (1988) Lhe diiation of X by Á is 

sirnply X e Á. The set X e A can be expressed in Lhe form: 

X e fx € E: X ri A 	Ø1.  xi 

The rnapping e A Vram 4 to (E) is caiied Lhe dUaL on by 

A. 

The dual mapping of • e from Á to P(E) is a 

rnapping Vram Á 
*

Lo .P(E), denoLed • e A and called, by 

Matheron (1975), Lhe eraslort by Á. For Haralick (1987) and 

Giardina and DougherLy (1988) Lhe definiLion of erosion is 

Lhe sarne, buL Haralick denotes iL simply as • e A. In other 

worcis, Lhe symboi e has another meaning and iL can be 

observed LhaL Haraiick's dilaLion and erc,sion are noL dual, 

Ln the sense giveri above. The set X e is called Lhe 

erosion of X by Lhe structural elemsrtt A and can be 

expressed in Lhe form: 

x e A = { E E: )( ri À P! ø} 

= 	€ E: À c x}. 	 (2.8) 

The dual properLy ieads to Lhe formula: 

(X •4)C = XCGÁ 	r  eÁ) 

(wiLh Haralick's dilaLion and erosion definiLion Lhe 

corresponding formula is: (X e 4)C = Xc 

LeL Á c Y(E) be ciosed under transiaLion and 

A € .P(E), Vram (2.7), for any X € Á, 

X e Ã = {x € E: X E {y E Á: '1 ri A Pé ø}J. 
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Therefore, 	by 	identifying 	with 	expression 	(2.5), 

= .ÍY € Á: Y n Á P£ 4 and. applying Property 2.3, Lhe 

mapping • e Ã from Á to 2(E) is Li.. By Lhe duality 

property, Lhe mapping • e A from Á to 2(E) is also t. i. 

From (2.7) and (2.8) Lhe kernels aí' Lhe 

dilation and the erosion from Á to 2(E) are: 

¶C(.S)={XeÁ: XnÂtØ} 

and 

fK(' eX) = {x E Á: Á c x}. 

The erosion and Lhe coinplemented dilation aí' 

a set X are special cases of Lhe general Hit-Miss mapping, 

due to Serra (1982). LeL Á and 8 be two disjoint subsets aí' 

E, then Lhe hït-Híss trans/ana of X by Lhe pair (Â.B) is 

Lne set: 

X s (A, 8) = {x E E: A c X and 8 c Xc}. 	(2.9) 

Eram (2. 8), 

X ® (, B) = (X e X) n (Xc  e ) 	( X E Á). 

LeL Á c .2(E) be closed under translation. The 

mapping ø (A, 8) from .4 to 2(E) is Li., as infimum aí' 

twa t. 1. mappings, Lhe second one being Lhe composition aí' 

Lwo t. i. mappíngs: Lhe complernentation and the erosion. 



CLIAPTER 3 

P.EPRESENTÂTI 0W_THEOREMS FOR TRANSLÂTI ON 1 NVARI ENT MÀPPI NGS 

3.1 - REPRESENTÁTION BY Á SUPREMUM 

For Lhe mament, leL E be any non empty set. 

Because ar Lhe nature af Lhe Li. mapping representation 

problem some defjnjtions have to be niade relatively to Lhe 

elements of Y(E) x 5'(E). 

L.eL 1 be Lhe binary relation between pairs in 

defined by 

(Á , B ) { (Á , B ) 1ff A D A and B c 8 2 . 	 ( 3.1) 

	

t 	L 	 2 	2 	 * 	2 	 1  

The relation , defined by (3.1), is a partial arder for 

(E) 2  (i.e., 	is reflexive, antisymmetric and transitive). 

The pairs (E. O) and (0. E) are, respectively. Lhe srnallest 
2 

and greatest pairs in P(E) - The supremum and infimum of 

twa pairs (A 8) and (Á, 8) in (E) 2  always exist, are 

denoted, respectively, by (A. 8) .e (Á2, 82) and 

(A, 8) '. (A, 8), and can be expressed as: 

(Á • B ) 	(A , 8 ) = (Á n A , 8 ti 8 ) 

and 

	

(Á 	8 ) ,- (Á, 8 ) = (Á ti Á • B n 8 

	

1 	1 	 2 	2 	 1 	2 	1 	2 

From Lhe above definitjons, 

(A, 8)(Â 8),.A DÁ andE c  

eø Ac  fl Á = 0 and 
B  u B 	E 

. (C, Bc) v (Az. 8 ) = (0, E), 
i 	1 	2 

hence, 
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(A , B) 	(A , 8 ) s (AC ,  Be) v (A • 8 ) = (0, E) i 	t 	2 	2 	i 	t 	2 	2 

(3.2) 

Furthermore (2(E) 2. ) is a complete lat.Lice. 

LeL Á denote a subcoliection of .2(E), that 

is. 4 c 2(E), and b he Lhe subset aí Á given by 

= 	e Á: 3 X e Á: (X, X) 

ar equivalently, 

= {(A. 8) E .1: A c B}.. 

For b La be non ernpty, Á must contain at least one pair 

(Á, 8) such thaL Á c 8 (e.g. (0, E)). 

From (3.1). b 	 is a dual ideal 	aí' (Ás, 	.p. 
Lhat is. 1V ) € .ç? and r € then r i{ 	t) implies ÇJ E 

Let ; and X4  be Lhe subcollectjon aí' 

4 glven by 

= {x e Á: (X, X) i{ 	 (3.3) 

ar, equivalently. with r = (Á, 8), 

X_O 
A. 8) = {X E Á: A c X c B}. 

IV ; is restricted to be mn 	Lhen 	is 

simply denoted X and called closed frtterual ar spindle
20  

liniited by ;. , is Lhe extreaity pczir aí' Lhe closed 

interval. IV ; = (Á. 8). X is simpiy denoted [Á, 8] and 

called Lhe closed interval [A, 8]. 
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The sets Á and B are in X (i.e.. X always 

exists) and are, respectively, Lhe smallest and Lhe 

greatest elements of X. In particular, for any X € .4. 

X) = {
x}. 

Let us now introduce ore of Lhe most 

important pieces for Lhe t.i. mapping representation. Let 

4 c P(E) and R be Lhe mapping from 2(Á) to P() defined 

by 

s?={E_: Xc}. 	 (3.4) 

for any E 2(4) ar 1  equivalently, Vram (3.3), 

= {( Á 1  B) e 	[AS] c 

St is Lhe set ar pairs (A, B) such that the closed 

inLervals [Á, B) are contained In 	and iL verjfj.es: 

X E 	iff (X, X) e stg . 	 (3.5) 

therefore, if 	is non empty, St,, defined by (3.4), always 

exists. It verifies also: 

if (Á, B) E St then A. 8 E . 	 (3.6) 

Let 4 c 2(E) 

to 2(4) defined by 

C=u {4 r Ea}. 

for any T e 

4 
and .k be the mappxng Vram 

(3.7) 

The resLriction of 	to 2( 4) is denoted X . . 

Such mapping is useful to study some properties ar Lhe 

niapping R. 



- 22 - 

LeL us derive now one of Lhe most important 

results of Lhis chapter. 

PROPERTY 3.1 - Let bo c Á c P(E) and R be the set defrted 

by (3.4), then the cottect'.on Y, , , defned by (3.7, with 
e 

= 	,), ts !, thaL is, 

o 
e 

PROOF: Prom (3.4) and (3.7, with (r = 

=u {x: è€te} 

LeL X E

~IR 
	Lhere exists 	E 	such LhaL X c X 

e 
F'rom (3.4), for such L X c t, hence X e 	and, 

consequently,c 
. 

e 

LeL X e C Lhen froni (3.5). ; = (X. X) e 	on Lhe other 

hand, Y e X(y 	for any Y € 4 • Lherefore, X e X with 

; e Rbl > 	I'ience x e u {x: t) € 	 and, 	consequently, 

o 

The Property 3.1 is, exactly, what is needed 

t..o derive, J.n Lhe nxL secLon, Lhe representation Lheorem. 

This property gives also more insight on Lhe 

mappirig R since IL proves LhaL iL is injecLive (see 

ProperLy 6.3 p. 14 Dugundji, 166), LhaL is, Lhe set of 

pairs Re caracterizes, uniquely. Lhe coilecLion e. On Lhe 

other hand, a counLer example can be given showing Lhe 

exisLence, for a given 4, cf a subset tt of b such LhaL: 

Nt 	~ea. 
Rir

. 
  

TogeLher wiLh ProperLy 3.1, this proves LhaL Lhe above 
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mapping R is not surjective. 

Ti-te counter exarnple can be build in ti-te 

foliowing way: let Á E P(E) and LI be the coilection 

defined by 

= X E P(E): X = À and X E E 

in other words, 	contains Á and is closed under 

transiation. In particular 	= {e} and 	= {E}. Let 

	

= o + e  + 	+ e 	with Á c B c E and Á Pe E. The set 4 

is also closed under translation (this is a necessary 

condition to build t.i. mappings which domam is 4). 

Let 1 be ti-te set {(A. E)}. from (3.7), 

= [À, E] and, from (3.4), 

RIA E] = {(À. X) E 4: X E $,1 

B

}+ {(B. B), (8, E), (E. E)} 

which contains, in Lhe propor senso, {( A, E)}. that 

is, M. In other words, in this example 

R 	P! T. 

PROPERTY3.2- Let 	and LI c4c(E) and $t be t?te 
1 	 2 

rnapping defirted by (3.4), then 

Rn Re = Zte  

PROCE: F'rom (3.4), 

;en$te4+xct andX ce, 
1 	 2 

stands for the unon of disjoint sets. 
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44 	c 
tIL

n e. 

írom (3.4), 	 [si 
1 	2 

The above property shows thaL R is a 

meet-morphism. ÂcLually, R is not a Join-morphism since, 

usually, Just Lhe foliowing holds: 

e USte CRe ue 
1 	 2 	 1 	2 

Eram now on, Lhe set E is Lhe Abelian group 

of Chapter 2. 

LeL d c P(E) be closed under Lranslatiort and 

be Lhe seL of t. i. mappings from .4 to P(E) (see Chapter 

2). 

In arder to derive a represenLaLion for yi, a 

mapping R(.) is now defined as Lhe composition of X(') and 

5?,, defined, respecLively, by (2.4) and (3.4), Lhat is. 

= R. o 

In oLher words, 5?(•) is Lhe rnapping frorn 	to 

defined by 

= R(yi)' 	 (3.8) 

for any y' E 	ar, equivalenLly, 

St(W) 
= 	

E 	 X c 

ar, from (3.3), 

= 	€ 	(X. X) . 	4 X € X('p) 	(X € 4)}. 

Some of Lhe properties of Lhe previous 

secticri can now be applied to Lhe case of L.i. mappings. 



