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RESUMO

No seu livro de 1975, Matheron introduziu um
par de representagles duals escriltas em termos de
mapeamentos morfoldgicos elementares para mapeamentos de
conjuntos, itnvariantes em iranslaglo (i.t.2 e crescentes
usando o concetto de nlcleo. Baseado na topologia Toca-N3o
Toca (Hit-Miss>, Maragos, na sua tese de Phd de 1985, deu
condi¢Bes suficientes sobre mapeamentos {.l. crescentes gue
garantem que tais mapeamentos possuem representagdes
minitmals. Neste relatdrio, um par de representacdes duais
escritas em lermos de mapeamentos morfolégicos elementares
para mapeamentos 1.t. (nio necessartiamente crescentes) &
apresentado. Mostra—se gue as mesmas condigSes suficlentes
garantem que tais mapeamentos possuem representagdes
minimals. Na verdade, as representagdes de Matheron e
Maragos sEe casos particulares das representagdes
sropostas. Finalmente, alguns exemplos s3o dades para
Plustror a iteoria.
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CHAPTER 1

INTRODUCTI ON

lLet E be a d-dimensiconal Euclidean space
{e.qg., Rd), & be a collection of subsets of E, that is,
s PE), ard y be 2 mapping from & to P(E). In the field
of image processing, that motivates this paper, d is 2, «
represents the collection of shapes, objects or images of
interest (the terminology varies from author to author) and

w represents a particular shape transformation.

The objective of this paper is to present a
pair of minimal representations in terms of elementary
mappings of the mathematical morphology (erosion and
dilation) for w in the general class of translation
tnuvariant (L.1.) mappings (i.e., w(Xh) = (w(X))h. where X,
represents the translate of X by a vector h of E), in the
same way as Maragos (1885, 1989) and Dougherty and Glardina
(1986) have done for % Iin the restricted class of
tncreasing t.i. mappings (i.e., X1 - Kz - w(x1) < w(Xz)).
In image processing this may be important because common
transformations, such as edge extraction or shape

recoghition, are not ilncreasing.

Actually. Maragos’ minimal representations
are minimal forms of Matheron’s representations for
increasing t.i. mappings. Matheron (1875} has shown that
any inareasing t.i. mapping w can be represented as the
supremum of a family of elementary mappings of the same
type «alled erosions or as the Infimum of a family of
elementary mappings of the same type called dilations. In
representation for ¥ by a supremum, the structuring
wiementz, which caraclterize Lhe erosions, belong Lo a set
collection called kernel of w. The powerful concept of

kernel, introduced by Matheron. consists of associating to
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each t.1. mapping w a subcollection of &, the kernel of y,
denoted X y) and given by

K(p) = {i € # o« w(X)}.

where ¢ is the null vector of E. Hence, for any increasing
t.i. mapping w, the Matheron's representation by a supremum

leads to the expression
WXy = U {X o A: Ae%(?p)} (X € #),

where X @ A is the erosion of X by the structuring element

A (see Chapler 2 for the definillon of erosion).

The Matheron’s representation by a supremum
works for three reasons: first, the t.i. assumption on y
implies that the mapping %(+) 1is a lattice-isomorphism
(i.e., X(+} is bl jective, that is, one-to-one and onto, and

increasing two-sided 1. that is,
{ oo .
z,ul_x,) - 4,2()() (X € ) & SK(vti) < 9<(w2) R

second, the increasing assumption implies that A(y) is a
dual ideal of (A, <} (i.e., 1f X € K(y) and Y € &, then
X c¥ implies that Y € K(w)); third, the kernel of erosion
by A is ithe collection of all subsets of E Iin & which

contain A.

When % 1s not Ilncreasing the Matheron’s
representation by a supremum fails, because the above

second reason does nol apply any meore.

In this paper, it isx shown that, by chocsing
a slightly different class of elementary mappings, any t.i.
mapping ( not necessarily increasing) also has a
representation in terms of a supremum. More precisely, the

proposed representation by a supremum leads to the

1two—sided stands for the double implication (eo.



expression

wiX) = U {X & (A, B): (A, B) e R(w)} (X € #),

where X & (A, B) is the result of the intersection of the
ercsion of X by A and the erosion of X° by B°, that is,

X o (A, B) = (X @ A) mn (X° o B),

and R(y) is a set of extremity pairs of the closed
intervals contained in the kernel of y (see Secticon 3.1 for
the definition of a closed interwval). Furthermore, as in
the case of increasing mappings, a dual representation for
t.1. mappings (not necessarily increasing) is derived, in
terms of the infimum of a family of dual elementary
mappings. More preclsely, the dual representation leads to

the expression

w(X} =N {)(0 (A, B): (A, B) € R(W*J} (X € &),

where + o (A, B) and w* are the dual mappings,

respectively, of *+ ® (A, B) and y (see end of Chapter 2 for
the definition of dual).

Cne of the reasons for the general
representation by a supremum to work is that the kernel of
the elementary mapping * & (A, B) is the collection of all
subsets of E Iln & which are in between A and B. Compared
to the kernel of the erocsion by A, this kernel is “"limited
above by B"™ which {s the key idea to set up the general

representation by a supremum.

In his theory of minimal elements, Maragos
has shown that Matheron's representations can be simplified
in the sense that, wusually, an increasing t.i. mapping w
can be represented as the supremum of a smaller family of
erosions or as the infimum of a smaller family of
dilations. In the case of a supremum, for exemple, tLhis

occurs because the kernel of the erosion is decreasing with
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respect to its structuring element (i.e.,
A CA »X(+e0A)>K(+oA)). A smler family of
erosions is then obtained by looking for the minimal
elements of the kernel of w. The collection R(w) of the
minimal elements of the kernel of y is called, by Maragos,
the basis of p (Dougherty’s and Giardina’s basis definition
is slightly different). Under a semi-continuity condition
on ¥, Maragos has proved that the basis RB(y) can be used to
derive a minimal representation for increasing tL.1i.

mappings leading to the expression

w( X) =U{Xe£: Ae:B(w)} (X € ).

In the same way, the proposed representations
for t.i. mappings (not necessarily increasing) appear to be
redundant and minimal representations can be derived. In
the case of a representation by a supremum, this occurs
because the kernel of the elementary mapping * 6 (A, B) is
increasing with respect Lo its pair of structuring elements
x = (A, B), under some defined partial order, denoted {
(i.e., x, { F, 9 X(+ o ‘!:1) c X(+ & xz); see Section 3.1 for
the definition of {). In this paper, the collection B(y) of
maximal elements of RK(y) is called basis of yw and it is
shown that, under the same semi-continuity condition on w,
the basis B(y) can be used to derive a minimal

representation for t.i. mappings leading to the expression
w(X) = UJX & (A, B): (A, B) e .‘E(w)} (X & o).

As in Maragos, the semi-continuity is expressed in terms of

the Hit~-Miss topology.

In Chapter 2 some useful known definitions
and properties of the kernel of a t.i. mapping are
recalled. In Chapter 3 the pair of dual representations for
t.i mappings is derived. In Chapter 4, 2 new class of so-

called inf-separable mappings is introduced, the cases of
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increasing, decreasing and inf-separable t.i. mappings are
studied and, in the former case, the Matheron's
representation by a supremum is derived from the proposed
one. Chapter S contains the definition of t.i. mapping
basis and sufficient conditions under which t.i. mappings
have minimal representations. Finally, in Chapter 8, some

simple examples are given to itllusirate the itheory.

The material in this paper is original except

the one in Chapter 2.



CHAPTER &2

TRANSLATION INVARIANT MAPPINGS

All the main results in this chapter can be
I'ound in Matheron (1875). They are presented here for the
sake of completeness and because of their fundamental role

in this paper.

Let. & be a non empty collection of subseis of

a non empty set E, that is, & < P(E), 'I’.;d be the the set of

all mappings w(+) or, simply, v from & to P(E) and < be the
partial order for T.;J defined by

! w4 C X)) X < .
2 ¢ W rf wlk]( < wZ(X) ( )

The poset (‘I‘_b,. <) Ils a complete lattice, If

n {zpi: i e I} and U {wp‘i: i e I} denote, respectively, the

infimum and supremum of the family {zpi: i e I} of mappings

in ¥ ., then

R
n {V’i’ i e I})(XJ

] wi()(): i e I} (X € &)

and

u {wi: ie I})(X) U {wi(}(): i e I} (X € #).

In this paper, an important subclass of Wﬂ is
studied, when the set E is an Abelian group with a binary
operation, denoted +, and a zero element, denoted o. Some

preliminary definiticons are first recalled.

Let h €« £ and X € P(E), then the set X given

h
by



Xh={ueE:u=h+xandxe){}
or, equivalently,
Kh={ueE:u—heX} (2.1}

is called the translate of X by h. In particular, Xc = X.

For any & ¢ P(E) and h € E, let .ﬂ'h denote the

collection of translates of the elements of & by h, that

is,

.ﬂ‘h {X e P(E): K_h e .ﬁf}. (2.2)

In particular, .do = .

For any h € E, (.ﬂfh)_h = 4 and
A C A e ‘ﬂr; C "’h' This implies that intersection and union

conmute with transliation, that is,

n = n .srf)h and U = (Y ﬂ)h. (2.3)

The collection # ¢ P(E) is said to be closed
under translation iff for any h € E, J:fh = 4.

Let & < P(E) be closed under translation. A
mapping w from & to XP(E) 1s sald te be translation
tnvariant {(t.1.) iff

w(}(h} = (w(}())h (X « &, h € E).

Let i.;:f denote the set of all the t.i. mappings
from & (closed under translation) to P(E) '(iﬁ, C \I-fd). From
(2.3), the infimum and the supremum of any family of t.i.
mappings are t.1. mappings. Therefore, the subposet (éd. <)

is also a complete laltice.
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Let HK(+) be the mapping from Q.:# to P(s)
defined by

K(y) = {X € & o e w(}.')}, (2.4)

for any y = iﬂ. K(w) is called, by Matheron, the kernsl of
w.

In what follows, it is proved that the
mapping X(+) is a lattice isomorphism (i.e., a
lattice-morphism and a bijection). Let us recall first the
following important property of the kernel of a t.i.
mapping.

PROPERTY 2.1 - Let & c P(E) be closed under translation,
be a t.i. mopping from & to P(E) and K(y) be its kernel,
defined by (2.4). For any X € 4,

x € p(X) iff X e (gf(w))x- : a

PROOF: For any X € #,

from (2.1, x € y(X) & 0 € (w(XJ)_x.

by t.i. definitien, - a e w(X__x).

from (2.4). ﬁx_xeffi(wJ.

from (2.2), o X e (%(w))x. 5]

Let ¢ be the mapping from P(A) Lo lllﬂ defined
by
qb,g()() = {x e E: X € Bx} (X € #), (2.58)

for any € € P(H).

This way of constructing a mapping from & to
P(E) is useful in the study of the properties of the

mapping K(+).
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PROPERTY 2.2 -~ let & < P(E) be closed under translation, y
be a t. 1. mapping from & to P(E) and ¥y) be its kernel,

defined by (2.4), then the mapping (bng) from & to P(E),

defired by (2.8) (with € = K(y)), is y, that is,

Poxc vy = ¥

or, equivalently,

w(X) = {x e E: X € (9{(?#))}{} (X e ). o

PROOF: For any X € A,

£ (2. 8 - . .
from (2.8), ¢9((V’) {x < E: X (gf(w))x}.
by Property 2.1, = {x cE: x e w(}()}.

= p(X). a
LEMMA 2.1 - Let & < P(E). The mapping K(+) from a.ﬂ to P(HA),
defined by (2.4), s injective Cone to onel. a

PROOF: Property 2.2 is a sufficlent. condition for Lhe
mapping K(+*) to be injective (see Property 6.3 p. 14 in
Dugundji (19861}). o

The mapplngs qbg from & Lo P(E), defined by
(2.5), have the following property.

PROPERTY 2.3 - Let & ¢ P(E) be closed under translation and
€ ¢ . The maping ¢8 from & to P(E), defined by (2.5), s
t.i., that is, qbg -] ﬁﬂ. and its kernel, de{ined by (2.4),
is €. that 1s,

EK(¢>8) = g a



PROOF: 1. For any x € E and X € #,

from (2.8), ' ¢>8(Kx) = {u < E: Xx e E’u}.

from (2.2), = {ueE: X e'&u - }.
from (2.95), = {u € E: u - x e« ¢gCXJ},
from (2.1, =

(¢8(X)Jx.

that is, @, is t.i..

2. Fraom (2.4),

':?((qb,g) = {X e P(E): o € ¢8(X)}’

{2-: e P(E): o e {x e E: X e 8}(}}.

frem (2.9},

={Xe:P(E):X€-:8}=E. o
LEMMA 2.2 - let & ¢ P(E). The napping K(+) from ﬁﬂ to P(H),
defined by (2.4), is surjective Contol. (a}

PROCF: Property 2.3 is a sufficient condition for the
rapping XK(+*) to he surjective (see Property 6.8 p. 14 in
Dugund ji (18968)). o

LEMMA 2.3 (Matheron (1975}) - Let 4 < P(E) be closed under

translation. The mapping K(+) from & to P(H), defined by

&
(2.4), is bijective. o

PROOF: This 1s a consequence of Lemmas 2.1 and 2.2.

a

The following lemma states another important

oroperty of (-+).
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LEMMA 2.4 - Let & ¢ PE). the mapping K(+) from iﬂ to P(A),
defined by (2.4), is increasing tow-sided, that is, for any
¥, and v, tn ﬁﬂ, ¥, < ¥, ® 9’((:;;1) C 9((:;:2). n

PROOF: 1. The only if part: wi()() C WZ(X) (X € &) implies
that for any X e%(wt). from (2.4), o Ewi()() C ?p‘z(x).
which proves, from (2.4), that X e 9’((1;:2) and, consequently,
'Juwi) < B‘(WIZJ.

€. The if part: let X € & and x e wl(}{). then, by
Property 2.1, X € {%(wt))x < (Q{(wz))y. but this implies, by
Property 2.1, that X & wz()() which proves that
wi(m C WZ(X). | ]

The posets (53‘. <) and (P(A), <) are complete
lattices, hence 2all the above lemmas, relative to the

mapping ¥(*}, can be resumed in the following lemma.

LEMMA 2.8 -~ Let o ¢ P(E) be closed under translation. The
o onte P(A), defined by {(2.4), (s a

lattice-isomorphism. o

mapping K(+) from &

PROOF: Lemmas 2.3 and 2.4 together are equivalent to say
that X(+) is a lattice~isomorphism (see Lemma 2 p. 24 in
Birkhoff (1967)). a

Let {wi: ie I} be a family of t.i. mappings

from & to P(E). The above Lemma 2.9 says in particular that

KL {wi: i e I}) U {%(wi): i e I}

and

"

(N {wi: i e I}) N {9((1#1): i e I}.

In other words, the kernel of the supremum (under <) of a
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family of t.i. mappings is the union (or supremum under )

of the set of the corresponding kernels.

Before ending this chapter, important t.i.

mappings are given and some duality properties recalled.

let o ¢ P(E) be closed under translation. If
¥, and ¥, are two t.1. mappings, respectively, from & to
P{E) aad from P(E) te P(E), then w, the composition cf ¥,
and ¥, that is, y = v, o ¥, ig a t.i. mapping from & to

P(E). This can be seen as follows: for any X € & and h € E,

w(xh) w,(w ( Kh)).

by t.i. definition,

w,(Cy (X)) 00

by t.i. definition,

(wz(w1(XJ))h'

(w(}())h.

Let & < P(E), and CJJ the mapping from &« to
P(E) defined by

cﬂx= er:sz}. (2.6)

fer any X € #. C.?‘(E)X' the complementary set of X, is

denoted X°. Let & be the image of &« by C , that is,

K|

< = €l = {x e P(E): X° e xf}..

In particular, ®S(E)* = 2(E).

Let & c P(E) be closed under translation,
then, from (2.8), for any X € #,

CJJX= x € E: }((—;{Ye.ﬂ’: oe:Y}x}.

Therefore, by identifying with expression (2.5,
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g = {Y € & o e Y} and, by applying Property 2.3, Cd is a

t.i. mapping.

The t.i. property for C

» implies that A is

closed under translation, for
A = (C _d#), = C =C A= o
h- (CgPp = Cg¥y = C? = 9.

Let d‘ and .dz c P(E) be closed under

translation. Let v, and v, be two mappings from,
respaectively, .di and J:fz te P(EJ. ¥, and y, are sald to be

" .
dual iff .ﬂ1 = .ﬂz or, equivalently, .fdz = .ﬂ: and
v, = C.P(E} ° ¥, ° Cﬁ; or, equivalently,

¥, = C?(E) R Cd. In other words ¥, and ¥, are dual

iff

t

w (XD (wz(x%)" (X e &),

The dual mapping of a mapping w from & ¢ P(E) to P(E),
denoted w*. is defined by

w
¥ o= Cppy o ¥ e
e
Hence, ¥, and w, are dual iff ¥, = w, or. equivalently,
L3
L7
If  is a t.i. mapping ithen, by composition

E ]
of t.i. mappings, ¥ is also a t.i. mapping.

Furthermore, if ¥, and w, are two mappings
from & to P(E), then, by Morgan’s law, the dual of their
supremum, under <, is the infimum, under <,.of their dual,
Lthat is,

L ] » ]
(p, Lw)) =¥ Mw,.
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PRCPERTY 2.4 - Let &  and .nfz < P(E) be closed wunder
translation. Let ¥, and v, be two t.i. mappings from,
respectively, ﬁa and ﬂ; to P(E) and let ﬁxwi) and ﬁxwz) be
thelr respective kernel, defined by (2.4), then v, Ty, iff

-— * <
.afl = .ﬂ'z and X e 9((:;11) - X = 9'((1#2) (X € .ﬂ'l). o

FROOF: 1. For any X « ﬁﬁ'

from (2.4), X ng(lpi) 0063}11(}();
by dual definition, & 0 € (yuz(){c))c.
G0 e wz(xc).

from (2.4}, o X e fK(wz).

2. For any X e .#1,

by Property 2.2, u;(X) = {x € E: X e (%Iwi))x}.

by assumption,

{x e E: X° & (Kly ) }.
2" "%

<
{XEE: Xce(fK(vJ))}.
2" "%

by Property 2.2, (wz()(c))c. o

The Minkowski addition @ (Minkowski, 18003;
Hadwiger, 1857} is defined in P(E)} by

A$B={XEE: x=a+b,aeAandbEB}.

let A e P(E), the symmetrical set of A,

denoted K. is:

K = {% e BE: —-%x e A}.
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let & ¢ PE), X e€e # and A € P(E), the set
X ® A is called, by Matheron (1975), the dilation of X by
the structural element A. For Haralick et al. (1987) and
Giardina and Dougherty (1988) the dilation of X by A is
simply X @ A. The set X & A can be expressed in the form:

¥ e A = {x € E: XA a}. (2.7

The mapping * @ A from & to P(E) is called the dilation by
A

The dual mapping of + @ A from & to P(E) is a
mapping from 4" to P(E), dencted - & A and called, by
Matheron (1975), the erosion by A. For Haralick (1987) and
Giardina and Dougherty (1888) the definition of erosion is
the same, but Haralick denotes it simply as * @ A. In other
words, the symbol © has another meaning and it can be
observed that Haralick’s dilation and erosion are not dual,
‘n the sense given above. The et X & A ié called the
erosion of K by the structural element A and can be
expressed Iin the form:

c
X o A {# e E: X*n L 9} ,

{x e E: Ax < X}. (2.8)

The dual property leads to the formula:

[~

(X ® A  =X"e A (Y e )

{with Haralick's dilation 2and erosion definition the

corresponding formula is: (X & A)S = X% e A).

Letl &f ¢ P(E)} be closed under translation and
A e PE), from (2.7), for any X = 4,

XKo@ A= {3 € E: X e {Y e d: ¥ N A= a}x}.
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Therefore, by identifying with expression (2.8),
g = {% e A: Y N A& 0} and, applying PFroperty 2.3, the

mapping *+ @ A from & to PE) is t.i.. By the duality
property, the mapping * e A from & to P(E) is also t.i..

From (2.7} and (2.8) the kernels of the

dilation and the erosion from & to P(E) are:

K(+ @& A)

{% e &g A nNAF ﬂ}

and

K+ & A)

{X e A Ac X}.

The erosion and the complemented dilation of
a set X are special cases of the general Hit-Miss mapping,
due to Serra (1882). Let A and B be two disjoint subsets of
E, then the Hit-Miss transform of X by the ﬁair (A.B)

.

25
Lhe set:
X @ (A, B) = {er: A <X and Bxcx‘:}. (2.9)
From (2.8),
X @ (2, B) =(X @ A) n (X @ B) (X e ).

Let & ¢ #(E)} be closed under translation. The
mapping * @ (A, B) from & to PE} is t.i., as infimum of
ttwo t.3i. mappings, the second cone being the composition of

Lwe L.i. mappings: the complementation and the erosion.



CHAFTER 3

REPRESENTATION THEOREMS FOR TRANSLATION INVARIENT MAPPINGS

3.1 ~ REPRESENTATION BY A SUPREMUM

For the moment, let E be any non empty set.
Because of the nature of the t.i. mapping representation
problem some definitions have to be made relatively to the
elements of P(E) x P(E).

Let { be the binary relation between pairs in
P(E)? defined by

(AL B { (A, B)Iff A > A and B < B, (3.1)
The relation {, defined by (3.1), is a partial order for
PE (i.e., { is reflexive, antisymmetric and transitive).
The pairs (E, @) and (8, E) are, respectively, the smallest
and greatest pairs in PE)% The supremumn ana infimum of
two pairs (Ai. Bx) and (A?, Bz) in E)? always exist, are
denoted, respectively, by (A1' Bi) v (Az’ Bz) and

CA . B‘) N (Az, Bz). and can be expressed as:

(A, B v (A, B) (A mA, B UB.))
1 1 2 2 1 2 1 2

and
(A1) Bi) L) (AZ’ Bz) = (Ai U Azp B[ ("I Bz).
From Lthe above definitions,
(Ai. BiJ { (Az, Bz) ey A1 o Az and B1 - Bz
A" A =@ and B UB. = E
& A AT 1 2
=3 < _
« (Air Bi) A4 (Azp BZ) - (gs E)I
hence,

- 19 -
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(A, B){ (A, B) e (A, BY) v (A, B) = (0@, E)
1 1 2 rd H i 4 2

(3.2)
Furthermore (2(E)?, {) is a complete lattice.

Let & denote a subcollection of P(E), that
is, & ¢ P(E), and E)m, be the subset of &~ given by

de={z:e.sﬂ2: AX e (X, X) {g},
or equivalently,

5ﬂ={(A. B) e & ACB}.

For g,ﬁ to be non empty, & must contain at least one pair
(A, B) such that A ¢ B (e.g. (®, E)).

From (3.1), %sz is a dual ideal of (&7, {).
that is, ifge.ﬂzandxebdtheng { vimplies p e %,

Let * € g?(E) and J.’; be the subcollection of
& given by
xp = X e (x, X){Js} (3.3)
or, equivalently. with » = (A, B),
XEJA. B)={Xeﬂ: ACXCB}.

If » is restricted to be in g;ﬂ then x’; is
simply denoted x}, and called closed interval or spindle
limited by 2. x is the extremity pair of the closed
interval. If 2 = (A, B), xz: is simply denoted [A, B] and
called the closed Interval [A, Bl.
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The sets A and B are in xg (i.e., x}, always
exists) and are, respectively, the smallest and the

greatest elements of xs. In particular, for any X e &,
*ex, x3 7 {x}

Let us now introduce one of the most
important pieces for the t.i. mapping representation. Let

«# < P(E) and R, be the mapping from P(#) to P(%M) defined
by

Rg {3: e %ﬂ: .'JC? < 8}, (3.4)

for any 8 € P(#) or, equivalently, from (3.3),

Ry, {(A. B) € § ; [AB) ¢ e}.