- 25 - 

PROPERTY 3.3 - LeL Á c Y(E) be ctosed trnder trartslation, 'p 

be a t. i. mappine front Á to Y(E) and Let <() and St(w) he 

Lhe sets de»Lned, respectiuety, by (2.4) and (3.8) and A.  

be Lhe mapping de/ined by (3.8). thert 

= SR(W) 	 o 

PROOF: By Property 3.1 (with e = 

= 
from (3. 8), 	

= 

It has been seen. in Chapter 2 that Lhe 

infimum af twa t.i. mappings is also a t.i. mapping. The 

foliowing property about t(•) will be used in Chapter 6. 

PROPERTY 3.4 (R(•) is a meet-morphism) - L.et Á c .P(E) be 

closed under translatpLon, w1 and w2  be two è. 1.. mappin.gs 

fro,n Á to .P(E) and Let R(•) be Lhe rnappirtg deffrted by 

(3. 8), then. 

RCy' fl w2 ) = St() fl  

PROCE: This is a consequence aí Lemma 2.5 and Property 3.2, 

with e = 9 (w) and e = !(w2 ). 	 13 

Á new elementary t.i. mapping is now 

introduced which plays, because aí its kernel prcperty, a 

fundamental role in Lhe t. 1. ntapping representation. 

For any pair 3 = (Á, B) in 	and x € E. let 

denote Lhe pair (Á.  8). If Á is closed under 

transiation then . Let 3 E b P(E) and O 3 be Lhe 

mappirig from 4 to P(E) defined by 
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x e ; = 	c E: (X. X) { 3?}. 	 (3.9) 

for any X € Á. Writing ; = (À. 8), an equivalent expression 

is: 

X e (A, 8) = 	€ E: Á c X c B,} 
	

(X € Á). 

PROPERTY 3.5 - Let Á c 2(E) be closed under transtatCon, 

E 	 and 	be the collectton de/ined by (3.3). The 

mapptrtg 	e ; /rora Á to 5(E), de/irted by (3.Q), is t. t. and 

ts herneL, defin.ed by (2.4), ts: 

e)=x. 	 o 

PRCX)F: For any r E b () ' Á c Y(E) and X E Á, 

x o ; = {x E E: CX, X) . 

Vram (2.1), 	 ={x E E: (X, Xx) 

Vram (3.3), 	 = 	e E: X 	e 
-x 

Vram (2. 2), 	 = .jx € E: X e (f')J. 
Therefnre by identifying wlth expression (2.5),  
and, by applying Property 2.3, e ; is Li. and its kernel 
is: 

Writ.ing ; = (Á, 8), an equivalent expression for ti-te kernel 

oV • o r is: 

9((• e (Á, 8)) = {x E : Á c 	c B} = AS. 
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On Lhe other hand, for any r E b v(E)' from (3.8), 

(• 03) = { E 	(X, X) 	tj ai (X, X) .( X 	CX € 

{t)E: 

Figure 3.1 shows one particular element of 

the kernel of • O (Á, B) for twa given subsets Á and B ar 
E. 

X 	E 

14 	 ti 

Fig. 3.1 - Example aí a subset X belonging te Lhe kernel of 
o (Á, B). X must contain Á and miss Bc. 

THEOREM 3.1 (Representation theorem) - Let d c P(E) be 

ctosed urtder transLat Coa, ' O 3 be Lhe map~e /ront 0 to 

Y(E), defined by (3.g), w be a t.. map~8 frota 4 to (E) 

and $t(w) be che set deftrted by (3.8). thert 

= U {• O t 3 	(w)} 



n 

PROOF: By Property 2.3 and from (3.7, with t = 

= ti {x: 	E 

by Prciperty3.5, 

= ti  

by Lemma 2.5, 

W = ti 	C : ~x e 	 ffl 

This result is important because it shows 

that Lhe mapping • e x is a prototype of any Li. rnapping. 

In other worcis, any Li. mappirig can be seen as t.he 

supremum of a fainily of elementary mappings • e 
;. 

3.2 - REPRESENTÂTION BY AN INFIMIJM 

For the mornent, let E be ar»' non empty set. 

Let 4 c Y(E), 3? E 
Y(E) and V-4-1 

 

be the coilection of ali X 

in 4 such that (X. X) 	3' x i, that is, 

4  = .[x E : (X, X) v 	
}, 	

(3.10) 

where 1 stands for the pair (0. E). If r is restricted to 

be in 	then 4 is simpiy denoted 

PROPERTY 3.6 - Let .0 c P(E). X e and Xand 4ôe ate 

coilections deftned, respectiLveLy, by (3.3) and (3.10), 

thert, for any X E 4, 

x 

or, equtvaten.tty, 

U. 
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PROOF: For any X e 4, 

trorn (3. 3), 	 x e 	e (X, X) 4 ;. 

trem (3. 2), 	 e (Xc, Xc) 	= 

trem (3.10), 	 <* X
e 
 e 

or, equivaiently, 

trem (3.3). 	 x  e x 	 e (XC, Xc) f 
from (3.2), 	 e (X. X) v 	PC i, 

from(3.1O), 	 O 

F'rom now or't, the set E is Lhe Abelian group 

0V Chapter 2. 

Let .4 c P(E) be cicsad under transiation. Á 

new elementary t.i. rnapping is ncw iritroduced. 

Let jz E 2(E) and let • o ; be the mapping 

trem .4 te .2(E) deflrted by 

X o ; = 	€ E: (X, X) v  

for any X € 4. Writing ; = (Á, 8), an equivalent expression 

for (3.10) ist 

X o (Á, B) = { € E: X n Á ;-d O or X u B 	
E} 
	(X € M. 

PROPERTY 3.7 - Let Á c .2(E) be ciosed under transiation, 

be 	
(E) 

an4 Y 4  be the ccl Lectiort defined by (3.10). The 
P 	2X 

rnapptrt • o x frorn. Á te .2(E), de/ined by (2.11), is t.i. 

and its kernel, de/in.ed by (2.4), is: 
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(• o 	
= 4 

PROOF: For any r E  i(E)' 
g c (E) and X e .0, 

x o ; = {xE E: (X, X) 
-' 	

;-e 

	

frcm (2.1), 	= 1x E E: (X, X) v r x iJ. 

from (3.10), = 	E E: X  

	

from (2. 2), 	= fx € E: x e 

Therefore, by identifying with expression (2.5), LO = 

and, by applying Property 2.3, • o ; is Li. and it.s kerrtel 

is: 

fK(• o ) 
= 4 
	

L!I 

Writing c = (Á, B), an equivalent expression 

for Lhe kernel of • o ; is: 

9C(• o (A, B)) = {X e Á: X fl Á x O or X U 8 Pe E}. 

On Lhe other hartd, for any
'1C

E  iP(E)' from (3.8), 

R( 	o ) 
= 	

e 9: (X, X) 1 ) -> CX, X) 	P! t CX e 

	

= 	
E 	: t) '.# 	 ;.~ 

Figure 3.2 shows twa particular elements of 

Lhe kernel of • o (A, B) for twa given subsets Á and 8 of 

E. 



X 	E 

ri! 
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Let r E ?)3)(E) and 0 c .2(E) be closed under 
t.ransiat.ton. By Properties 3.6 and 3.7, the kernels tf 

• e ; and • o ; Vram, respect,ively, and 1' to .2(E) are 
ido, 	

2x 

and V - Tberefore, by Properties 2.4, and 3.6. 	e ; and 

• o ; are dual mappings. Making 4 = .2(E), this leads to the 

for mula: 

C  o j)° = Xc e ; 	( X e 9(E)). 	 (3.12) 

(a) 
	

(b) 

Fig. 3.2 - Example ar two subsets X belonging to the Icernel 
aí • o (Á, 8). X must bit Á (a) ar not cc,ntain 
B' (b). 

Let .4 c .2(E) and iet .Y' be the mapping Vram 

te .2(4) defined by 

4nf&14 : SE}. 	 (3.13) 

Ver any Z e Y(.2(E)). The restrict.ion aí à' 4  te 	is 

dencLed à'. 

PROPERTY 3.8 - Let 0 c .2(E) be closed under translation, 7/ 

be a t. È.  mapp?rtg frota .4 to .2(E), w be tts dual, X(w) and 
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be the sets defrted, respoecuively by (2.4) and (3.8) 

and 	be Cite mnppirtg deftned by (3.13) then 

= Yst( y'* ) ,  

PROOF: LeL S = g(w*), for any X E 4, by Property 2. 4, 

X e 9C(p) s. Xc e 9C(7), 

by Property 3.3, 

because G e 

sX C e2te , 

eX 

eX 0  eX3  for any3eE, 

e X E 	for a n y 3 E 

4* X E cr 

frcm (3. 7), 

by Property 3.7, 

from (3.13), [Ul 

It can be observed t.hat Zt(•), in Property 

3.8, is a mapping from 	to P(j.) and if 4 = 	then 

R(w*) E 	 and W( W) = 

THEOREM 3.2 (Dual representat.ion theorem) - Let 4 c .9(E) be 

ctosed under trartslatíort, • O 3 be Cite mappíng frota .4 Co 

.9(E), defíned by (2.11), w  be a t. C. mappzng frota 4 Co 2(E) 

and St(w*)  be the set defirted by (3.8), where is the duaL 

mappng of W. then 

VI = fl 	O 3: ; e  St(w*)} . 	 o 

PROOF: By Property 2.8 and from (3.13, with 4t = 

fl 	3 e 

by Property 3.7, 
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=n{ 
	

o 3:): 3: € 

by Lemma 2. 5, 

w=fl 
	

3: E 
	

1.1 

This result is irnportant because iL gives an 

alterrtative way to represerit W. To represent w one form ar 

Lhe other is chosen, depending on which ar Lhe set (yi) or 

is sirnpler. 

fie sets X O 3: and X O ; appearing in Lhe 

representation of a L.i. mapping in Theorems 3.1 and 3.2 

can be written, as it can be seen below, respectively, in 

Lerms of intersecLion (Lhis is Lhe reason for using Lhe 

symbol e) of erosions, and of union (this is Lhe reason for 

using Lhe symbol o) af dilations. 

Let A. B E Y(E) and let X e (Á, B) and 

X O (A, 8) be Lhe twa sets given by, respectively, (3.9, 

with r = ( A, 8)) and (3.11, with x = ( A, 8)), Lhen 

X e (Á, 8) = (X e X) n ( 	e èc f 	) 	( X E Á) 	(3.14) 

X o (A, 8) = (X e X) u (Xc  e C) 	(X E Á). 	(3.15) 

This can be proved in Lhe foliowing way: 

from (3.9), 

X e (A, 8) = 	€ E: A c X and X c 

=€ E: Á c X and Bc  c X e  

	

=E E: A c )C} n 	e E: B c XC}. 
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trem (2.8). 

= (x e X) ri (Xc 

From (3.12), 

X o (Á, B) = (Xc o (Á, B) ) C . 

= ((f e 	ri (X 

by Morgan's law and duality, 

= cx e 	ti (X°  • 

In terms of t.he Hit-Miss transform cl' X, from 

(2.9) and (3.9). 

X o (Á, 8) = X e (Á, Se) 	(X € 4). 



C}4APTER 4 

1 NCREASI NG, DECREASI NG AND 1 HP -SEPARÂBLE TRÂNSLÂTI 0W 
INVÂRIAWT MÂPPINGS 

In this chapter E is Lhe Abelian group of 

Chapter 2. 

The objective of Lhls chapter is to study Lhe 

special cases of increasing, decreasing and inf-separable 

Li. mappings and to show In Lhe former case that Lhe 

representation Lheorem, given by Matheron (1976). is a 

special case of Theorem 3.1. A mapping w from 121 c P(E) to 

Y(E) is said to be írtcreasing' 1ff 

for any X and 2 E 0 X c 2 implies w(X) c 

decreczsLrte 1ff 

for any Y and 2 € 0, 2 c Y lrnplies w() c w(2) 

and Lrtf-separable or spindte-shaped 1ff 

for ar»' X, Y and 2 € .4, 

X c 2 c Y implies p(X) fl w(Y) c w(Z). 

From these definitions, any increasing and 

decreasing mappings are inf-separable mappings: 

X c Z c Y implies w(X) fl w(Y) = w(X) c w( 2 ) 

if w  is increaslng, 

)( c 2 c Y implies w(X) fl w(Y) = w(Y) c w( 2 ) 

11' ' is decreasing. But. Lhe contrary is false. 

1 The french word fuselé trcznslated hei-e by  spindle-
shaped heis beert st1eeested to the atzthors b9 6. lttherort. 
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PROPERTY 4.1 - Let 4 c 2(E) be closed under traytslation, w 
be a t.i. rnappin6 frora 0 to Y(E) and w) be its hernel, 

defined by (2.4), then. 

I. w is irtcreasirt iJJ S'C(yi) is a dual ideal o! (d. c) 

('i e. i  X E (w) and 2 E 0, then X c 2 iraplies that 

2 E 

2. w is decreasine 'ff X(w) is an ideal af (0, c) Ci.e., if 

Y c 9C(') and 2 c .4. then 2 c Y irapiies that 2 € 

• w is in/-sepatable i/f (w) is such that if X and 

Y E 9C(y') and 2 e Á, then. X c 2 c Y im.plies that 2 E flw)• o 

PROOF: X and Y E 9C(y) implies, trem (2.4), that o e 

and w() Therefore, for any aí' Lhe Lhree t.ypes of t.i. 

mapping o€ v(2), i.e., trem (2.4). 2 e %(y'). Conversely. 

Lei.. X c 2 and x E p(X). By Praperty 2.1 X e (9C(zp)) and 

under Lhe dual ideal assumption on 9C(w),  2 e C(w))' LhaL 

is. by Property 2.1. )c e (2) 

LeL 2 c Y and x E w()• By Property 2.1 Y e (%( w ))  x and 

under Lhe ideal assumption on !K(iu), 2 e (fK(w)). that is. 

by Property 2.1. x e w(Z) 

LeL X c 2 c Y and X E W(X) n '(Y). By Property 2.1 X and 

Y e (9(w)) x and under Lhe assumplion on 9 (w). 2 e (flC(yi)), 

LhaL is, by Property 2.1. x € y(2). 	 o 

The kernels of increasing or decreasing 

mappings saL! sfy lhe property aí' Lhe kernels of 

InC -separaM. e mappi ngs. 

PROPERTY 4.2 - Let .0 c 2(E) be closed under transtation. w 
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be a t. i. 	mapping frorrt 4 to .2(E) and Let 	SÇ(yi) and 	(w) be 

the sets defirted. respectivety, 	by (2.4) 	an.d (3.8). 	If 	X 

and Y E SK(w), and 2 €4, then 

Y inrtpties (X. Y) e E(y) i/f W £s ínf-separable, 

X c 2 irapiies (X, 2) e t(w) -Lff  w  is increastng. 

2 c Y irapUes (2, Y) e t(p) i/f ?f is decreasin5. 	o 

PROCE: From (3.3), Lhe statement X c 2 c Y implies that 

2 e S(.') is equivalent to IX, Y] c w) Theretore, by 

Property 4.1, part 3, if any X and Y e 9(w), X c Y, then 

EX. Y) c  9((p) itt w is int-separable. Consequently, Lhe 

statement 2 e C(p). (X c 2), is equivalerit to EX, 21 c 5'(w) 

and Lhe statement 2 e 9C(w), (2 c Y), is equivalent to 

12, '1] c %(u). Therefore, Lhe resuit, part 2 and 3, foliows 

by Property 4.1, part 1 and 2. o 

PROPERTY 4.3 - Let 4 c .2(E) be ctosed u.nder transtatian, w 
be a Li. mappin frota 4 to .2(E) and (w)  and R(w) be the 

sets defCned, respectíuely, by (2.4) and (3.8). thert 

(w) = ((w) x 4) ri 	ifJ w  is increasin5, 

t(w) = ( 4 x 9<(w))  ri 	zff w  is decreasin, 

St( W) = (9C(p) x 9C(qi)) fl 50 iff w is inf-separabte. 	o 

PROOF: If (A, B) c R(?p), from (3.6, with t = 9C(yi)) A and 

B € X(yi), that is, (w)  c (%(y) x flp)) ri . 
Conversely, 

by Proposition 4.2, 

1. wiLh X = Á and 2 = B. (A, 8) e (((w) x 4) ri 	implies 

that (A, 8) € R(w) 1ff ' is increasing, 



a. with 2 = A and Y = B. (A, 8) € (j1 x flp)) ri 	implies 
thaL (A, 8) € R(v) 1ff i is decreasing, 

3. wILh X = A and 	Y = B. 	(A, 8) e ((V')  x X(w)) ri 
lrnplies that (A, 8) € ('p) 1ff W is Inf-separable. 	o 

LeL 	' he 	any 	LI. mapping from 	si to 	P(E), 

R(VI) be the set defined by (3.8) and EK''(w) and 9C(p) be Lhe 

coilections deflned by 

= {x E : ( A. X) E 
	

(4.') 

and 

= {x € si: (X, 8) E $t(vI)}. 	 (4.2) 

for any A and 8 € flv). From (3.6). if (Á, B) E (V') Lhen Á 

and 8 € 9C(), Lhe kernel of w  detined by (2.4). Theref'ore, 

by uslng Sày'). Lhe propcsed representatiori for w  becomes, 

by Thecrem 3.1 and trem (3.14), 

w(X) = U{ ti 
{(X e 

X) ri (f e C): 8 	1h(VI)}: Â e 

= u {x e X) ri u {xc e C: 8 E 9((w)}: Á e 

	

(X € .0). 	(4.3) 

Comparing wlLh Matheron's representation. Lhe 

proposed representation for general t.i. mappings contains 

Lhe extra Lerm: 

U {xc 	C: 8 E 9C&(w)} 

which plays Lhe role of a 'correcticn term". Slmilarly. 

by using 9 (w). 
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w(X) = U FXC  e C) 
 C U 	e 	A e 	 € 

CX e MO. 	(4.4) 

THEOREM 4.1 - Let 4 c P(E) be closed under transiation, 

e Ã be Lhe erosíon. by Á frorrt . to Y(E), defined by (2. 8), 

w be a L. i. mczpping frota 4 te P( E) and X( W) be its hernel, 

deftned by (2.4), thert 

l.' = i 	e 	Á € Z( w)} ij p  is irtcreasirtg, 

2. = u 	e 	8 E %(i)} ÍJ w is decreasirtg, 

aw = LI [(. eX) ç (C 
	C): À, B 	!K(w)} 	i 	w 	is 

irtf-separabie. 	 o 

PROOF: By Theorem 3.1 any t.i. rnapping can be represented 

as itt (4.3) and (4.4). Herice, for increasing (respect.ively. 

decreasing) Li. mappings Lhe result foliows frorn (4.3) 

(respectively, from (4.4)) if it can be prõved that, for 

any X e d and Á € 

CX e X) c u {Xc  e 	8 e  

(respectively, for any X € Á and 8 e 

e C) 
 c u {x e 	Á E 

1. The increasing case: leL x e X e Á or, ecjuivalently. 

ÂcX and 1t YX_>  then AcY since ÁcX_.  8>' 

Property 4.2, (Á. Y) e (y') and, from (4.1). Y e K'(w),  but 

Y = intplies that x e x C  e yC, therefore, 



n 

X E ti 	e èc:  B E 
Â} 

2. The decreasing case: let x € X c  e 8
C 
 or. equxvalently. 

X c 8 . and let. '1 = X 	then Y c 8 since X 	c S. By 

Property 4.2, (Y. 8) e (w) and, from (4.2), ? E 9(w). but 

Y = x 	 implies 	Lhat 	X E X e y, 	therefore, 

X E U 	O A: A e 

For inf-separable t.i. mappings the result 

foliows from (3.14) and by Theorern 3.1 and Property 4.3 

since, for any X e 4 and for any (À, 8) belonglng to 

9C(yi) x 9C(p) but not to (X e ri (Xc  e B
C
) = Ø 

The above representation for an increasing 

rnapping i  Theorem 4.1 is, exactly. Matherort's 

representati on. 

THEOREM 4.2 - LeL 4 c 2(E) be ctosed urtder transiation. if 

W is art inf-separabLe mappin8 frota Á to Y(E) then there 

exist twa rnappirtgs , and 	frota À to (E), respecttueiy 

increasirte and decreasing, 	such 	that 	w = 	n 

Conversety, ij' W and W are trtappings frota 4 to .2(2). 

respectiueiy increa.sirtg and decreasirt, then Lhe mappirt 

w = 	is an irtf-separable map~8 frota 4 to .2(2). 	o 

PROOF: 1. LeL 9C(yi) be Lhe kernel of W defined by (2.8). Let 

= {x e 4: 3 A e 9C( W): À c x} 

and 

2 	% 
= ÍY E 4: 3 8 € 9C(w): '1 c 8 
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For any X e 9C, t.here exists an A € S(u) such 

LhaL A c X. therefore, W is a dual ideal since for any 

X c and 2 c 4, X c 2, which rneans that Á c 2, implies 

Lhat, 2 € 9C. 
t 

For any Y e 9C, there exists a 8 e 9C(y) such 

that Y c 9, therefore, 9C is an ideal since for any Y E % 
2 	 2 

and 2 e 4, 2 c Y, which means that 2 c 9, implies Lhat. 