R

intervals [A, B}l are contained in £ and it verifies:

e is the set of pairs (A, B) such that the closed

X € € iff (X, X) e Rg. (3.8)

therefore, if ¥ is non empty, Rg ,defined by (3.4), always

exists., It verifies also:

if (A, B) e R“g then A, B e &. (3.8)

Let & ¢ P(E) and .?ff be the mapping from

P Sy gy to P(H) defined by

o A
Rg = U {x; r e (s}. (3.7)

for any & e .‘P(i’)p(E)).

The restriction of .Rff to ?(5_,4) is denoted R _.
Such mapping is useful to study some properties of the

mapping ® .



Y.

Let us derive now one of the most important

results of this chapter.

PROPERTY 3.1 - let € ¢ & c P(E) and Re be the set defined
by (3.4), then the collection :RR y defined by (3.7, with
¥

G =K., is &, that is,
ﬁR = g, (]
g .
PROOF: From (3.4) and (3.7, with € = Rg)’

1. Let X e then there exists » € €, such that X e X .
Rﬁg g x

From (32.4), for such g, BCZ: c¥é hence X € ¥ and,
consequent]y, C E.
*w,

2. Let X € € then from (3.5), £ = (X, X) e Rg;' on the other
hand, Y e I(Y ) for any Y € of , therefore, X € X_ with

X e Rg, hence X e |J {xg: L3 IS Rg} and, consequently,

E‘cﬁq. o
e

The Property 3.1 is, exactly, what is needed

to derive, in the naxt sesction, the representation thecrem.

This property gives also more insight on the
mapping R, 2 since it proves that 1t is injective (see
Property ©.3 p. 14 Dugundji, 1966), that is, the set of

pairs R, caracterizes, uniquely, the collection 8. On the

g
other hand, a counter example can be given showing the

existence, for a given &, of a subset ® of 554 such that.:

Together with Property 3.1, this proves that the above



- 723 -

mapping ® is not surjective.

The counter example can be build in the
following way: let A e P(E) and 8A be the collection
defined by

8A = {% e P(E}: X = Ax and x € E},

in eother words, BA contains A and is closed under

translation. In particular ‘89= {B} and 8E= {E} Let
1

A = 89 + 8A + EB + 8E with Ac B cE and A # E. The set &
is also closed under translation (this is a necessary

condition to build t.i. mappings which domain is o).

Let & be the set. {(A, E)}. from (3.7),

R = LA, El and, from (3.4),
R[A. g1 - {FA. X) e 5ﬁ; X = EB} + {fB, B), (B, E), (E, E)}

which contains, in the proper sense, {(A. E)}. that
is, € In other words, in this example

%4 E N
R

PROPERTY 3.2 - Let 81 and ‘ezcdc.‘P(E) and R, be the
mapping defined by (3.4), then

RN Ry =Ry - a
1 2 1 2

PROOF: From (3.4),

r e R‘ﬁih ﬁgz - x; < 81 and JCZ: c 82,

1+ stands for the union of disjoint setls.
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sz:ci‘,’inﬁz.

Trom (3.4), ez:eﬁg ne: a
1 2
The above property shows that R is a
meat —-morphism. Actually, ® is not a join-morphism since,
usually, just the following holds:

14 URB c®

g g U g’

i 2 1 2

From now on, the set E is the Abelian group
of Chapter 2.

Let & ¢ P(E)} be closed under translation and
?ﬂ be the set of t.i. mappings from & to P(E) (see Chapter
2).

In order to derive a representation for y, a
mapping R(+) is now defined as the composition of %(+) and

R, defined, respectively, by (2.4) and (3.4), that is,
Vi) =8 o KO+,

-

In other words, R(+*) is the mapping from éd to ?(5‘#)
def'ined by

Riy) = Eﬁ'((w)’ (3.8)

for any w € & , or, equivalently,

K}

Ryl = {33 € i’)d: IZ: C 5'((1#)}.

or, from (3.3),

: r
Riy) = {3: e 5;«1: (X, X) { & =X € K(y) (X .4)}.

Some of the properties of the previous

section can now be applied to the case of t.i. mappings.
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PROPERTY 3.3 - let 4 c P(E) be closed under translation, w
be a t.1. mapping from & to P(E) and let K(y) and R(y) be
the sets defined, respectively, by (2.4) and (3.8) and R,
be the mapping defined by (3.8), then

Kyl = :RR(?,V)' a

PROOF: By Property 3.1 (with 8 = ®(y)),

*=

K )
from (3.8}, = RR(’#)' o]

K(y)

It has been seen in Chapter 2 that the
infimum of two t.i. mappings is alsc a t.i. mapping. The
following property about R(+*) will be used in Chapter 8.

PROPERTY 3.4 (R(+) is a meet-morphism) - Let & < P(E) be
closed wunder translation, wtand ¥, be two t.1. mappings
from & to P(E) and let R(+) be the mapping defined by
(3.8), then

R‘fwi M wz) = !‘ct(wi) n 5“5(’#2)- (a}

PROCF: This is a consequence of Lemma 2.5 and Property 3.2,
with E‘i = 9{(:,:/1) and 82 = 9((3,02). (=}

A new elementary t.1. mapping is now
introduced which plays, because of iits kernel property, a

fundamental role in the t.i. mapping representation.

For any pair x = (A, B) in g,d and x € E, let
x denote the pair (A_, B ). If & is <closed under
x x x
transliation then *, € %.;J' Let ¥ & 5:9(*2) and * & % be the
mapping from & to P{(E) defined by
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Xoeyx = {er.': (X, X2 4 ?x}' (3.9)

for any X € #. Writing # = (A, B), an equivaleni expression

ise

XO(A.B)={><EEI:ACX<:B} (X e #).
» X

PROPERTY 3.5 - Let & < P(E) be closed under translation,
F €%y, and x’; be the collection defined by (3.3). The
mapping *© © X from o4 to P(E), defined by (3.9), is t.i. and
its kernel, defined by (2.4), is:

9((-@;)=x:. a

PROCF: For any » € ﬁ.‘P(E)' & < P(E) and X € «,

Xo;:{er: (X, X){}‘x},

from (2.1), =X e B (X_ . X_ ) { 1:}.
from (3.3), = {er: X exﬂ}.

from (2.2),

i

{erZ: Xe(x‘:)}

<[
Therefore by identifyving with expression (2.85), € = L’C':.
and, by applying Properity 2.2, * & £ is t.i. and its kernel
is:

writing ¥ = (A, B), an equivalent expression for the kernel
of « 0o r is:

M+ & (A, B))={Xe#: ACXCB}=AB.
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On the other hand, for any % e %?(E)’ from (3.8),

R(-o;):{ge%d: (X, ¥) {9 aX, X){z (xem}
={t::e%d: t){z:}-

Figure 3.1 shows one particular element of
the kernel of * & (A, B) for two given subsets A and B of
E.

A B

rig. 3.1 - Example of a subset X belonging to the kernel of
- & (A, B). X must contain A and miss BS.

THECREM 3.1 (Representation theorem) - Let & c P(E)} b&e
closed under transleiion, * & X be the mapping from £ to
ME), defined by (3.9), ¢ be a t.t. mappiné from & to FP(E)
and Rly) be the set defined by (3.8), then

w:Ll{'OZ-’»:Z?ER(‘P)} o
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PROOF: By Property 3.3 and from (3.7, with € = ®(y)),
K(y) = U {xx: r e R(r.u)}.
by Properily 3.5,
= | {9‘((° 6 x): » e R(w)},
by Lemma 2.5,

w:u{oog::z:eﬁtw)} o

This result is important because it shows
that the mapping +* & » is a prototype of any t.i. mapping.
In other words, any t.i. mapping c¢an be seen as the

supremum of a family of elementary mappings * o X.

3.2 —- REPRESENTATION BY AN INFIMUM

For the moment, let E be any non empty set.
Let & ¢ HE)\ F € $p ) and y;’ be the collection of all X
in & such that (X, X} v 2 # 1, that is,

3/2:={Xe£f: (X, X)vg.‘#i}. (3.10)

where 1 stands for the pair (@, E). If 2 is restricted to
be in !;‘,q%f then :2/: is simply denoted 3/2:.

PROPERTY 3.6 - Let o < P(E), ¥ € $p ) and X';and 3/; be the
collections defined, respectively, by (3.3} and (3.10),
then, for any X € #A,

X e I‘gf @ X ey
& p =
or, eqguivalentily,

e
){cex‘; o X e a

x
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FROOF: For any X € o,

from (3.3), Xe.’l‘;ﬁ(){. X4 x

from (3.2), o (X5, 15 v:: = i
»*

from (3.10), o X e 3/‘:.

or, equivalently,

from (3.3), X = x;’ @ (X% X f =,

from (3.2), o (X, X) vr=it,
=

from (3.10), er ey . a]

x

From now on, the set E is the Abelian group

of Chapter 2.

et o « P(E} be closed under translation. A

new elementary t.1. mapping is now introduced.

Let 2 € %?(E) and let + @ ¥ be the mapping
from o Lo P(E) defined by

Xng{er: (X, X)vxx#i}. (3.11)
for any X € &. Writing ¢ = (A, B), an equivalent expression
for {3.10) is:

XQ(A.B)={er:XﬁAx#(aorXUBx#E} (X € &).

PROPERTY 3.7 - lLet & ¢ P(E) be closed under translation, ¥
be in $ oy and 3;‘: be the collection defined by (3.10). The
mapping * © ¥ from & to P(E), defined by (3.111}, is t.{1.
and its kernel, defined by (2.4), is:
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9((-93)=3/’;’. o

PROCF: For any x € 3’5.7’(52)' s c HE) and X ¢ &,

X o2 {er: (X.X}vgx#i}.

X

{% € E: X“x € yi},

, A
{x € E: X € (3/2:))(

from (2.1), {x € E: (X_, X_)vg= i}.

from (3.10),

trom {(2.2),

Therefore, by identifying with expression (2.5), € = 3/;,

and, by applying FProperty 2.3, * @ * is t.1. and its kernel

is:

9(('02:)=3fd. ‘ a

x

Writing 2 = (A, B), an equivalent expression
for the kernel of *+ @ 2 is:

K(+ © (A, B)) ={Xe.#: XﬁA#@orXUB#E}.
On the other hand, for any ¥ g;y(m, from (3,.8),

R+ 0 x) = {0625”: (X, X2 { v+ (X, X vgp=i (XE.#)}

={t)e$:>ﬁ,= ovac#i}-

Fiqure 3.2 shows two particular elements of
the kernel of * © (A, B} for two given subsets A and B of
E.
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Let » & %:D(E) and & ¢ P(E) be closed under
translation. By Properties 3.5 and 3.7, the kernels »f

*+® ¥y and * @ » from, respectively, & and 4 to P(E) are x‘;
»»

and g/: . Therefore, by Properties 2.4, and 3.6, * @ ¥ and
* @ » are dual mappings. Making & = P(E), this leads to the

formula:

(Xexr)=X02xr (X ePE). (3.12)

m"""‘-—-

(b)

Fig. 3.2 - Example of two subsets X belonging to the kernel
of » @ (A, B). X must hit A (a) or not contain
B (b).

Let & < PE) and let }"‘f be the mapping from

?(5?(5:)) to P(«) defined by

K g
= : 2.13)
2 =n {3/2:. r e ts:}. (
for any ® € P(§?(E)). The restriction of .J"‘fd to ?(5”) is

dencled 7.