2€9C. 
2 

Moreover, ir )( E %y,) Lhen X e % and K, 

theref'ore, X(p) c 9( fl EK ; i  X € % n g  then there exist 

A and 8 e X(w) such that. A c X and X c B. by Property 4.1, 

under Lhe assumption Lhat y is inf-separable. 3< e 

therefore X n f'<Z c 9C(y'). ThaL is X(w) = W n W In other 

words, by Property 4.1, Lhere exist w,  and 

respectively, increasing and decreasing such that, by Lemma 

2. s, y' = 	fl w2 . 

2. Ir i = r fl J, then for any 3<, Y and 2 such that 

3< c 2 c Y, 	w(x) c w(2) and 	 c w(2). 	theretore 

successi vel y, 

w1(x) fl w2(Y) c w(z) n w2(2). 

(w(3<) n w2(X)) n 	n w2(Y)) c y(Z) n 

and 

W(X) ( w(Y) c VM 

which proves that p is an inf-separable ntapping. 	 o 

The above decomposiLion of an inf-separable 

mapping in Lerms of Lhe infimum of increasing and 

decreasing mappings is not unique as IL can be seen on a 

simple example Lhrought Lhe formula: 
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CX e Cx)) ri (Xc e Cx, y)) = (X e Cx).) ri (X • •Cy)) 

CX e .2(E)) 

by Laking x and y e E and x ;d y. 

Finaily a last prcperty for inf-separable 

rnappings is presented that will be used in Chapter 6. 

PROPERTY 4.4 - Let W,and  W be twa Li. mappings fro?Tt Á to 

.2(E). respectiueiy, irtcreas-1n9 and decreasine and let 

= 	 Let flC(yi) and !YC(w) be the herneis af W and 

w2 . defined by (2.4), and St(zp) be defined by (3.8), thert 

R(w) = ((w) x 9(w2))  n 
	

rã' 

PROOF: By Property 3.4, 

= t(w) ri 

by Property 4.3, with w = w lncreasing and w = 
decreasi ng, 

= (flw) x Á) ri 04 x fl%pfl 

= (K(w) )C flw2 )) ri 	 1.] 

If y' = yi u L', where W,  and w are twa Li. 

mappings from Á to .2(E). respectively, inereasing and 

decreasing. Lhe above property then holds for Lhe dual 
* 	* 	*  

rnappings. 	since 	y# = y fl y' 	and 	
* 	

and 	
* 	

are. 

respectively, increasing and decreasing. Lhat is, 

= (XC) x ($)) ri 95 

Then to represent W, Lhe dual fornt of Lhe representat.ion 

t.heorem rnay be used (see Theorern 3.2). 

If yi  and w are two t. i. mappings from Á to 

.2(E), respectively, increasing and decreasing, then, from 
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Properties 4.3 and 4.4, the fcllawirxg formula can be 

derived 

(Cw) x 	ri 5 j,1  = 

C(w) ri 	x (9C(w) ri 	n 



CHÁPTER 5 

MI NI MAL REPRESENTATI ON rHE0REMs FOR TRANSLÁTI ON 1 NVARI ANT 
MAPPI NGS 

5.1 - ALGEBRAI C ASPECTS 

For the inomerit, lei. E be any non empt,y sei.. 

PROPERTY 5.1 - LeL Á c .P(E), ; and 	be two pairs in 

zM and 	be the corresponding coLLectons, 
e 2  

defined by (3.3). and Let 	and 	be the corresportdin 

coliections, de/ined by (3.11), then 

1 r 2  ÕrtpUes that X 4  c X4  and 	D 	
2 

PROOF: 1. For any X e Á, 

frorn (3. 3), 	X e 	(X. X) 1 

by assumption, 	 4 (X, X) 1 

f'rom (3.3), 	 s X e 

consequently, 

2. For any X e Á, 

froru (3.11), 	X e 
	

(X, X) 	p~ i, 

by assumption, 	 . CX, X)  

traiu (3.11), 	 ., X e 

- 45 - 
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consequently, 	D v, . 	 o 

PROPERTY 6.2 - Let si c P(E), XO and 	be the mappLrts 

defirzed, 	respecttuety, 	by 	(3.7) 	and 	(3.13), 	and 

c 	c 	(E) be s'uch that: for any 	€ 	there extsts 

TI such that io . 3' ,  then 

4=4' ancz 4 =rZ,.  

PROCE: 1. tt' c t irnplies, from (3.7) and (3.13), that 

Á . 	 si 
4
4 o sI 

 c ,7tand t6;  

2. p . ;' implies, by Property 5.1 (with 	= ; and 

= 	
that 

c X, and 	D g1; ,. 

This leads to Lhe two foliowing results. 

2.1 Case of f: from (3.7), for every X e 	there exists 

tj, not only in 6;, but also in V. such that X € 
Á

t) 
consequent.ly, X e 2t, and 3t6;  c 

2.2. Case of frora (3.13), 	for 	every X c J° 1 , 	X E 

not only for any Çj 	in 	6;', 	but 	also 	in 	C. consequently, 

X€J°6; andf6;,ci°6; . 
.0 	Á Á o 

Let e c d c Y(E) and 	be Lhe set defined by 

(3.4). it is interesting te note that if 	€ 	and t) E 

then 	. ; implies that 	E St., In other words, for any 

c 4. 	is an ideal of (t4. ). This can be proved i  the 

foliowing way: 	e R implies, from (3.4), that. X c .Lp 
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tj 	; implies, by Property 5.1, LhaL X c X;. Theref'ore, 

c and, consequently. from (3.4), tj € 

From now on, E is Lhe Âbelian group of 

Chapter 2 and Á c (E) is closed under transiation. In 

order to derive a minirnal representation for a L.i. mapping 

W from .4 to .9(E), Lwo definitions are introduced. 

The first one is Lhe defjnjtion of Lhe basis 

of W. LeL (S, S) be a poset, m is rnaxiinni (respectively, 

rinaL) element ot (S, :5) itt tu e S and for ariy 5 E S. 

s k tu (respectively, s :5 m) implies LhaL s = tu. LeL ('p) be 

Lhe set defiried by (3.8) Lhen Lhe set (yi) defined by 

= 	€ 	; is maximal element of St(w)} (5.1) 

is called Lhe basis of W. 

This definition aí' basis differs frota Lhe 

ores of Maragos (1985) and Dougherty and Giardina (1986) 

who have detined a similar notion for increasing mappings. 

The second one is Lhe definition of the só 

called condition aí' minimal representation for W. The 

subset 18 aí' St(w) is said to satisfy Lhe conditiort af 

tntnünal representaton for ip 1ff for any x e R(v), Lhere 

exists ;' € 18 such LhaL ; .{ ;'. 

THEOREM 5.1 (Minimal representation theorem) - Let Á c .9(E) 

be closed under transiaUon, • O 3? be the mapptn frota Á to 

.9(E), defined by (3.9), w be a t.. mapp~ front Á to .9(E), 

and Let St(w) and '3(w) be the sets defined, respectiuely, by 

(3.8) and (5.1). Let IR be any subset of ('p) satisfytrtg the 

conclition of minimal representation for w then 



n 

Õ: 

furthermore, if !8(p) is one of Chese !8, £.e., if &p) 

satisfies the condition of minimal represerttatiort for w 
t heri 

(w) c  

and 

VI = ii 	O J: jr E 

by defirtitiori w is satd to have a minimal representation by 

a supremum. 	 o 

PROOF: 1. By Property 3. 3. 

(w) = 

by Property 6.2 (wiLI, 	St(y') and W = 

W. 

from (3.7, with (r = ) and by Property 3.5, 

= u 	o ;: ; e 

Then Lhe resuit of part 1 foliows by Lemma 2.5. 

2. ('p) is contairied in any !& satisfying Lhe 

condition of minimal representation for w since, otherwise, 

for any ; in Cw)  and not in S there should exist itt B 

(necessarily distinct of ) such that ; . tj, that Is. (w) 
shottld not be Lhe set of maximal elements of (w). which is 

a contradiction. o 

The above resuit is important because 

compareci to Lhe crie of Theorent 3.1, Ci) may be much 

smaller than St(w)  and, consequently. ii.. leads to an easier 

way to represent (ar construct) Lhe mapping w Áctually, 



n 

such result works because of Lhe increasing property aí' 

!A(. e ;) with respect to X. that is, 

1 2 
implies that X( - e ;) c %(' e ;), 

which is equivalent to Property 5.1. The expression 

"mirtimal representation" introduced in Theorem 5.1 comes 

from Lhe fact LhaL under Lhe condition aí' minimal 

represeritation &w) appears to be Lhe smallest subset cf 

$t(v') Lhat can be used to express w in terms aí' supremum. 

The expression U 	e ;: 	€ ( vt)} in Theorem 5.1. is 

called Lhe ~innal repz-esentatton for Lhe t. I. mapping w by 
a supreaw.zrt. 

The dual form aí' Lhe m.tnimal representation 

by a supremum is riow presented. 

THEOREM 6.2 (Dual minimal representation theorem) - Let 

.4 c .2(E) be closed urtder tran.siation, • o ; be the mappfrtg 

froms$ te .2(E) deftn.ed by (3.11), w be a t. i. mappin.g front 

0 te .2(E) and Let R(p*)  and (y') be the sets defirted by 

(3.8) and (5.1), where w is the dual mappin.g of t. Let 

be arty subset of 	satLsfrte the conditton of minimal 

represerttatíon for w' then 

wfl{ @: 

furtherzetore, if 8(7) ,s arte of these , i.e., if 

satisfies the cortdition of mirtimal represen.tatiort for 

t. hen 

c  53 

e-' 

VI = Li 
{• 

O : x E 

by definition y'  is satd te hczue a mJ.nimal representation by 
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an infimum. 	 EI 

PROOF: 1. By Property 3.8, 

= 

by Property 5.2 (wiLh T = R(w*) and G' = 

from (3.13, wILh t = 18) and by Property 3. 7. 

= n {x( . o ): 
X € 

Then Lhe resuit ef part 1 foliows by Lemma 2.5. 

2. The arguments to prove part 2 are Lhe sarne as 
those given to prove part a aí' Theorem 5.1. 	 o 

The 	expression fl { O : x E 

Theorem 5.2. is called Lhe iniintmal representation for 

Lhe t.i. mapping p by an infinumt. 

In what foliows Lhe special cases of 

lncreasing, decreasing and inf-separable t.1. inappings are 

studied. 

PROPERTY6.3-Let t and t c4c(E), 2 and 2 he, 
i 	 2 	 t 	 2 

respectïvely. the set af mínimai elements of e and maximal 

elernents of e and 18 be the set of maximal elem.ents o/ 

(e x ) fl 
, 

thert 

i8(Sx2)fl 4. 	 o 

PROOF: LeL ; = (A. 8) E 18. 	by Lhe maxi mal 	element 

defi nition. 

c(exe) n 

and 
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{t E (t )< t) n 	, j g = 

Since x EJ4f. by  Lhe dual ideal property aí' 	tj 
e b jlf and 

Lhe above equality Is equIvalent to: 

E e )C 	: 	1 	= 

F'rom (3.1). LhIs is equivalent to A 
e 
 21 8 c 2 and 

(Á. 8) e 

TFIEOREM 5.3 - Let 4 c D(E) be ctosed urwler translation, 

• e Ã be the erosion by Á fron 4 to .P(E), defirted by (2.8), 

be a t. i. mappÈn8 front 4 to (E), 2(w) and £2(w) be the 

sets of, respectiueiy, the inintmat and the maximal eleznen.ts 

of the kernel oJ W. S(w),  defíned by (2.4). 71 &t'), 

de/trted by (5.1), satisfies the conditi.:on of ntinimai 

representation for V. thert 

= LI { e L A E 2 (w)} 	y' is increasine. 

= u 	e : 8 E 2(vi)} 	if ' is decreasing, 

e X) 	e C): Á e 2(w). 8 E 

ii vi is irtf-sepczrable. 	 a 

PROOF: LeL 2(yi) and 2 8(w) be Lhe coilections defined by 

= {x E 4: (Á, X) E 

and 

= {x e ãO': (X, 	8) 	E 

for any A and 8 e 4. 
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1V 	(Á, B) e 8(w) , 	then 	for 	increasing 

(respectively, decreasing) mapping , by Property 4.3 and 

Vram 3(w)  and 2 (w) definitions, A E 2(w) (respectively, 

B E 2(w)). Therefore, Lhe result foliows by applying 

Theorem 5.1 and 1V it can be proved that, for any X c 4 and 

A € 

Á 
XOAcU1X eB: Bc2('p) 

(respectively, for any X e 4 and B e 

eB c u {x e 	A E 

The increasing case: let X E X e Á or, equivalently. 

A c X and let Y = X_>  then A c Y. By Property 4.2, 

(Á, Y) e (y'). 	From 	Lhe 	conditlon 	of 	rnlnimal 

representation, there exists (Á, 2) In S(?p) such that 

(A, 2) 	(Á, Y), that is, there exists 2 e £Á(w)  such that 

2 D Y. but 2 	ar, equlvalently, Zc c X e  implies that 

)C E Xc 9 
C 
 theref ore, 

>C E U 	e C: 8 e 2Á} 

The decreasing case: let X E X c  e 	ar, equivalently. 

X c B and let Y = X 	then Y c  B. 8>' Property 4.2, 

(Y, B) e R(w). From Lhe condition of minimal 

representation, there exists (2, B) in &yi) such that 

(21 8) . U. 8), that is, there exists 2 e 28(w) such that 

2 c Y, but 2 c X or, equivalently, 2 <  c X implies that 

)C E X e 2, therefore, 

x € u 	e Á: Á e 

For inf-separable t.i. mappings. Lhe result 

foliows by applying F'roperty 6.3 with 2 = 2 (w) and 
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from (3.14) and by Theorem 5.1 and Propert,y 4.3, since for 

any X € si and for any (A. 8) belonging to 8(yi) x 82Cw)  but 

riot to ?i4. (X e Â) fl (Xc  e 
C) 	

o 

5.2 - TOPOLOGI CAL ASPECTS 

For Lhe rnoment, leL E represent a given 

topological space whlch is assunied to be locally compact 

(i.e, each point in E admi.Ls a cornpacL neighborhood). 

Hausdorff, and separable (i.e., Lhe Lopology of E admlts a 

countable base). LeL . be Lhe coilection aí' closed subsets 

of E. The coilection 3 is assumed to be Lopologized in Lhe 

way proposed by Matherorz (1975). Foliowing Matheron. Lhe 

selected Lopology on .Y is Lhe one gerieraLed by Lhe set aí' 

co11ecLion of Lhe Lype: 

K{xr XflKrø}. 

wiieze K is a compact subseL of E, and 

Çx E Y: X (i G -! ø}. 

where G is an open subset of E. 

In Serra (1982) and Maragos (1985) Lhis 

Lopology is called Lhe HIL-Miss Lopology. 

The set of Lhe co].lections of Lhe Lype 

(6.aa) 

ar 

n ... 	 G' 	(n 
~ 1) 	 - 	 (5.2b) 

ar 

YK n .r 	ri 
... 	 G 	(n a 1) 	 (5.2c) 

is a base for Lhe HiL-M.tss Lopology. 
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The open sets in thls base are coliections of 

clased seis af E which rniss a compact set of E ar which 

hits ri open seis of E ar whlch nttss a compact sei. of E and 

hlts n open seis of E. 

LEMMÂ 5.1 - Let Z be a subset ef W. LCneariy ordered Cun.der 

the incLusonJ, then n 2 and U t are adherertt ponts oj' £ 

Èn .Y Ct.e., wth respect to Cite Htt -Htss topology2', that 

flZandjE. 	 o 

PROOF: Lei. M = fl Z ar Uz. It is sufficient to show that 

for any open sei. 4 of Lhe type defined by (5.2) such that 

M E .4, Á n .t P~ 0. In other words, for any lnt.eger ri and any 

G. ... G1  (open sets of E). andany 1< (compact sei. of E) 

such that, M n G. % 0 ( i = 1, ... ri) and M n K = 0, li. has 

to be proved Lhat there exists X E ' such Lhat 

X ri G P~ 0 (1 = 1. ... n) and X ri 1< = 0 

1. Case of M = fl £: flrst, for any X E Z, H c X. therefore, 

for any Integer ri and any open sei. cf E. 6. ( i = 1. . . . ri), 

such that M ri 	0 .  X ri 6, ~ 0. since O ;d M ri 6. c X ri 

(1 = 1, . . . ri); second, lei. K be any compact sei. of E such 

that, H n K = 0, that is, such that K c Mc. The sei. A = Mc 
is an open set and can be writt.en as A = U A, where 

A = {y c E: yC E }. The coliection A is linearly ordered 

and Is an open cover 1 ng o!' K. lhe sei. K bel ng a compact sei 

of E, there exists a finte subcovering of K. say A'. The 

coilection A' being linearly ordered anã rinite implies 

that 1) A' E A. Therefore, there exlsts Y E A (namely. 

Y = U A') such that PC c Y c A ar, equivalently. t.here 

exists X e X (namely, X 
= fC) such that PC ri X = 0. 
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2. Case ct M =tj: first, for any X € Z, X c M. therefore, 

for ariy carnpact set of E, K. such that 14 fl I( = 0, 

X flK 0, since X n  cMflK = 0; second, for az -iylnteger 

ri and ar»'  operi sets ar E, G, (i = j, ... ri), such that 

14 fl G. PC 0, by closure property, CU Z) n G x 0. LeL 

e CU 2) n G. by definition ar U X, there exists X E 

such that c, 
1 
 e X.. In ather words, there ex.tsts X. E 2 such 

1. 	 1. 

that X 
i 
 fl G 

1  
. ;0 0. Let 2' be the coilection af the 

X. (i = 1, ... n).The coliectiori 2' being liriearly ordered 

and finte imply that U £' E 2. Let X = U t', 
X. c X (i = 1, ... ri), which proves U-iat there exists X e 2 

such that X n a ;-f 0 (i = 1, ... n). o 

LEMMAS.2 - L.et {Aj : 	i ELN} and {aj : i c&4} be 	twa 

sequences n Y such that A 	c B 	 Ci € E, Ai A and B 	 t  B 

in 7, and Let X e 7 such thczt A C   c 8, therè there exists 

a sequence {xi : i 	€ 	1n 	. S%kch that Ac Xc B 	(1 	e 114) 

and 11 m X. = X i 	7. a 

PROOF: LeL X, = (Á1  u X) ri B (1 E 114), then, for any 1 € 

X. e Y, X. c B and A. c X1. This last inclusion is true 

si nce, 

by distributivity, 	X, = (À1  ri B1 ) ti (X ri Bj ). 

becauseÁcB.
3.

, 	 A,U(XflB.). 
1 	 3. 	 1 

By Corollaty 3.d p. 7 itt Matheron (1075) (with F = X andri 
E' = 8 

ri 	ri 

lim(X ri 8.) = X ri 8 in Y. 

By Corotlary 3.a p. 7 itt Matheron (1975), 

I m Á = À i  7. 

By Corollary 1 p. 7 in Matheron (1976), cri continuity of 
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Lhe union, llm(Á. U (X fl 81)) = Oim A1 ) u (lim(X fl B ) in 

3. In ather words, Vram Lhe above Lhree equalities an 

1 1 mi L s, 

um X 1  = À u CX n 8) In .W. 

By assumption, A c X c 8 and X E .W, theretc,re, 

A u (X n 8) = A u X = A u X = X. 

Thls proves that tfzere exists {xj: 1 e IN iri 3' such 

that A1 c Xc 8 (1 € ff1) and um X, = X. 	 a 

LeL 4 be a subcollectjon ai' 	.2(E), 	(t be a 

subset ai' and .r be Lhe subcoulectian ar 4 deflned by 

= X €4: 3 (X, 	X') ar 	(X'. 	X) € (5.3) 

PROPERTY 5.4 - LeL 4 c .2(E) and 1 c b be Lírtearly ordered 

Cunder .), then the subcoLLectLon X. defined by (5.3), i s 

Linearty ordered Cun.der Gte trtcLusorzJ. 	 o 

PROOF: For any X and Y e .t, Lhere exlst. CX, X') ar 

(X', X) E T and (Y, Y') ar (Y', Y) e 

Ii' CX. X') and (Y, Y') e 	ar (X', X) and (Y'. Y) e 

Lhen, by assumption and Vram (3.1), X and Y are cornparable. 

TV CX. X') and (Y'. Y) e T ar (X', X) and CL Y') € 

Lhen X and Y are also comparable, since. for example, 

(X, X') 	(Y', Y) Impuies, Vram (2.1), that. X c Y. and, 

consequently, X c Y since X c X'. 	 o 

Fram Lhe above Property 5.4, ii' LZ Is ulnearly 

cirdered, then IL Is always possible to choose Á and 8 In 

such thaL Á c 8. 
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PROPERTY 5.5 - Let c *E), 	t c 	be 	Iinearly 	ordered 

Ctrnder 	and be the 	subcoiiectiion defírted by 	(5.3), 

thert for ang A and B c  X, 	wLth Á c B, 	there exists j 

such ti-taL 	(A) B) 	. X .  o 

PROOF: Ir Á and 8 e 2c7 1 and A c 8, t.hen from (5.3), Lhere 

exist 2C and ; e 	such Lhat y = (A, A') ar (A'. A) and 

= (8, 8') ar (8'. 8). and arte ar Lhem is greater Lhan 

Lhe ot,her. In what failaws, it is praved LhaL Lhe greater 

one is always greater Lhan (A. 8). 