PROPERTY 3.8 — Let & < P(E) be closed under translation, w
* 0
be a t.1. mapping from s to P(E), y bde its dual, XK(y) and



- 32 -

»
Ry ) be the sets defined, respoectively by (2.4) and (3.8)
and #¥ be the mapping defined by (3.13) then

oo
K(y) = J’R(wﬁ). a

PROOF: Let € = R(y"), for any X e &, by Property 2.4,

X € K(y) @ X & K(yp' ),

by Property 3.3, @ X a R
because & € P(H *) o X e RJ
at’r o
e e
from (3.7, o X exz: for any » € §,
by Property 2.7, o X e 3{; for any ¥ € ®,
from (3.13)], w X e J’G. u]

It can be observed that R(+), in Property

3.8, is a mapping from Qﬂﬁ to .‘P(?_’)ﬂ*) and if & = & then
"

’ = * .

Riy ) e P(%ﬂ) and K(y) fk(w 3

THEOREM 3.2 (Dual representation theorem) - lLet & < P(E) be
closed under translation, + @ 2 be the mapping from & Lo
P(E), defined by (3.11), yw be a t.i. mapping from & to P(E)
cened .‘R‘(w*) be the set defined by (3.8), where w* is the dual
mapping of w, then

w=ﬂ{- e x: seR(w"J}-

PROOF: By Property 3.8 and from (3.13, with € = (¥ ")),
K(y) = M {3/? X e R(w‘)},

by Property 3.7,
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=N {9{(- @ X)) X e R(w*)}.

by Lemma 2.5,

w =1 {azc geﬁ(w*)}. a

This result is important because it gives an
alternative way to represent y. To represent y one form or
the other is chosen, depending on which of the set R(y) or
R(W*) is simpler.

The sets X o ¥ and X @ » appearing 1n the
reprezentation of a t.1. mapping in Theorems 3.1 and 3.2
can be written, as it can be seen below, respectively, in
terms of intersection (this is the reason for using the
symbol &) of erosions, and of union (this is the reason for

using the symbol @) of dilations.

et A, Be P(E) and 1let X o (A, B) and
X © (A, B) be the two sets given by, respectively, (3.9,
with ¥ = (A, B)) and (3.11, with ® = (A, B)), then

X6 (A B)=(X8A)Nn(X*eB) (X e (3.14)

X @ (A, B) = (X ® A) u (X" @ BS) (X e o). (3.15)

This can be proved in the following way:

from (3. g),

X & (A, B) = {x c E: Ax c X and X < Bx}’

= {x e E: A < X and BS ¢ Xc}.
% x

{er‘.: A cX}n{er: Bccxc}.
x x

it
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from (2.8),
= {X ® &) n (X* & B)
From (3.12),
X @ (A, B) = (X° o (A, B)S,

((X® @ &) n (X & B°))®,
by Morgan’s law and duality,

= (X ® A) u (X% e B%).

In terms of the Hit-Miss transform of X, from
(2.9) and (3.9),

X o (A, B) = X @ (A, BS) (X e #).



CHAPTER 4

INCREASING, DECREASING AND INF-SEPARABLE TRANSLATION
INVARI ANT MAPPINGS

In this chapter E is the Abelian group of
Chapter 2.

The objective of this chapter is to study the
speclal cases of increasing, decreasing and inf-geparable
t.i. mappings and to show in the former case that the
representation theorem, given by Matheron (1975), 1s a
speclial case of Theorem 3.1. A mapping ¥ from # < P(E) to
P(E) is sald to be increasing iff

for any X and 2 € &, X ¢ 2 implies w(X) < w(2),
decreasing iff

for any ¥ and 2 € &, Z2 ¢ Y implies w(Y) < w(2)
and inf-separable or spindle-—shapedl iff

for any X, Y and 2 € #,

X cZc¥ implies w(X) n w(Y) c w(2).

From these definitions, any increasing and

decreasing mappings are inf-separable mapplngs:

n

X cZcY implies w(X) n w(Y) w(X) < w(2)

if w ils increasing,

X cZc¥ implies w(X) rn »(Y) w(Y¥) < w(2)

if y is decreasing. But the contrary is false.

lThe french word “fuselé: translated here by “spindle-
shaped" has been suggested to the authors by 6. Matheron.
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PROPERTY 4.1 - Let & ¢ P(E) be closed under translation, w
be a t.{. mapping from & to P(E) and ¥ (yw) be its kernel,
defined by (2.4), then

1. y {8 increasing tff K(y) is a dval ideal of (A&, &)
Cit.e., if X € K(y) and 2 € &, then X c 2 implies that
2 € K(y);

2. y is decreasing tff K(y) is an ideal of (A, <) Ci.e., if
Y € K(y) and 2 € &, then 2 ¢ Y implies that 2 € Kly));

3. ¢ is inf-separable 1iff K(y) s such that if X and
Y € K{y) and 2 € o, then X ¢ 2 c Y implies that 2 € K{y). o

PROOF: X and Y € ¥(y) implies, from (2.4), that o e »(X)
and y(Y). Therefore, for any of the three tLypes of t.1,.
mapping ¢ € y(2), i.e., from (2.4), 2 € K(y). Conversely.

1. Let X ¢ 2 and x € w(X). By Property 2.1 X € (EK(w))x and
under the dual ideal assumption on ¥{y), Z € (EK(w))x, that
is, by Property 2.1, x € w(Z).

2. Let 2 c Y and x € w(Y). By Property 2.1 Y e (%(w))x and
under the ideal assumption on X(w), Z e (9‘((1}1))){. that is,
by Property 2.1, x € w(Z).

3. Let X cZ cY and x € w(X) n y(Y). By Property 2.1 X and
Y (EK(w))x and under the assumption on (y), 2 € (H((yx))x.
that is, by Property 2.1, x € w(23J. : a

The kernels of increasing or decreasing

mappings satisfy the property of the kernels of
inf-separable mappings.

PROPERTY 4.2 - lLet & < P(E) be closed under translation, wy
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be a t.t. mapping from # to P(E) and let X(y) and Kiyp) be
the sets defined, respectively, by (2.4) and (3.8). If X
and ¥ € K(y), and 2 € &, then

1. X Cc Y implies (X, Y) € R(y) iff v is inf-separable,
2. X <2 implies (X, Z) € R(yp) iff y is increasing,
3. 2 Y implies (2, Y) € R(y) iff p is decreasing. o

PROOF: From (3.3), the statement X ¢ 2 ¢ Y implies that
2 € K(y) is equivalent to (X, Y1 ¢ ¥(y). Therefore, by
Property 4.1, part 3, if any X and ¥ € (¢}, X < Y, then
[X, Y) ¢ K(w) iff w is inf-zseparable. Consequently, the
statement 2 € K(y), (X ¢ 2), is equivalent to [X, 21 < X(y)
and the statement 2 € ¥(w), (2 ¢ ¥}, 1is equivalent Lo
{2, Y] ¢ K(yw). Therefore, the result, part 2 and 3, follows
by Property 4.1, part 1 and &. o

PROPERTY 4.3 - Let # ¢ P(E) be closed under transliation, w
be a t.i. mapping from # to P(E) and K(y) and R{yw) be the
sets defined, respectively, by (2.4) and (3.8), then

1. Rlyp) = () x H) N 2’)” iff wis increasing,

2. ®ly)

i

(A x K(y)) N 5M iff ¥ is decreasing,

i

3. Ry (XK () x K{p)) N %ﬂ iff ¢ is inf-separable. o
PROOF: If (A, B) € R(w), from (3.6, with 8 = X(y)) A and
B e (), that is, ®(y) c (K(y) x K(y)) N 25”. Conversely,
by Proposition 4.2,

1. with X = A and 2 = B, (A, B) e (X(y) x &) N 2)_’4 implies
that (A, B) € () Liff ¥ is inecreasing,
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2. with 2 = A and Y =B, (A, B) € (& x K(wd)) N ﬁﬂ.implies
that (A, B) € ®(y) iff ¢ is decreasing,

3. with X =A and Y =B, (A, B) € (K(y) x K(y)) 5_,1
implies that (A, B) € R(yp) iff y is inf-separable. D

Let » be any t.i. mapping from & to R(E),
R(y) be the set defined by (3.8) and KA(w) and 5’(8(1,0) be the
collections defined by

%é(w)

]

{x e o (A, X) e R(w} (4.1)

and

{% e #: (X, B) € R(w)}. (4.2)

Ke(y)

for any A and B € K(y). From (3.6}, if (A, B) € R(y) then A
and B € X(¢), the kernel of y defined by (2.4). Therefore,
by using %%Tw). the proposed representation for y becomes,
by Theorem 3.1 and from (3.14),

w(X)

]

U { U {(x o A) n(X° e B): B e 9("(:;»)}: Ae %(w)}

§] {(X e A) nU {Xc e B°: B e %A(w)}: A e ‘X(W)}
(X € o). (4.3
Comparing with Matheron's representation, the

proposed representation for general t.i. mappings contains

the extra term:
U IXS e B®. B & %A(w)}

which plays the role of a "“correction term"”. Similarly,

by using %E(w).
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wix) = U {(x° e BYNU X oA Ae 9‘3“’”}‘ B e amu)}

(X e ). (4.4)

THEOREM 4.1 - Let & ¢ P(E) be closed under Ltranslation,
+ © A be the erosion by A from 4 to P(E), defined by (2.8),

wbe a t.i. mapping from A to P(E) and K(y) be its kernel,
defined by (2.4), then

1.9y = U {- o A: Ae 9'((:;/)} if ¥ 15 increasing,

2.y = U {-c o B B e %(w)} if w ts decreasing,
3.w=l_l{(°ex)h('c9§°): A.Beg((zy)} if W is
inf-separable. o

PROOF: By Thecrem 3.1 any t.i. mapping can be represented
as in (4.3) and (4.4). Hence, for increasing (respectively,
decreasing) t.i. mappings the result follows from (4.3)

(respectively, from (4.4)) if it can be proved that, for
any X € & and A € K(y),

(X e A c U {xc e BS: B e‘.'l(A(w)}
(respectively, for any X € & and B e X(y),

(X eBY) cU{x e A: A e 9cB(w}).

1. The increasing case: let x e€ X e A or, equivalently,
A cX and let Y =X then A c Y since A c X__,. By
Y4 -x x

Property 4.2, (A, ¥) e R(y) and, from (4.1), Y e %(3), but

Y = )(__x implies that x € X° o Y°, therefore,
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x € U {x° o B BefKA(rp)}.

2. The decreasing case: let x € X° o BS or, equivalently,
X ¢ Bx' and let Y = X_x them Y ¢ B since X_x c B. By
Property 4.2, (Y, B) € R(y) and, from (4.2), Y € SK.B(w), but
Y = X < implies that xeXeoevy, therefore,

x e U {X o A: AEEK'B(w)}.

For inf-separable t.i. mappings the result
follows from (3.14) and by Theorem 3.1 and Property 4.3
since, for any X € & and for any (A, B) belonging to
K(y) x K(y) but not to . (X © AY n (X e BY) = @. o

The above representation for an increasing
mapping in Theorem 4.1 is, exactly, Matheron's

representation.

THECREM 4.2 ~ Let & ¢ P(E) be closed under translation., if
¥ is an inf-separable mapping from & to P(E) then there
exist two mappings v, and v, from A to P(E), respectively
increasing and decreasing, such that v =y N ¥,
Conversely, Uf ¥, and vy, are mappings from £ to P(E),
respectively increasing and decreasing, then the mapping

wo=p Ny is an inf-separable mapping from # to P(E). a]

PROOF: 1. Let X (y) be the kernel of y defined by (2.8). Let

5'(1={Xe.ﬂo': HAeﬁ'((w):Ac}(}

and

9(2-:{1'5.4:33@9((»#):\:.;:3}.
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For any X € 9(1. there exists an A € K(y) such
that A ¢ X, therefore, 9(1 is a dual ideal since for any
X e ﬁa and 2 € &, X c 2, which means that A c 2, implies
that 2 € %i.

For any Y e 9(2. there exists a B € X(y) such
that ¥ < B, therefore, 9(2 is an ideal since for any Y e 9(2
and 2 e &, 2 ¢ Y, which means that 2 ¢ B, implies that
Z € S‘Cz.

Moreover, if X € H(y) then X € 9(1 and 9(2,
therefore, H(y) c 9(1 N 9'(2; if X .‘Kt N Sn"{z then there exist
A and B € X(y) such that A ¢ X and X ¢ B, by Property 4.1,
under the assumption that yw is inf-separable, X € X(y),
therefore 9’(1 N 9(’2 < X(yw). That is K(y) = 57(1 n 9(2. In other
words, by Property 4.1, there exist ¥, and L

respectively, increasing and decreasing such that, by Lemma

2.8, ¢ = ¥, mn ¥,

2. If p = ¥, M ¥, then for any X, Y and 2 such that
Xc2cld, wi()C) < wi(Z) and wz(Y) < wz(Z). therefore

successively,

wi(}() e zpz(Y) < wt(ZJ a wz(Z).

(1.01(}!) gl wz()()) n (?p‘(Y) N wz(Y)) C wi(Z) N WZ(Z)
and
w(X) mnylY) ¢ w(2)

which proves that w is an inf-separable mapping. o

The above decomposition of an inf-separable
mapping in terms of the infimum of increasing and
decreasing mappings is not unique as it can be seen on a

simple example throught the formula:
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(X @ () N (XS & <x, ¥2) = (X @ 0) N (X* & <y>)

(X € P(E))
by taking x and ¥y € E and x # y.

Finally a 1last property for inf-separable
mappings is presented that will be used in Chapter 6.

PROPERTY 4.4 ~ Let ¥, and v, be two L. L. mappings from & lo
PE), respectively, Iincreuasing and decreasing and let
v =y Ny, lLet ffC(wl) and fK(wz) be the kernels of ¥, and
¥, defined by (2.4), and R(y) dbe defined by (3.8), then

Riy) = (fK(rpi) x 9'((w2)) N 2‘,#. o

PROCF: By Property 3.4,
Riy) = R(wl) M R“(wz).

by FProperty 4.3, with o=y increasing and yw = y

decreasing,

= (W(wi) x ) n (A x fK(wz)) ) i‘:ﬂ.

= (9((\#1) X 9((?;!2)) N Sjﬂ. o

If v = ¥, L ¥, wher e ¥, and y, are two L,1.
mappings from W to P(E), respectively, increasing and
decreasing, the above property then holds for the dual

»

* » * *
mappings., since v o=y n v, and ¥, and v, are,

respectively, lncreasing and decreasing., that is,
» Y ® »
Ry ) = (S&(zpl) % EK(zpz)) N 5»3».

Then to represent yw, the dual form of the representation

theorem may be used (see Thecrem 3.2).

Ir ¥, and p, are two L.i, mappings from & to

P(E), respectively, increasing and decreasing, then, from
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Properties 4.3 and 4.4, the following formula can be
derived

(9((1#1) X K(wz)) N 5d =

(W(Wl) M ff((wz)) x.(fi'((wi) N EK(wzJ) o Sj‘,ﬂ.



CHAPTER 5

MINIMAL. REPRESENTATION THEOREMS FOR TRANSLATION INVARIANT
MAPPINGS

5.1 - ALGEBRAIC ASPECTS

For the moment, let E be any non empty set.

PROPERTY 5.1 ~ Let & < PE), £, and ¥, be two pairs in

BP(E)’ x'; and .’ff be the corresponding collections,
‘ 1 <2

defined by (3.3), and let g/‘; and 3{? be the corresponding
i 2

collections, defined by (3.11), then

. . 5 <
- 3 { ¥, implies that I‘: < x": and 3/2; > ,_?,/2: . o

1 2 1 2

PROOF: 1. For any X € #,

from (32.3), }(Erﬂf o (X, X){ r.
¥, 1

by assumption, - (X, X) 4 ¥,

from (3.3), o X ex‘;.

z2

consequeﬁtly, x: C x’; .

1 2

2. For any X € #,

from (3.11), ng/; o (X, X) V$2F"i.
z
by assumption, S (X, X) « P i,
from (3.11), QXG.Zf;.
1
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consequently, :V’d o> 3/"# . a
F, ¥,

PROPERTY 5.2 - Let & < P(E), R‘f‘f and J"J:f be the nmappings

de fined, respectively, by (3.7) and (3.13), and

€ <@ ¢ g,y(E) be such that: for any ¥ € § there exists
e € such that g { 2’, then

g _ oA o A
R(’S"'R(:’ and J"G:-J’G:,. a

PROOF: 1. @' ¢ ® implies, from (3.7) and (3.13), that

i o & &
Rg» € K and Fo € P

2. 2 { & implies, by Property 5.1 (with x = ¥, and
F' o= 8. that

&

x.rd xﬂ A
x < Py and 3/3: > 3/;,.

This leads to the two following resultis.

2.1 Case of J?.”TI: from (3.7), for every X € ﬁg. there exists

B, not only in &, but also in &', such that X erg.
A T -4

consequently, X € ‘R{S" and 'R{S: C ‘R(S"

2.2. Case of J"’:’: from (3.13), for every X € F ",ﬂ, X e 3/”.

9

not only for any v in €', but also in €, consequently,
K4 K K

X e f‘x and J"{s, < J"G:. =}

let &8 ¢ & <« P(E) and Rg be the set defined by
(3.4). It is interesting to note that if ¥ -e RYE and Y € 5.”
then p { ¥ implies that Yy R, In other words, for any
g < &, 9:8

following way: % € RE.’ implies, from (3.4}, that 36‘2: < 8.

i an ideal of {i’\ﬂ, {). This can be proved in the
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Y { r implies, by Property 5.1, that xtJ C I;:‘ Therefore,

x,g < € and, consequently, from (3.4), v € Rg.

From now on, E 1is the Abelian group of
Chapter 2 and & ¢ P(E) is closed under translation. In
erder Lo derive a minimal representation for a t.i. mapping

w from & to P(E), two definitions are introduced.

The first one is the definition of the basis
of . Let (S, =) be a poset, m is nuxiML (respectively,
mintmal) element of (S, £) iff m € S and for any s € S,
s 2 m (respectively, s £ m) implies that s = m. Let R(y) be
the set defined by (3.8) then the set B(y) defined by

Bly) = {gc € gﬂ: X is maximal element of R’(w)} (5.1)

is called the basis of p.

This definition of basis differs from the
ones of Maragos (1985) and Dougherty and Giardina (1988)

who have defined a similar notion for increasing mappings.

The second one is the definition of the so
called condition of minimal representation for w. The
subset B of R(y) is said to satisfy the condition of
minimal representation for y iff for any 2 € K(yw), there

exists x* € B such that g { 2’.

THEOREM 5.1 {(Minimal representation theorem) - Let # < P(E)}
be closed under translation, * & X be the mapping from A to
P(E), defined by (3.9), g be a t.i. mapping from & to P(E),
and let R(y) and Bly) be the sets defined, respectively, by
(3.8) and (5.1). Let B dbe any subset of R(y) satisfying the

condition of minimal representation for w then
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1. w=u{-oac=zce£8};

g&. furthermore, if B(y) (s one of these B, t.e., if Bly)
satisfies the condition of minimal representation for w,

then
B(y) CEB

and

w=U{-oac: z:ezscw)};

by definition y is said to have a minimal representation by

a supremum. o

PROOF: 1. By Property 3.3,

Kyl = 3“(‘#)'
Ly Properiy 9.8 (with & = R(y) and € = B),

='ﬂ!B'

from (3.7, with & = B) and by Property 3.5,

=U{9’((° o x): ge.‘B}.

Then the result of part 1 follows by Lemma 2.5.

2. B(y) 1s contained in any B satisfying the
condition of minimal representation for y since, olherwise,
for any ¥ in B(y) and not in B there should exist © in B
(necessarily distinct of 2} such that ¥ { v, that is, B(y)
should net be the set of maximal elements of R(y), which is

a contradiction. o

The above result is important because
compared to the one of Thecrem 3.1, B(y) may be much
smaller than R{(w’} and, consequently, it leads to an easier

way to represent (or construct) the mapping w. Actually,
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such result works because of the increasing property of
X(+ @ x) with respect to 2, that is,

x, { ¥, implies that X(- o 3:1) c XK(+ o ;2).

which 1is equivalent to Property 5.1. The expression
"minimal representation" introduced in Thecrem 5.1 comes
from the fact that wunder the condition of minimal
representation B(y) appears to be the smallest subset of

RKR(y) that can be used to express y in terms of supremum.

The expression U {- & Xr e !B(zp)} in Theorem 5.1. is

called Lhe winimal representation for the t.i. mapping yw by

a supremum.

The dual form of the minimal representation

by a supremum is now presented.

THEOREM 5.2 (Dual minimal representation theorem) - Let
A& ¢ P(E) be closed under translation, * © % be the mapping
from A to P(E) defined by (3.11), v be a t.i. mapoing from
4 to P(E) and let R(y") and B(y"') be the sets defined by
(3.8) and (5.1), where ?p* ts the dual mapping of w. Let B
be any subset of Ry J salisfying the condition of minimal

. L2
representation for y then

1. v =11 {- Q@ X X e 3}:

d . . . td

2. furtheriore, (f By ) is one of these B, t.e., Tf Bly )
k]

satisfies the condition of mintmal representation for y ,

then
By ) < B

and
w=U{' o x: 2-‘e$(w*)};

by definition y is said to have @ minimal representation by



- 50 -

an 1nfimum. o

PROOF: 1. By Property 3.8,

A
QC(W) - yﬁ(w*)'
by Property 5.2 (with @ = R(w*) and €' = B),
o
= yﬁ,

from (3.13, with & = B) and by Property 3.7,
= ] {K(+* o x): ;5‘8}.

Then the result of part 1 follows by Lemma 2.5,

2. The arguments to prove part 2 are the same as

those given to prove part 2 of Theorem 5.1. o

The expression [] {- Q@ X X e ﬂS(w*)} in

Theorem S5.2. 1is called the minimal representation for

the t.i. mapping y by an infimun.

In what follows the special cases of
increasing, decreasing and inf-separable t.1. mappings are
studied.

PRCPERTY 5.3 - Let ’81 and 82 c A& c PE), 31 and 32 be,
respectively, the set of minimal elemenits of 8‘ and maximal
aelements of 1‘32 and B be the set of maximal elements of

(81 x 82) m 2‘,#, then

$=(31x32)h5ﬂ. =]

PROOF: Let x* = (A, B) € B, by the maximal element
definition,

;e—:(‘é?ix‘zﬁ‘z)r‘n?_‘)mr

and
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{tje(t‘i’ixifz)ﬁg)ﬂ:gc{g}:{;}.

Since 2 & i‘)ﬂ. by the dual ideal property of Sjﬂ, Yy e S’)ﬂ and
the above equality is equivalent to:

{13681::{‘6’2: ;{g}z{;}.

From (3.1), this 1is eqgquivalent to Ae.ﬂl. Be.ﬁz and

(A, B) € % .. o

THEOREM 5.3 - let 4 < P(E) be closed wunder translation,
« & A be the erosion by A from # to P(E), defined by (2.8),
w be a t.i. mapping from & to P(E), .81(1;)) and Bz(w) be the
saetls of, respectively, the minimal and the maximal elements
of the kernel of yw, K(yw), defined by (2.4). If B(y),
defined by (5.1), satisfies the condition of minimal

representation for w, then

w = U {' o A A e 581(1/1)} if v is increasing,
w = U {-C e B%: B e 32(1,0)} tf y is decreasing,
w:[_]{(.eﬁ)n(-ceéc): Ae.‘Bitrp).Be:Bz(w)}

1f w is inf-separable. a

PROOF: Let .‘BA(w) and 3B(w) be the collections defined by
.:BA(sz = {X e #: (A, X) e !B'(w)}

and
.‘BB(w) = {}( c & (X, B) € ﬂ(w)}.

for any A and B € #.
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Ir (A, B) € B(y), then for increasing
(respectively, decreasing) mapping , by Property 4.3 and
from B(yw) and R(y) definitions, A € B(y) (respectively,
B € BB(y)). Therefore, the result follows by applying
Theorem 5.1 and if it can be proved that, for any X € & and
A e B(y),

b

X e A cU{x® e B BeJBA(wJ}
(respectively, for any X € & and B € B(y),

X e B c U {x o A: A e 3B(w)}).