If j = (Á. A') and X, = ( 8, 8'), Lhen ; 	; 	and 

(A, 8) { ( Á, 8') 1 (Á, A') = 

Ir ; = ( A, A') and 	r 2 = ( 8'. 8). 	t.hen ; 	ar 

2 	• 	If 	1 	2' 	
(A, 8) 1 (8', 8) = 	

If ; 1 
(A, 8) 	(A. A') = 

If ; = (A'. A) and x z = ( 8'. 8), Lhen ; 1 r ,  and 

Finaily. 	Lhe 	case 	ti = ( Á', A) 	and 

= (8, 8') never accurs since A is included in B. 	o 

PROPERTY 6.6 - LeL tt c r' .e be Lhe subcollectiort defirted 

by (5.3. with d = .F) and V t be Lhe suprerrtuat of Z £n 

then 

Ve=(fl,). 

PRCOF: LeL Z denote Lhe caliection .Ç. .e c S fl .t and 

e 3, and fl 2 c (J2, t,herefore 

(fl e, 	2) E 



E 

For 	any 	(A. B) e &, 	Á 	and 	B e e, 	Á c B. 

fl .t c A c B c U .e c LjZ, that, is, from (3.1). 

(Á, 9) . (fl £,  

This means thaL (o X, UX) is an upper bound (under {) aí' 

Ir. 

Por any (U. V) e 

from (6.3). 

(A. 9) . (li, V) ((A, 9) e (7) • U c X c  V (X e 

-.UcflZandUcv, 

because V e Y, 	 • U c (1 .t and Uz c V, 

Vram (3.1), 	 4 (fl .t, U.t) ,{ (li, V). 

This means LhaL (0) .t, 	) is Lhe leasL upper bound aí' 

(under ), LhaL is, Lhe supremum aí' M. 	 o 

LE»4MÁ 6.3 - Let c Y be closed i 	be the set defined 

by (3.4. w i t h Á = .F) and Ir c 	be Linearly ordered Ctznder 

thert the suprerttum. af Ir itt 5 is itt $t, that is, 

VIrES 
	

o 

PROOF: LeL .e denote Lhe coilection .t. defined by (6.3). By 

Property 6.6, 

v 'r = (0) .e, Vi). 

By applying Property 6.4, .t is linearly ordered (under Lhe 

inclusion); on Lhe other hand, .t c Y, therefore, by Lemma 

5.1, fl .r and LJ.t € .r i  Y. By Theorem 1.2.1 1  (Matheron, 

1976). iL is known thaL Lhe HiL-Miss topology is separable, 

Lherefore (see for example Theorem 6.2 ir* (DugundJi, 1Q66, 

p. 218)) Lhere exist twa sequences {Ai . i e 	and 



- 59 - 

{B1 . 1 E IN} In 2 such that 1km A1 	fl 2 and Um B1  = (Ti in 

$. These sequences can be chõsen, respect.lvely. decreasirtg 

and increasing and such that Ai c B 1  (i e EM). By Corollary 

3.a-b In (Matheron, 1975, p. 7), 

1km Á1  = n {Â 1 . 1 E IN} 

and 

1km B = u {e.. 
1 € 

In other words, under the linearly ordered assumption, 

there exist two sequences (A.. i E N and {a. i E a.i} in .z' 

such that Ai  cB1  (1 e(N), A 	flt and B t(J2. Let 

X E X 	, from (3.3), fl 2 c X c U 2 and X e Y. By Lemma 5.2 

(wlth Á = (1 Z and B = U 2), there exlsts a sequence 

{x 1 . i € 	in Y such that. Á1  c x c B1  (1 € EH), that is, 

E [Á1 , B) (1 € EH), and uni X, = X in 5'. By Property 

5.5, there exlsts 3.t 1  € Gr such that. (Á.. B) that Is, 

by Propert.y 5.11 (Á., B.J c X . In other words, for any 

Integer 1, X E X 	 with r E r, therefore, 	belrtg 

included i  W, from (3. 4), X c LO and ccinsequently X 1  E 

(1 e IN). This means that X Is an adherent paint of t In 5' 

(see for example Theorem 6.2 in (Dugundjl, 1966, p. 218)), 

that is. X e , but LI has been supposed closed, therfore 

X E t and X 	c t Hence, from (3.4), it tias been proved 

thatVEEtInY. 	 a 

In what foliows, a sufficient condition on w 

is glven under which lis basis, !&vs). satisfles the 

condition of minimal representation for w• 



Frorn now on. E is Lhe d-dimensional Euciidean 
d d 

i space IR or ts subset 2 . equipped, respect.lveiy, wlth Lhe 

Luclidean Lopology or wiLh Lhe relative Euclidean Lapalogy, 

and Lhe L.1. niappings under consideration are from 3'. Lhe 

saL of ciosed subsets af E (.3' Is ciosed under Lranslation), 

to P(E). IL can be observed Lhat Lhe Euciideart topolagy ar 

Lhe relative Euclidean Lopolagy In 3' satisfy ali Lhe 

assumptlons made on Lhe Lapological space E aL Lhe begining 

of Lhis secLion (Maragos (1985)). 

Moreover, arnong these mappings Lhe upper 

semi-continuous (u.s.c) ones from 3' to 3' are consldered. A 

rnapping yi from .3' to 3' Is u.s.c. 1ff for any compact subset 

K of E, Lhe seL vTt(YK) is closed in 3' (see MaLheron (1975) 

P. 222). 

THEOREM 5.4 (Property of Lhe basis of an u.s.c. L.i. 

rnapping) - Let i be an u.s.c. Li. rnappin' /ront 3' te 3' and 

&w) be the set defined by (5.1), then (w) satisfies the 

cortdUtort of minimal represerttation for w 

PROOF (The logic of LhIs proof is Lhe sarne as Lhe one af 

Theorern 5.7 In Maragos (1985)): LeL ; e R('), IL is always 

possibie to construct a subcaiiectian of R(w). say Z. 

llnearly ordered (under 4) which conLains lo, Lhat is, 

; € E c R(y). By Lemrna 2.1 iri Maragos (1985). Lhere exists 

a maxirnal lineariy ordered (under ) subcollection IR of 

R(w) such Lhat P. c 711. Therefore, there exists ', (namely. 

= V IR), such LhaL, by suprernum property, 

By Proposition 8.2.1 in MaLheron (1975). X(W) is closed in 

3'. By applying Lemma 5.3 (wiLh V = 
	ind (t = IR) and from 

(3.8), 	' e (p). Furthernore, Ti being rnaximai In R(w). 

' E (y'), because oLherwise ' should noL be a maximal 

elemenL af ¶t(v') and there should exlsL t)E St( W), ti;'. 
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such LhaL ;' i{ p. In other words, Lhere should exist a 

subcollection of R(w) linearly ordered bigger Lhan IR. 
(namely, IR u Ctj)). and IR should not be maximal in R(w) 

which is a contradiction. 	 o 

Theorem 6.4 is, exactly, what is needed to 

derive sufficient conditions to guarantee that a t.i. 

mapping has a minimal representation or a dual núnimal 

representation. 

THEOREM 5.6 (Hinimal representation Lheorem - case of 

u.s.c. t. i. mappings) - 11w is an u.s.c. t. É. mappíne frota 

Y to .5' thert yi has a nurtímat represerttation by a supremvm. o 

PROOF: The resuit foliows by applying Theorems 6.4 and 5.1 

(with.4=Y) 	 o 

In what foliows it is shown that Theorem 5.8 

in Maragos (1985) (with .4 = Y) can be derived from Lhe 

above results. 

COROLLÂRY 5.1 (Maragos (1985)) (Minimal representation of 

increasing t.i. u.s.c. mappings) - Let e X be the erosiort 

by Á frota 3' to P(E). defirted by (2.8). w be an irtcreasine 

u.s.c. t. i. ma~n8 frota .5' te 3' and 2(w) be the se  of the 

rriirtiinal eterrzertts of the kernei of W. defirted by (2.4), thert 

OX: 

PR(DOF: The resuit foliows by applying Theorems 5.4 and 5.3 

(with .4 = .5'). 	 ci 

LeL be Lhe coliection of open subsets of E. 

THEOREM 6.6 (Dual minimal representation theorern - case of 
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U.S.C. L.i. mappings) - 7/ yi is a 	mappz:rt9 /r-om. y to 

whch hrzs ait tz.s.c. dual W frora 3' taY thenwhas a 

mintmal represerttation by art in/ímxtm. 

PROOF: 1V W is an u.s.c. Li. mapping from 3' to 3' Lhen by 

Theorem 5.4, satisfies Lhe condition of minimal 

representation for yP. Hence Lhe resuit foliows by applying 

Theorem 5.2. o 

When E = d is equipped with Lhe relative 

Euclidean Lopology. then 3' = Y and Lhe above Lheorem even 

works for L.i. mappings which domairi is 3', Lhe coliection 

ar closed subseLs aí E. 

Refore ending Lhis section, IL cari be 

observed LhaL, for any ; € , Lhe mapping e ; frorn 3' to 

Y(E). defined by (3.Q). is u.s.c. from 3' to 3'. 

This can be proved in Lhe foliowing way: by 

ProperLy 3. 5, Lhe kernel of • e (Á. B) from 3' to (E) is: 

Sk'(. e (.&, 8)) = {x E 3': Á c X c B} 

{X€3': Ácx}n{x  €3': xcB}. 

By Corollary 4 p. 7 in MaLheron (1975), 1fx e 3': Á c 3(3 and 

c 3': 31 c BJ. wiLh 8 e 3', are closed In 3', se iL is for 

(Á, 8)). for any (Á. 8) e 	. By Proposition 8.2.1 in 

Matheron (1975). Lhis is equivalenL to say LhaL 	e r for 

E 	is an u.s.c. mapping from 3' to W. The basis ar • e ; 

satisfies Lhe condition aí minimal represenLaLiori and is, 

simply, Lhe subcollection of 	reduced to Lhe single pair 

B(• e p) = 
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Ibis shows that the basis may be sometimes 

tini te. 



CHÁPTER 6 

EXÁMPLES 

In Lhis chapter some simple exampies are 

presented to iliustrate Lhe Lheory. Ali along Lhis chapter 
d  E is Lhe d-dimensional Euciidean space ER or its subset 2 d 

6.1 - COMPLEMENTARY TRANSFORMATI ONS 

LeL 4 c .2(E) be ciosed under transiation. The 

mapping C4, der ined in Chapter 2, which produces Lhe 

complementary set af a set in 4 is an exampie of t.i. 

mapping. Its kernel, defined by (2.4). is: 

SCC4) = {x € 4: o E x}. 