1. The increasing case: let x e X ®© A or, equivalently,
Axc X and let Y = X_x then A cCc Y. By Property 4.2,
(A, ¥Y) € R(y). From the condition of minimal
representation, there exists (A, 2) in B(y) such that
(A, 2) } (A, Y). that is, there exists Z € .BA(w) such that
2 >Y, but 2 >X_ or, equivalently, z; ¢ X° implies that

x e X° o fc, therefore,

eyl e B e 3A(w)}.

2. The decreasing case: let x € X e éc or, equlvalently,

X ¢ Bx and let Y = X__x then Y ¢« B. By Property 4.2,
(Y, B) € K(y). From the condition of minimal
representation, there exists (2, B) in B(y) such that
(2, B) } (Y, B), that is, there exists Z .:BB(yu) such that
2 c ¥, but 2 ¢ X_x or, equivalently, Zx c X implies that

x € X © .’E, therefore,

x e U {X o A: Ae,ﬁs(zp)}.

For inf-separable t.i. mappings, the result
follows by applying Property 5.3 with £1=31(w) and
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from (3.14) and by Theorem 5.1 and Property 4.3, since for
any X € & and for any (A, B) belonging to 31(w) x $z(w) but
not to § . (X &) n (X° e BY) = 0. o

5 2 ~ TOPOLOGICAL ASPECTS

For the moment, let E represent a given
topological space which 1s assumed to be locally compact
(i.e, each point in E admits a compact neighborhood),
Hausdorff, and separable (i.e., the topoleogy of E admits a
countable base). Let # be the collection of closed subsets
of E. The collection & is assumed to be topologized in the
way proposed by Matheron (1975). Following Matheron, the
selected topology on ¥ is the one generated by the set of
collections of the type:
3K = {% e F: XNK = 0},
whel'e K 1s a compact subset of E, and

3‘6'-‘{){&3':)([‘16#9},

where G is an open subset of E.

In Serra (1982) and Maragos (1985) this
topology is called the Hit-Miss topology.

The set of the collections of the type

F, (5.2a)
or
> 5. &b
3.6 M ... yG » (n = 1) ( )
1 n
or
K > 5.28¢)
F rﬁ&étn . fq; (n=1) (

is a base for the Hit~Miss topology.
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The open sets in this base are collections of

closed sets of E which miss a compact set of E or which

hits n open sets of E or which miss a compact set of E and

hits n open sets of E.

LEMMA 5.1 - Let £ be a subset of ¥, linearly ordered Cunder

the inclusiond, then {) £ and U £ are adherent points of £
in F (i.e., with respect to the Hit-Miss topology>, that
ts,

Neadl)? e 2 o

PROOF: Let M =N £ or U ¥ It is sufficient to show that
for any open set & of the type defined by (5.2) such that
Mes#, «£nE =0 In other words, for any integer n and any

Gz' e Gn (open sets of E), and any K (compact set of E)
such that Mr‘tGi#@(i=1. ... n) and MK =@, it has
to be proved that there exists X € £ such that
KﬁGi#9(i=1....n)andXﬁK=9.

1. Case of M = (] £: first, for any X € ¥, M ¢ X, therefore,
for any integer n and any open set of E, Gi (i =1, ... n),
such that MﬁGi # o, }{ﬁGi * o, sinceG#MnGi anGi
(i =1, ... n); second, let K be any compact set of E such
e

that M N K = @, that is, such that K ¢ M. The set A = M

is an open set and can be written as A = U 4, where
M= {Y c E: Y e .1‘.’}. The collection M is linearly ordered

and 15 an open covering of K. The set K being a compact set
of E, there exists a finite subcovering of K, say M'. The
collection M' being linearly ordered and finite implies
that U M € M. Therefore, there exists Y € M (namely,
Y = M) such that Kec Y cA or, equivalently, there
exists X € £ (namely, X = Y°) such that K n X = 9.
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2. Case of M = {J 2: first, for any X € £, X ¢ M, therefore,
for any compact set of E, K, such that Mn K = 9,

LK =@ since X NnK<cMnrK =8, second, for any integer

n and any open sets of E, Gi (i =1, ... n), such that
MnG # 8 by closure property, (U £)n G =* @ Let
%, e (U 2) n Gi' by definition of U £, there exists Xi e X

such that xi €< Xi. in other words, there exists Xi e £ such

Lhat Xi N Gi #* 9. Let ¥ be the collection of the

Xi (i =1, ... n). The collection £' being linearly ordered
and finite imply  that Uz e 2 Let X =U £,
Xi c X (i =141, ... n), which proves that there exists X € £
such that X NG # 6 (i =1, ... n). g

LEMMA 5.2 - Let {Ai: i e IN} and {Bi: i e CN} be two

sequences in F such that Ai C Bi (1 € IN), Ai y A and Bi TB

tn F, and let X € & such that A c X ¢ B, then there exists

c B, {1 e W)

i i i
and lim X, = X in #. a

a seguence {Xi: i e lN} in F such that A, c X

PROOF: Let xi = (Ai U X)n Bi (1 € N), then, for any 1 € N,
xi e F, Xi < Bi and Ai < Ki. This last inclusion 1is true

since,

it

by distributivity, X (A n Bi) wiX n Bi).

because Ai < Bi’ Ai U X n Bi).

By Corollary 3.d p. 7 in Matheron (1875) (with Fn = X and
F* =B ),
n n

Lin{X n Bi) = X nBin F.
By Corellary 3.a p. 7 in Matheron (18735),
lim Ai = A in ¥.
By Corollary 1 p. 7 in Matheron (1975), on continuity of
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the union, lim(Ai U (X n Bi)) = (lim Ai) U (1im(X n Bi)) in
F. In other words, from the above three equalities on
limits,

limXi=AUCXﬁB}in3'.

By assumption, A ¢ X ¢ B and X € ¥, therefore,

AU(XAnB)=AuX=AUZX-=X.

This proves that there exists {Xi: i e iN} in ¥ such

that Aic Xic Bi (1 e N} and 1lim Xi = X. a

Let & be a subcollection of P(E), & be a
subset of f,d and E{S be the subcollection of # defined by

.E‘(s = {x e & I (X, X)) or (X*, X) € G.‘}. (5.3)

PROPERTY 5.4 - lLet & < P(E) and © ¢ %ﬂ be linearly ordered
Cunder {2, then the subcollection £y defined by (5.3), is

linearly ordered Cunder the inclusion). o

PROOF: For any X and Yefs. there exist (X, X') or
(X', X) € € and (Y, Y') or (Y’, ¥Y) € €.

1. If (X, X') and (Y, Y*) €e & or (X', X) and (Y', Y) € @,

then, by assumption and from (3.1), X and Y are comparable.

2. If (X, X*) and (Y', Y) € ® or (X', X) and (Y, ¥Y’) € @,
then X and Y are also comparable, since, for example,
(X, X*) { €Y', ¥Y) implies, from (3.1), that X' c Y, and,

consequently, X ¢ Y since X < X'. o

From the above Property 5.4, if ® is linearly
ordered, then it is always possible to choose A and B in .E’(s
such that A < B.



- §7 -

PROPERTY 8.5 - Let & < P(E), € cC i‘,d be linearly ordered
Cunder {2 and .E’(s be the subcollection defined by (5.3),
then for any A and B € ¥,., with A c B, there exists ¥ € €

&
such that (A, B) { 2. a

PROOF: If A and B € 2(9:. and A ¢ B, then from (5.3), there
exist x, and £, € & such that b (A, A’) or (A’, A) and
¥, = (B, B') or (B', R), and one of them is greater than
the other. In what follows, it is proved that the greater

one 1s always greater than (A, B).

t. If r o= (A, A’) and x, = (B, B’), then ¥, { ® and
(A, BY { (A, B') { (A, A*) = x.

2. If = (A, A") and ¥, = (B', B), then ,;1{ ¥, or
g, {r. It 2 {x, (A B {(B,B)=g§. If g {z,.
(A, B) { (A &) = .
3. If ¥ o= (A’, A) and E, = (B’, B), then ¥ { ¥, and
(A, B) { (A", B) { (B", B) = &_.

Finally. the case & = (A, A) and

r, = (B, B')} never occurs since A is included in B. o

PROPERTY 5.8 - Let & < 53,. .‘6’& be Lhe subcollection defined
by (8.3, with & = F) and V & be the supremum of & in 53.
then

Ve = (N£e Uzo . a
PROOF: Let £ denote the collection .."‘.’&. ¥ c¥, N¥£ and
UD¥ e and N £ c U £, therefore

Nz UL esn,.
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1. For any (A, B) e &, A and B e £, A cCB,
Nf£cAcBclUZcU&EZ that is, from (3.1),
(A BY { (Ng, Uae.

This means that (N £, U £) is an upper bound (under {) of
«.

. For any (U, V) € 530
from (5.3).

(A, B) { (U, V) ((A, B) e®) aUcXcV (Xe£),

2 UcN¥and U ¥ vV,

because V € F, s UcN¥ and U #Z vV,
from (3.1), > (NE U { (U, V).

This means that (N ¥, U #) is the least upper bound of &
(under {). that 1is, the supremum of &. a]

LEMMA 5.3 - Llet € ¢ ¥ be closed in F, Rg,be the set defined
by (3.4, with & = F) and € ¢ ﬁ% be linearly ordered Cunder
{5, then the supremum of € in 2‘;3. is in Rg. that is,

V& e Re. o

PROOF: Let ¥ denote the collection £

' defined by (5.3). By

Property 8.6,

ve =(ne U2
By applying Property 5.4, ¥ is linearly ordered (under the

inclusion); on the other hand, ¥ < ¥, therefore, by Lemma

5.1, N¥ and U £ € £ in ¥ By Theorem 1.2.1 in (Matheron,
1975), it is known that the Hit-Miss topology is separable,
therefore (see for example Theorem 6.2 in (Dugundji, 1066,

p. 218)) there exist two sequences {éi' i e m} and
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4 =ﬂ£andlimBi =l £ in

7. These sequences can be chosen, respectively, decreasing

{Bj.' i e IN} in ¥ such that 1im A

and increasing and such that A:L c B
3.a-b in (Matheron, 1975, p. 7).,

lim Ai ﬂ{Ai. i E[N}

U {Bi’ 1 € {N}.

In other words, under the linearly ordered assumption,

; (1 € N). By Corollary

and

1im Ei

ft

there exist two sequences {Ai' i e IN} and {Bi’ i e [N} in ¥

such that A, ¢ B

{ i {N¥E and B, *+ U £ Let

i i
¥ e IV o from (3.3), N£ZcXclUE¥and X € ¥ By Lemma 5.2

(1 « N), A

(with A =0¥ and B = #), there exists a sequence

{Xi. i e !N} in F* such that A, ¢ Xi < Bi (1 € N), that is,

i
){i e [Ai. Bi] (1 « N), and lim Xi =X in ¥. By Property
5.5, there exists ¥, € & such that (4, B ) { ¥, that is,

by Property 5.1, EAi, Bi] < X‘;. In other words, for any

i
integer 1, }(i € x‘;, with € ¢, therefore, & being
i
included in R'&" from (3.4), xgc < & and consequently Ki € €

i
(i €« N). This means that X is an adherent point of ¥ in ¥
(see for example Theorem 6.2 in (Dugundji, 1966, p. 218)),

that is, X € !-?_, but. ¥ has been supposed closed, therfore
X € € and )CV c © €. Hence, from {(3.4), 1t has been proved
t,haLV(S:EStgin F. o

In what follows, a sufficient condition on
is given under which its basis, B(y). satisfies the

condition of minimal representation for .
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From now on, E is the d-dimensiocnal Euclidean
space Rd or its subset Zd, equipped, respectively, with the
Euclidean topology or with the relative Euclidean topolegy,
and the t.i. mappings under consideration are from ¥, the
sel of closed subsets of E (F is closed under translation);
to P(E). It can be observed that the Euclidean topology or
the relative Euclidean topology 1In # satisfy all the
assumptions made on the topological space E at the begining

of this section (Maragos (1985)).

Moreover, among these mappings the wupper
semi-continuous (u.s.¢) ones from ¥ to # are considered. A
mapping y from ¥ to & is u.s.c. iff for any compact subset
K of E, the set z,u“(yK) is closed in ¥ (see Matheron (1975)
p. 222).

THEOREM 5.4 (Property of the basis of an u.s.c. t.i.
mapping) - lLet yw be an u.s.¢c. t.i. mapping from F to F and
B(y) be the set defined by (5.1}, then Bly) satisfies the

condition of mininal representation for y. a}

PROOF (The logic of this proof is the same as the one of
Theorem 5.7 in Maragos (1985)): Let »  R(w), it is always
possible to construct a subcollection of R{(y), say 2.
linearly ordered (under {) which contains ¥, that |is,
r ek C.R(w). By Lemma 2.1 in Maragos (1885), there existis
a maximal linearly ordered (under {) subcollection M of
fR(yw) such that & < M. Therefore, there exists x’', (namely,
x' = VM), such that, by supremum property,

s{VR2E{VM=x.
By Proposition 8.2.1 in Matheron (1975), %(y) is closed in
#. By applying Lemma 5.3 (with € = X(y) and & = M) and from
(3.8), x’ e (). Furthemore, M being maximal in R(y),
x* e B(y), because otherwise ¥’ should not be a maximal
element of ®(w) and there should exist v € K(y), v = ',
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such that ¥’ { v. In other words, there should exist a
subcollection of RK(y) linearly ordered bigger than M,
(namely, MM U {9>), and M should not be maximal in R(y)

which is a contradiction. _ o

Theorem 5.4 s, exactly, what is needed to
derive sufficient conditions to guarantee that a t.i.

mapping has a minimal representation or a dual minimal

representation.
THECREM 5.5 (Minimal representation theorem - case of
u.s.c. t.i. mappings) - If y is an u.s.c. t.i. mapping from

F to F then y has a minimal representation by a supremum. a

PROOF: The result follows by applying Theorems 5.4 and 5.1
(with & = F) =]

In what follows 1t iz shown that Theorem 5.8
in Maragos (1985) (with & = ¥} can be derived from the

above resultis.

CORCLLARY 5.1 (Maragos (1985)) (Minimal representation of
increasing t.i. u.=s.c. mappings}) - Let + © A be the erosion
by A from F to P(E), defined by (2.8), w be an increasing
u.s.c. t.¥. mapping from F to F and B(y) be the set of the
minimal elements of the kernel of y, defined by (2.4), then

» = U {' & A Ae 3(w)}. o

PROOF: The result follows by applying Theorems 5.4 and 5.3
(with & = F). a

lLet. € be the collection of open subsets of E.

THEOREM 5.6 (Dual minimal representation theorem - case of



- 62 -

u.s.c. t.i. mappings) - If y is a t.i. mapping from § to ¥
which has an u.s.c. dual w* from F to ¥ then y has a

minimal representation by an infimum. a}

PROOCF: If z,u* is an u.s.¢. L.i. mapping from ¥ to F then by
Theorem 5.4, B( w*) satisfies the condition of minimal
representation for yx*. Hence the result follows by applying
Thecrem 5. 2. a

When E = 29 is equipped with the relative
Euclidean topology, then ¥ = ¥ and the above theorem even
works for t.i. mappings which domain is ¥, the collection

of closed subsets of E.

Before ending this section, it can be
cbserved that, for any p» € 5,55;,. the mapping « & ¥ from ¥ to
P(E), defined by (3.9), is u.s.c. from ¥ to F.

This can be proved in the following way: by
Property 3.5, the kernel of +« & (A, B) from ¥ to P(E) is:

XK(+ o (A, B))={Xe$‘:AcXcB}

={xear: Acx}ﬂ{XeJ*‘:XcB}-

By Corollary 4 p. 7 in Matheron (187S5), {x e F: A ¢ X} and

{X e F: X ¢ B}, with B € ¥, are closed in #F, so it is for

®(+ & (A, B)), for any (A, B) € 53" By Proposition 8.2.1 in
Matheron (1975), this is equivalent to say that + o 2 for
X e %3, is an u.s.c. mapping from ¥ to ¥. The basis of + & ¥
satisfies the condition of minimal representation and lis,
simply, the subcollection of 53=, reduced to the single pair
x:

B(* & 2) = {(F>.
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This shows that the basis may be sometimes
finite.



CHAPTER 6
EXAMFLES
In this chapter some simple examples are

presented to illustrate the theory. All along this chapter

E is the d-dimensional Euclidean space [Rd or its subset Zd.

6.1 -~ COMPLEMENTARY TRANSFORMATIONS

Let & ¢ P(E) be closed under translation. The
mappl ng Cﬂ. defined 1in Chapter &, which produces the
complementary set of a set in # is an example of t.1.

mapping. Its kernel, defined by (2.4}, is:
fK(C.d) = {}( e 4 oe)(}.

Since Cﬂ is a decreasing t.i. mapping, by Property 4.3,

R(C) = (& x KC D) N9,

In eorder to say something about its basis,
some assumptions on & must be made. If @ and E - (o} € A
then

ST = -

}1({.#) [ E {o>)1,
(@, E - {o») is the greatest pair in R(Cd) and the basis of
C.M reduces te this single pair, that is,

EB(CM) = {(G. E - (o})}.

This basis satisfies the minimal representation condition

for C hence, by applying Thecrems 5.1 and 5.3 (with

ﬂ'
3((2#) = {Eﬁ - (o}}). the following formulae can be,

respectively, derived:

_ 65 -
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=
11

(X @) n (X°e <) (X e ) (6.1)

and

X° e oy (X e ).

-~
0
H

If E is a d-dimensional Euclidean space and
& = F (the collection of closed subsets of E equipped with
Lhe Euclidean topology), then E - {0} is an open set, that
is, it does not belong to & and thus the above
simplification does not occur. In this case, R(C&’,) has no

maxi mal el ement . This can be sean as follows.
9'(((13.) = {X € ¥ X cE - (o}} and for any X e 9'(((35.)

X° " E ~ (o> # @ since X # @ (X » E) and X° # <o¥ (X% is
open}; hence Lhere exists X* e 9’(((:3,) such that X < X' and
X # X', e.g.., X' =X + <{x> where x € X " E - {(o>. Since
R(C‘?.) has no maximal element, .‘B(Ca,.) is empty and the
minimal representation condition is not fulfilled, then

Jjust Theorem 4.1 works and leads to the formula:
X =y xceézsegandoes}()(em. (6.2)

where ¢ denotes the collection of open subsets of E.

Let ng denote the mapping from & to P(E),

defined by

Eﬂ(x) = X%,

for any X € &. The mapping E? is t.i. from ¥ to #. In this

case also, R(E$) has no maximal element. Thls can be seen

as follows.

S‘((C‘?,)={Xe$:oex}
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[~
{Xe(’f‘:oexc}
{X e F: o & X}

{% € F X cCcE -~ {o}}

I

1l

and for any X e K(Ey) X°NE - (o> # @ since X°* = @ (X = E

since E=E g E - {a?) and X% # (or (X% is open); hence

there exists X* e 9((63,) such that X ¢ X’ and X = X', e.qg.,

1}

X’ =X + (x> where x &€ X NE-<o, X e sr(Ey) since

-] -] -] a

X (X + {a3) =% + {0} = X. S&ince R(Ey) has no maximal

el ement , !B(Ey) is empty and the minimal representation
condition is not fulfilled. It can be observed that Theorem

5.6 does not apply since Ey is not u.s.c. (actually, Ey is

lower semi-continuous, see Corollary 2 p. 8 in Matheron

(1975)). Ey is decreasing and, finally, just Theorem. 4.1

workse and leads to the farmul a:
we

X =U{Xceé:Be§andoe§} (X € ). (6.3)

<

In formulae (6.2) and (6.3), X and B are open

sets and, consequently, X¢ e é is a closed set. Hence,
formula (6.2) shows an union of closed sets that leads to
an open set and formula (6.3) shows an union of closed

sets, from a bigger family, that leads to a closed set.

if E = Zd, equipped with the relative
Euclidean topolegy, then F = P(E) and if &« = F, then

s = PE), E — (o € «, C‘?, = C‘?, and the above first

analysis, leading to formula (6.1) holds. By Corcllary 4 p.
7 in Matheron (1975),
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K€, = {x € F X E—{o}}

is a closed in & and, by Property 8.2.1 in Matheron (19753,
Cy is u.s.c. and Theorem 5.5 can be applied, to derive
formula (6.1). Actually, C&,_, being beoth lower and upper
semi-continuous, 1is a continuous mapping with respect to
the Hit-Miss topology.

6.2 - EDGE_EXTRACTION

Some edge extraction mappings useful in the
area of image processing may be examples of inf-separable

mappings.

Let D e P(E),(|D| > 1), and & ¢ P(E) be closed
under translation. The mapping y from & to P(E) defined by

wX) = (X @ D) n (X° @ D),
sometimes written,
=(X D) - (X & D),

for any X € &, 1ls., by Theorem 4.2, with o= & D and
p, = -“ e D, an inf~separable t.i. mapping. This mapping

produces one version of the edge of a set in .

The kernels of ¥, and v, defined by (2.4),

are:

9’((1;;1) {Xeﬂ: xer:e}

and

il

K(y,) {x e g X°n D = a},
then, by Property 4.4,

R(w)z{(A. B)GE’)‘“{-AﬁDxﬂandBcﬁD#@},
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Figure 6.1 shows a pair (A, B) in Flwl.

G\Rm

0":‘;

&
'o' oty o

Fig. 6.1 - Example of a _pair (A, B)  Dbelonging to
R((- @ D) N (C @ D)), the set of extremity pairs
of the clogsed intervals contained in the kernel
of an edge detection mapping caracterized by D.
A and B° must hit D and A must be contained in B.

In order to write the basis of w in a simple
way, let us assume that &« = P(E). In this case, any subsets
of the type (x> or {x>€ are in # and the sets 31, of the
minimal elements of ﬁxvu). and 32. of the maximal elements

of %Iu%), are:

&
B

e
I

{% e P(EJ: x> and x & D}

]
[

{x e P(E): X = (x>° and x e D}.

By Property S.3,
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B(w) = {(A. B) e gp(E): A=<a>, B=1(t>° and a, b € D}.

This basis satisfies the minimal representation condition
for w, hence, by applying Theorem 5.1 and noting that
c

X & ¢hy = X, and X_, 00X, =0, the following formula can

be derived:

(xefi)n(xceﬁ)=U{x_anx_;: a.beD}

(X e #). (6.4)

On the other hand, if E = Zd. equipped with the relative
Euclidean topology, and & = F then & = P(E) and y |is
continuous, as intersection of two continuous mapplings,
that is, w is, in particular, u.s.c. and Theorem 5.5 can be

applied to derive formula (6.4).

Of course, there are other ways to prove
formula (6.4). One way is by distributivity of intersection
and ualeon and by a2pplying Theorem 5.3 to ¥, and ¥, with
31(w1) = .31 and :Bz(wz) = 32, since, by Properties 4.3 and
5.3, with & = P(E),

2, < g}
(e} = 3,

and both satisfy the minimal representation condition for,

B( wl)

B( wzJ

respectively, ¥, and ¥, Ancther way is by applying Thecrem
53 to w, with :B;(w) = 31 and Bz(w) = .Bz. since, by
Properties 4.3 and 5.3. with & = P(E), Bly) = 31 x & and

2
satisfies the minimal representation condition for w.
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6.3 -- REPRESENTATION FOR - & ¥ BY AN INFIMUM

The following example shows an application of
the dual minimal representation theorem.

let & c P(E), (A, B) e %.'P(E) and y be the
mapping * o (A, B) from & to P(E)}, defined by (3.89). The
dual mapping of y (see Section 3.2} is the mapping
- @ (A, B) from & to P(E), defined by (3.11). By Property
3.7,

R"f.,‘,*) = {(U, V) Z‘)M}*: (U, V) « (A, B) = (9, EZ)}.