Since C O3  is a decreasing t.i. mapping, by Property 4.3. 

= (4 x YXC4)) 

In order to say something about its basis, 

some asswnptic'ns on 4 must be made. 1V O and E - Co) € 

Lhen 

[O(E - <o))), 

(0, E - <o)) is Lhe greatest pair in R(C4) and Lhe basis of 

reduces Lo this single pair, Lhat is. 

B(C4) = {c0. E - <o))).. 

This basis satisfies Lhe minimai represenLaLion condiLion 

for C, hence, by appiying Theorems 5.1 and 6.3 (wiLh 

2(C,4.) = {E - Co)}). 	Lhe foliowing formuiae can be, 

respectiveiy, derived: 
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Xc = (X e 6) n (Xc  e Ci>) 	CX E 4 	 (6.1) 

and 

Xc 	X 

	

= c e (o> 	CX €4'). 

If E is a d-dimensional Euclidean space and 

4 = Y (Lhe coilection of closed subsets of E equipped with 

Lhe Euclidean topology), Lhen E - Co> is ari open set, thaL 

is, iL does not belong to 4' and Lhus Lhe above 

simplVicaLion does riot occur. In LhIs case, R(C) has no 

maximal element. fliis can be seen as foliows. 

9C(C,){X€37 :  XcE - Co>} and for 	any Xc%(C , ) 

x  n E - Co) Pi! 0 since X  -! 0 (X Po E) and X e  P~ Co> (Xc  Is 

open); hence Lhere exists X' € 9cCC
3
.) such LhaL X c X' and 

X ;-e X', e.g. • X' = X + Cx> where X € Xc fl E - Co>. Since 

R(C,) has no maximai element, !&C,) is empty and Lhe 

minimal representation condition IS not fulfllled, Lhen 

JusL Tneorem 4.1 works and leads to Lhe formula: 

	

Xc = U {Xc e 	8€ Y and o c9} CX € fl, 	 (6.2) 

where Y denotes Lhe coilectlon ar open subsets of E. 

LeL C denote Lhe mapping Vram 4 to .2(E), 

defined by 

E(x) = 

for any X € 4. The mapping d, Is t. i. 	Vram Y to Y. In LhIs 

case ai so R( E,..) has no maxi. mal ei ement. ThI s can be seen 

as foilows. 

9C( Ç) = {x c Y: O E xc} 
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= {x e Y: o e 

= {x € 	o g 

= {x E Y: 	c E - co)} 

and for any X e 9C(C,) f n E - Co) Pe 0 since X  Pe O (X ,c E 

since E = E e E - Cc) , ) and Xe  pc Co) (Xc  is open); hence 

Lhere exists X' € E7C(C,.) such that X 	X' and X x X', e.g., 

= X +Cx) where X E Xc fl E - Co), - X' € flE, ) since 

= (X + Co)) = X + Co) = X. Since R(C) has no maximal 

element, Wc,) is empty and Lhe rninimal representation 

condition is not fulfilled. IL can be observed LhaL Theorem 

5.6 does noL apply since E, is not U.S.C. (actually, E is 

lower semi-continuous, see Corollary 2 p. 9 in Pdatheron 

(1975)). C is decreasing and, finaily, Just Theorem. 4.1 

works and leads to Lhe formula: 

XcU{Xce:Beandoe} 	
(XcY). 	(6.3) 

In forrnulae (6.2) and (6.3), X e and 9 are open 

seis and, consequently, Xc e à is a closed set. Hence. 

formula (6.2) shows an union of closed sets that leads to 

an open set and formula (6.3) shows an union of closed 

sets, trem a bigger family, LhaL leads to a closed set. 

If E = Z', equipped wiLh Lhe relative 

Euclidean topology, Lhen .F = 2(E) and if .4 = F, then 

.4 = 2(E). E - Co) e 4. E, = 	and Lhe above first 

analysis, leading to formula (6.1) holds. By Ccrcllary 4 p. 

7 in Matheron (1975), 



n 

fK(C) = {x E Jr: x C E-<o>}. 

is a closed in 3' and, by Property 8.2.1 iri Matheron (1975), 

CY 
is u.s.c. and Theorem 5.5 can be applied, to derive 

formula (6.1). Âctually. C, being both lower and upper 

semi-continucus, is a continuous mapping with respect to 

Lhe I-11L -Miss topology. 

6.2 - EDGE EXTRACTION 

Some edge extraction mappings useful in Lhe 

area of image processing may be examples of inf-separable 

tnappi ngs. 

LeL D E .P(E),( IDI > 1), and 4 c Y(E) be closed 

under transiation. The mapping W from 0 to P(E) defined by 

w(X) = (X e 6) n 	e 6), 

sometimes written, 

= (X e 5) - (X e 

for any X E Á, is. by Theorem 4. 2. with w = e 5 and 
= 	e 6, an inf-separable t.i. mapping. This mapping 

produces one version of Lhe edge of a set in .4. 

The kernels of W and W ., defined by (2.4), 

are: 

x(w) = {x E .4: X fl D ;~ ø} 

and 

= {x E .4: XCfl  D ;-e 
 01 1 

then, by Property 4.4, 

= {
( 
A. 8) E 	A fl D 9 0 and BO  fl D Pe 0. 
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Figure 6.1 shows a pair (Á, 8) in W(p). 

o 

LPJ 

Fig. 6.1 - Example aí 	a pair 	(A, 8) 	belonging La 

e D) n (C e D)). Lhe set aí' extremity pairs 
aí Lhe closed intervais contained itt Lhe kernel 
aí an edge detection mapping caracterized by D. 

A and Bc  must bit D and A must be contained in S. 

In arder to write Lhe basis aí w  in a simple 

way, leL us assume that Ør = 
'P(E). In this casu, any subsets 

aí Lhe type Cx> ar CxJ are in . and Lhe sets 2, aí' Lhe 

minimal elements aí' 9C(p ), and 2 • aí Lhe maximal elemerits 

aí' C(w),  are: 

21  = fX E P(E) X = Cx> and x c D 

and 

2 = [x E D(E).-X = Cx>C and x e D 
z 	k. 

By Property 5.3, 
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(w) = {( A 8) e 5,(E):  A = <a>, 8 = Cb>c and a, b E D}. 

This basis satisfies Lhe minimal representation condition 

for yi, hence, by applying Theorera 5.1 and noting that. 

X e Ch> = X_h and  X_h  n X_ = 0, Lhe foliowing formula can 

be derived: 

(X e 5) n (Xc  e 6) = u X: a, b e D} 

CX € 	(6.4) 

On Lhe other hand, if E = 2d, equipped with Lhe relative 

Luclidean topology, and 4 = Y then = P(E) and w is 

continuous, as intersection aí two continuous mappings, 

that is, y,  is, in particular, u.s.c. and Theorem 5.5 can be 

applied te derive formula (6.4). 

0±' course, there are other ways to prove 

formula (6.4). One way is by distributivity of intersection 

and uníOfl and by a ng pplyi Theorem 5.3 te and with 

	

= 2 and 2(v) = 	since, by Properties 4.3 and 

53,3, with 

= 31 x 
{}. 

= {e} x 2 

and both satisfy Lhe minimal representation condition for, 

respectively, w and 	Another way is by applying Theorem 

6.2 to y',  with 2(w) = 2 and 2(w) = 	' since, by 

Properties 4.2 and 6.3. with Á = (E), (w) = 2 x e and 

satisfies Lhe mirtimal representation condition for W. 
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6.3 - REPRESENTÂTION FOR o ; Wí Ali INFIMTJM 

The foliowing example shows an applicatiori of 

Lhe dual minimal representation Lheorem. 

Let Á c P(E), (Á, 8) c b E) and p be Lhe 

mapping • o (Á, 8) f'rom Á to P(E), defined by (3.9). The 
dual mapping of w (see Section 3.2) is Lhe mapping 

o (À, 8) Vram 1' to P(E), defined by (3.11). By Prcperty 

3.7, 

= 	U. V) € j: (U, V) ..- (À, 8) PC (0, 

Figure 6.2 shows twa pairs (U, V) itt R('
* 
 ). 

E 

(a) 	 (h) 

Fig. 6.2 - Example of Lwo pairs (U, V) belonging to 
R( o (À,B)). U musL hiL À (a) ar V musL not 
contam Bc  (b) and U must be conLained in V. 

In arder La wriLe Lhe basis c;f vP in a simple 
way, leL tis assume Lhat Á = .P(E). In Lhis case any subset 

aVE of Lhe Lypes Cx) ar CX) are in 4 and Lhe basis of 

is: 
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(li, V) = «x), ,   E) and x E A) 
= ((u. V) € 2 	 or (E): C. V) = (0 <x)- c ) and x e Bj} 

This basis satisfies Lhe rninimal representatiorx conditiori 

for V7  hence, by applying Theorem 5.2 and noting that 

X e <h> = Lhe following fórmula can be derived: 

X e (Á, B) = ( fl{xx: X E Á}) n (fl 
{X 

(n 	)C E 

CX E 4). 	(6.5) 

On Lhe other hand, ir E = zd, equipped with the relative 

Euclideart topology, and 4 = Y then 4 = W = 2(E) and 	is 

continuous as union of ccntinuous mappings, that is, 	is, 

in particular, u.s.c. and Theorem 5.6 can be applied to 

derive formula (6.5). 

Of course, Lhere are other ways to prove 

formula (6.5). 

6.4 - SHAPE RECOGNITION 

The last example is Lhe so called window 

transformation, introduced by Crimmins and Brown (1985) in 

Lhe field of automatic shape recognition. 

LeL W E 2(E), a mapping w from 4 to 2(E) is 

called a window trccns/ormation with respect to a window W. 

if and only if, there exists a subcollection ti c 2(W) such 

LhaL 

= {x E E: W ri X 	 E 

for any X e .0. The mapping u "recognizes' in particular all 

Lhe shapes in 4 which are in ti by producing a point marker. 

In another way, 
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w(X) = 	E E: x € {x E 4: W fl X E 

Lherefore, identifyirig with expression (2.5), 

= {x € 4: W n X e 

and by applying Property 2.3, w is a t.i. rnapping and its 

kerriel is: 

!K(w){Xe44': wnxe1}. 

Figure 6.3.a shows one typical element of !A(p) when W is a 

rectangle and .V contains a triangle. 

Let. UEZ and VeY(E-W), 	and let 

X = li + V, t.hen W fl X E M. Conversely, for any X, 

x = x n W + X n Vi0 , 

thus, if 'à' (1 X E 1) then X = O + V with U = X n W E .2) and 

V = X fl 	e $'(E - Vi). Consequently, 

= {x E 4: X = O + V. O € M and V e P(E - W)}. (6.6) 

Let U€Y(W). ir X=U+V with VEY(E - W) then 

O c X c O + (E - Vi) = (W - 0)0. 	 Conversely. 	 ir 
U c X c (W - 0)0 then X = U + V with V c E - W. that is, 

V € J(E - W). Consequently, for ai»'  O E 

{x E 4: X = O + V and V e .P(E - W)} 

= {x e 4: O c X c (Vi - 

and, from (6.6), 

= u {{x E 4: O c X c (Vi - U)0}: U E }. 
	

(6.7) 

By ProperLy 3.5 and Lemna 2.5. 
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w(X) = u {x o (li, (W - U) C ): U e b} 	CX e 

ar equivalently, from (2.), 

w(X) = U {x e (13. (W - U)): u e 	(X E ). 	(6.8) 

x 

W4Ç Á j 
E 

 

(a) 

* 
(b) 
	

(c) 

Fig. 6.3 - Example of kernel elements of a window 

Lransformation with respect to Lhe window W and 

Lhe coliection Z. containing aL least, a triangle 

U. (a) shows a particular element X (X n W = 13), 
(b) and (c) show Lhe elements of Lhe 
corresponding maxirnal pair (13. CW - 

Formula (6.8) is Lhe sarne as Lhe ore given by 

Maragos (1985 p. 160) and its right hand term is called 

here Lhe Crimmins and Brown's representation for window 

transformations. In what foliows, in Lhe non trivial case 
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for which 2) has more Lhan one element, iL is shown that, 

under some circumstances, such representation can be 

derived from Lhe minimal representation for t.i. mappings. 

For Lhe moment, leL us assume that Lhe above 

coilection .2) satisfies the foliowing assumption. 

ÂSSUMPTION 6.1 - For any ti 	and U2  € 2), 	coutparabte 

(ti c ti ) and dLstLrtct (U ;-d ti ), there exists X E 4 such 
i 	2 	 1 	2 

thatti cXflWcU andxflW92). 	 o 

	

1 	 2 

Under Lhis assumption, the set R(w),  defined 

by (3.8), is: 

	

= 	
€ 	= (ti + V, ti 

2 	2 
+ V ), ti 

1 	2 
• ti E 2), 

U 
L 	2 
=U and V

1.
. V e5(E-W) 

i.

This can be seen as foliows. From (3.8) and (6.6). Lhe 

pairs r in R(W) are aí' the form x = ( ti + V, ti + V) with 

U , U E 1) and V, Ve Y(E - W). FirsLly. among such pairs 

Lhose belonging to and for which ti = U = ti belong te 

R(w) since Lhe foliowing statemenLs can be successively 

established 

; . (U. (W - U) ° ). 

by ProperLy 6.1, 

	

c X 	- 

from (6. 7), 

c X(yi), 

from (3.8), 

a: € 

Secondly, among such pairs those belonging to b and for 

which ti X ti do not belong to R(w) since. there exists. 
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trem Assumption 6.1 X E ø such that X E 1;  and X e 
i.e.., X 

x e 
W(W) and, from (3. 8), r 9 

In order te write Lhe basis of yi in a simple 

way, let us assume that (W - U)c e 4 for any ti E 4 fl D. In 

this case, Lhe basis of 'p is: 

= 	
E 	W = (ti, (W - U)c) and ti 

since (U, ii + (E - W)) is Lhe maximal pair (under 1) af Lhe 
set ef pairs 

{; e 
	 = (ti + V i l  li + V 

2 ) 
and V i l  

Z 
 V e P(E - W)}. 

Figure 6.3. b-c shows both elements of a typical pair of 

!8( w). 

This 	basis 	satisfies 	Lhe 	minimal 

representation condition for ip, hence, by applying Theorem 

S.I. Lhe formula (6.8) can be derived. 

If V c Y, - = Y and Lhe wirtdow W is an operi 

subet aí E, then, for any ti E Z, ti and (W - ti) °  are closed 

subsets ef E and, by Corollary 4 p. 7 in Matheron (1975), 

Lhe sets 

{x E Y: X D 

and 

{x E Y: X c (W - ti) c} 

are closed in 3'. Furt,hermore, if 1 is a finita collect,ion 

then, from (6.7). K(w)  is closed in 3' and, by Proposition 

8.2.1 in Matheron (1975), this is equivalent to say that y 

is an u.s.c. mapping trem 3' te 3'. Hence, Theorem 5.6 can be 

applied te derive formula (6.8). 
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Actual ly, Assumption 6.1 was rnade JusL to 

derive, from Lhe minimal representation Lheorem, Crimmins 

and Brown's representation leading to formula (6.8). If Z 

does not satisfy Assumption 6.1 Lhen, for window 

transformations, Lhe minimal representation may be simpler 

Lhan Crirnrnins and Brown's representation in Lhe sense Lhat 

W  is Lhe supremum of a smaller class of elementary 

mappings. In Lhe increasing case, exampie 5.9 in Maragos 

(1985) illustrates this point. In Lhe noL necessarily 

increasing case. Lhe K-Lolerance matching is another 

illustrative example. LeL K and W € .2(E), a mapping w from 

.4 to .2(E) is called K-tolerance matching1 , if and only if, 

Lhere exisLs a subco].lecLion .7 c .2(W) such thaL w is a 

window LransformaLion from Á to .2(E) with respect to W and 

Lhe subcoliecLion !J defined by 

1) = {x € .2(E): T e K c X c (T e ) n W and T c 

The mapping w "recogriizes" in particular ali Lhe shapes itt 

.0 which are similar to Lhe ones in .7 within K-Lolerant 

iimits. 

As a window Lransformation, w can be 

represented as in (6.8). On Lhe ather hand, by definition, 

1) may not satisfy AssumpLion 6.1 (Lhis depends upon 4) and 

a simpler representaLion may be suspecLed. 

LeL us assume LhaL Lhe above coliecLion 3' 

satisfies Lhe following assumption. 

AUMPTION 6.2 - For any T and T e 3', contparable in the 

sense that T e K c T e 1< and chstinct (T Pe T ), there 

exists X e Á such that T e K c X ri W c T e K and 
i 	 2 

XnWeIL 	 o 

This defLnitton lias been comntunicated to the authors by R. 
H. HaraLck. 
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Under this assumption, Lhe set R(y'), defined 

by (3.8), is: 

1.  

Vx 
= 	

€ 	= (ti 	
2 1 

+ vi l  li + V 
2 
), Te K c ti 

U 
2 

c (T e K) fl W, T € J' and VIL,  2  V € .2(E - W)}. 

This can be seen as foliows. Froin (3.8) and (6.6), Lhe 

pairs r in R(W) are of Lhe form ; = (U + V, ti + V) with 

U, ti e .D and V, Ve .P(E - W). Firstly. among such pairs 

Lhose belonging to lbo and for which T e K c U 

2tfld 73 c (T e ri W wiLh T € 7 belong to (p)  --ince,  for 

any T e 7, Lhe foliowing statements can be successively 

estabi i shed 

; . (T e , (W - (T e 

by Property 5.1, 

c X e k, (W - (T e 

c fk('). 

The last inclusion is true since any X € X verifies 

T e K c X ri W c (T e ) ri W, which implies, by definition 

of . LhaA. X ri W e .D and consequently, by definition of W. 

LhaL x e 9C(yi). Therefore, frcm (3.8), x E R(y'). Secondly, 

among such pairs Lhose belonging to bÁ  and for which 

T e K c ti or (exclusive or) c U  T e k, with T € X. i. e. 

(recalling Lhat U and 11 must belong to 2), Lhe pairs of 

bo  for which T e K c U. U c T e k, with T, T e 7. 

T e K c T e K and T P9  T, do not belong to 	') since, 

there exists, from Assumption 6.2 X € . such Lhat X € 

and X e 	 i. e. , X z 9<(w) and, from (3.8), r e 

If T e k and (W - (T e k)f E -4 for any T e 7 

t,hen Lhe basis of w is precisely: 
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= 	E 	= ( T e K, (W - (T e k))t) and T € 

This basis satisfies Lhe minimal representation condition 

for 'i',  hence by applying Theorem 6.1, Lhe followirig formula 

can be derived: 

w(X) = U {x o (T e ,UW - (T , )) C): T E 

(X € 4). 	(6.9) 

Formula (6.9) is simpler than formula (6.8) in Lhe sense 

that 7' c  2) and may be much smaller than V. 

If 3' does not satisfy Assumption 6.2 Lhen for 

K-Lolerance matchlngs, Lhe minimal representation may even 

lead to a simpler formula than (6.9). 

Making K = Co). IL can be observed that Lhe 

K-tolerance mat.ching with respect to 7 reducés to a window 

transformation with respect to 1 = 7 and (6.9) and 

&surnpLion 8.2 reduce, respectively, to (6.8) and 

Assumption 6.1. 



CHAPTER 7 

CONCLUSI 0W 

In Lhis paper, representations for Li. 

mappings W are introduced. IL is proveci that any ar these 

rnappings can be represented as Lhe suprernum aí a family ar 

elementary mappings, • e y,  with x in Lhe set R(w) aí' pairs 

aí' structural elements, ar, In its dual form, as Lhe 

infimum ar another family aí elernentary mappings, • o ;, 

with 3 in Lhe set. For a given w. Lhe simpler form, 

if any, may be chosen. 

IL is also proved thaL ir Lhe L.i. mapping w 
is U.S.C. Lhen iL has a minimal representaLion by a 

supremum, LhaL is, Lhere is a subset af R(p), called Lhe 

basis aí i Lhat can be used to represent w in a minimal 

way. If W is u.s.c. Lhen p has a minimal representatian by 

an infimum. IL is important to note Lhat Lhe u.s.c. 

candition can be applied anly for Lhose L.i. mappings ar 

Lheir dual which domain is Lhe cailectian af closed subsets 

aí' E, but LhaL other L.i. mappings may have a minimal 

representation. 

Among Lhe examples aí L.i. rnappings, Lhe 

interesting case aí Lhe inf-separable L.i. mappings are 

presenLed. When Lhe L.i. mappings are only increasing Lheir 

general represenLations reduces La Matheron's 

representatians ar Maragos' minimal representations. 

Finaily. Lhree topics for future research can 

be outlined: Lhe praposed represenLatians are well adapted 

to be implemented on simpla highly paraliel architectures. 

which shauld lead to etficient image processings; in 

practice exact represenLations aí' Lhe mapping w may not be 
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necessary, iri such case, iL shculd be possible to construct 

approximations for- 'j'  frota subsets of its basis; the results 

derived here, for set mappings, should be extericied to 

function mappings. offering a rzew tool for digital signal 

processi ng. 
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