Figure 6.2 shows two pairs (U, V) in R(w*).

r—m

(a)

Fig. 6.2 - Example of two pairs (U, V) belonging to
®i © (A,~B)). U must hit A (a) or V must not
centain B° (b) and U must be contained in V.

In order to write the basis of zp* in a simple
way. let us assume that & = P(E). In this case any subset
of E of the types {x* or (x>° are in & and the basis of :p*

is:
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" (U, V) = ({x>, E} and x € A
By ) = {tU, V) € g?(E): or }.
(U, V) = (B, <x>°) and x e B®

This basis satisfies the minimal representation condition
»

for w , hence, by applying Theorem 5.2 and noting that

X @ <hy = X_h. the following formula can be derived:

X o (A, B = (N {X_x: X € A}) n (N {X_;: X € Bc})

(X € #). (6.5)

On the other hand, If E = Zd. equipped with the relative
Euclidean topology, and & = § then & = ¥ = P(E) and ¥ is
continuous as union of continuocus mappings, that is, w‘ is,
in particular, u.s.¢. and Theorem 5.6 can be applied to

derive formula (8.5).

Of course, there are other ways to prove

formula (6.5).

5.4 - SHAPE RECOGNITION

The last example 1is the so called window
transformation, introduced by Crimmins and Brown (1985) in

the field of automatic shape recognition.

Let W e P(E), a mapping w from & to P(E) is
called a window transformation with respect to a window W,
if and only if, there exists a subcollection D < P(W) such
that

w(X) = {x e E: Wn X—x = m}.

for any X € . The mapping y “recognizes" in particular all
the shapes in & which are in D by producing a point marker.

In another way,
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w(X) = {x € E: X € {X e 4: ¥ NnX e m}x}.
therefore, identifying with expression (2.5),
g = {% c g VnXe $},

and by applying Property 2.3, w is a t.i. mapping and its

kernel ig:
H(y) = {% € #: WnNnX e m}.
Figure 6.3.a shows one typical element of X(y) when W is a

rectangle and D contains a triangle,

let Ue®d and V e XE - ¥), and let
X =U+V, then W " X € D. Conversely, for any X,

X=Xn¥W+Xn W,

thus, if ¥ N X € D then X = U +V with U=XnWed and
V=XnWePE - W). Consequently,

K y) ={x ed: X=U+V, UeDand V e HE —W)}. (6.6)

let Ue XW), 1if X =U+V with Ve PE - W) then
UcXcUH+(E-W)=(W- W Conversely, if
UcXc (¥ -U) then X =U + V with VcE - ¥, that is,
V & JE - W). Consequently, for any U € P(V¥W),

{i e #: X =U + Vand V ¢ P(E - W)}
S

={Xe.ﬁf: UcXc(W—U)c}
and, from (6.6),
K(w) =U{{Xeﬂ: UCKC(W-U)C}: Ue.ﬁ}. (6.7)

By Property 3.5 and Lemma 2.5,
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w(X) = U {X o (U, (W-U: Ue D} (X e &)

or equivalently, from (2.9),

w(X) = U<3X ¢ (U, (W-U)): Ue 3} (X € #). (6.8)

X

o Sl - e s

(b) (¢)

Fig. 6.3 - Example of kernel elements of a  window
Lransformation with respect. to the window W and
the collection D, containing at least a triangle
U. (a) shows a particular element X (X n W = U),
(b) and {(c) show the elements of the
corresponding maximal pair (U, (W - U)%).

Formula {6.8) is the same as the one given by
Maragos (16985 p. 160) and its right hand term is called
here the Crimmins and Brown's representation for window

transformations. In what follows, in the non trivial case
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for which D has more than one element, it is shown that,
under some circumstances, such representation can be

derived from the minimal representation for t.i. mappings.

For the moment, let us assume that the above

collection D satisfies the followlng assumption.

ASSUMPTION 6.1 - For any U1 and U2 e D, comparable
(U1 < Uz) and distinct (U;, ] Uz), there exists X € # such

thatUicXﬁWcuzand)(ﬂWszi). o

Under this assumption, the set R(y), defined
by (3.8), is;

Rly) = {;egﬁ: xr = (U1+Vi. Uz+v2), Ui, Uze:b,

U =U and V, V & PE - W)}.
1 2 1 2

This can be seen as follows. From (2.8B) and (&6.6), the
pairs ¥ in R(y) are of the form 2 = (U1 + Vz’ Uz + Vz) with
Ui. U2 € D and V:’ Vze P(E ~ W). Firstly, among such pairs
those belonging to 531 and for which U1 = Uz = U belong to
f(y) since the following statements can be successively
established

£ { U (W - W%,
by Property 5.1,
X € XU, (W - WY
from (&6.7),
< K(y),
from (3.8),
r e R(yl.

Secondly, among such pairs those belonging to S,';‘)A and for

which U = U2 do not belong to R{yw) since, there exists,
1
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from Assumption 6.1 X € & such that X e xé and X & K(y),
i.e., Ié @ K(y) and, from (3.8), » & R(y).

In order to write the basis of w in a simple
way, let us assume that (W - U)° € & for any Ue 4 n D In
this case, the basis of y is:

B(yp) = {z: e%d: = (U, (W - W) and Uei}}.

since (U, U + (E - ¥)) 135 the maximal pair (under {) of the

set of pairs
{;egﬁ: $=(U+V1.U+V2) andVl, Vze?(E-W)}.

Figure 6.3.b-c shows both elements of a typical pair of
Blyl.

This basis satisfies the minimal
representation condition for ¥, hence, by applying Thecrem
5.1, the formula (5.8) can be derived.

If 2 ¢ ¥, # = F and the window W is an open
subset of E, then, for any U e &, U and (¥ - U)° are closed
subsets of E and, by Corollary 4 p. 7 in Matheron (1975),

the sets

{K e F: X o U}

)lear: chw~UJ"}

and

are closed in F. Furthermore, if D is a finite collection
then, from (6.7), X(y) is closed in # and, by Proposition
8.2.1 in Matheron (1975), this is equivalent to say that y
is an u.s.c. mapping from ¥ to . Hence, Theorem 5.6 can be

applied to derive formula (5.8).
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Actually, Assumption 6.1 was made just to
derive, from the minimal representation theorem, Crimmins
and Brown’s representation leading to formula (6.8). If 2D
does not satisfy Assumption 6.1 then, for window
transformations, the minimal representation may be simpler
than Crimmins and Brown's representation in the sense that
v 1s the supremum of a smaller class of elementary
mappings. In the increasing case, example 5.8 in Maragos
(1885) illustrates this point. In the not necessarily
increasing case, the K-tolerance matching 1s another
1llustrative example. Let K and W € P(E), a mapping w from
& to P(E) is called K-tolerance matchingl. if and only if,
there exists a subcollection 7 ¢ P(W) such that yw is a
window transformation from & to P(E) with respect to W and
the subcollection D defined by

:n={x€av(E:): TeﬁcXc(TeE)nWandTe:r}.

The mapping y 'recognizes" in particular all the shapes in
& which are similar to the ones in 7 within K-tolerant
limits.

As a window transformation, ¥ can be
represented as in (6.8). On the other hand, by definitien,
D may not satisfy Assumption 6.1 (this depends upon &)} and

a zimpler reprezentation may be suspected.

Let us assume that the above collection 7

satisfies the following assumption.

ASSUMPTICN 6.2 — For any T1 and T2 e J, comparable in the
sense that T; e K ¢ Tz & K and distinct (T; » Té), vther‘e

exists X e A such that T; e KcXnVWc T2 & K and
X NnWed o

1This definttion has been communicated to the authors by R.
M. Haralick.
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Under this assumption, the set R(y), defined
by (3.8), is:

£ .
R(zp)=tge%ﬂ: z:=(U1+v1. U2+Vz).TeK<:Ui,

Uzc(TeE)ﬁW,TeTand Vi, Vze?(E—'ﬁ')}.

This can be seen as follows. From (3.8) and (6.6), the
pairs ¥ in R(y) are of the form g = (U1 + Vx’ Uz + VZ) with
U:' Uz e€ D and V1' Vze P(E -~ W). Firstly, among such pairs
those belonging to %.d and for which TeKc U1
and Uz <{T&K)nV¥ with T € 7 beleng to R(y) since, for
any T € ', the following statements can be successively

established
*{(TeK, (¥ -(TeKN%,
by Property 5.1,

e CXT Ok, (W-(TekN%

< Kyl

The last inclusion 1is true since any X e'x}, verifies
TeKcXnWc(T #K)nW, which implies, by definition
of D, that X " W € T and consequently, by definition of w,
that x € X(y). Therefore, from (3.8), x € R(y). Secondly,
among such pairs those belonging to g;A and for which
TekKg U1 or (exclusive or) c Uz;z TeK, with Te 7, i.e.
{recalling that Ut and l.lz must belong to D), the pairs of
%ﬂ f;c:r whicr: T1 8 K ¢ Ui. Uz C Tz @ K, with T1’ T2 e J,
T1 & K ¢ 'I'z ® K and T1 # T,, do not belong to R(y) since,
Lthere exisits, from Assumption 6.2 X € & =such that X e Iz:
and X &« %(wy}, i.e., xa: Z K(y) and, from (3.8}, 2 & Riy).
If ToK and (W-(ToK)) € #for any T € T

then the basis of w is precisely:
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sacw)--{g:es_d: £ =(TokK, (W-(TekK))H andTeJ‘}.

This basis satisfies the minimal representation condition
for w, hence by applying Theorem 5.1, the following formula

can be derived:

wX) = U{X 0 (Te K, ((W-(Ta®KNN): Te 3'}

(X € &). (6.9)

Formula (8.9) is simpler than formula (6.8) in the sense
that 7 < D and may be much smaller than JD.

If 7 does not satisfy Assumption 6.2 then for
K-~tolerance matchings, the minimal representation may even

lead to a simpler formula than (6.9).

Making K = {0}, it can be observed that the
K~tolerance matching with respect to 7 reduces to a window
transformation with respect to D = 7 and (&.9) and
Azsumption 8.2 reduce, respectively, to (6.8} and
Assumption 6.1.



CHAPTER 7

CONCLUSI ON

In this paper, representations for t.1.
mappings y are introduced. It is proved that any of these
mappings can be represented as the supremum of a family of
elementary mappings, * & ¥, with ¥ in the set R(y) of pairs
of structural elements, or, in its dual form, as the
infimum of another family of elementary mappings, * © %,
with ¥ in the set ﬁ(w*). For a given y, the simpler form,

if any, may be chosen.

It is also proved that if the t.i. mapping w
is u.s.c. then it has a minimal representation by a
supremum, that is, there is a subsgset of R(y), called the
basis of y that can be used to represent y in a minimal
way. If w* is u.s.¢. then y has a minimal representation by
an infimum. It 1is important to note that the u.s.c.
condition can be applied only for those t,i. mappings or
their dual which domain is the collection of closed subsets
of E, but that other t.i. mappings may have a minimal

representation.

Among the examples of t.1i. mappings, the
interesting case of the inf-separable t.i. mappings are
presented. When the t.i. mappings are only increasing their
general representations reduces to Matheron's

representations or Maragos’ minimal representations.

Finally, three topics for future research can
be cutlined: the proposed representations are well adapted
to be implemented on simple highly parallel architectures,
which should lead to efficlent 1mage processings; in

practice exact representations of the mapping y may not be

-8 -
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necessary, in such case, it should be possible to construct
approximations for y from subsets of its basis; the results
derived here, for set mappings, should be extended to

unction mappings. offering a new tool for digital signal
processing.
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