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ABSTRACT: Tropical deforestation is a serious and looming global problem about which accurate 
information appears to be in short supply. The extent of tropical deforestation and the rate at which 
it is occurring are known for only a small portion of the tropical forests of the planei It is criticaLto 
have reliable methods for continuous monitoring of changes in tropical forests. In addition to loss 
of a major portion of global biodiversity, tropical deforestation is closely associated with 
greenhouse gas fluxes to the atmosphere from biomass buming andior decomposition. A variety of 
techniques for estimating tropical deforestation using Landsat and NOAA polar-orbiting 
meteorological satellite data were compared. Digital analyses of thematic mapper imagery were 
found to vary substantially among analysts and AVHRR 3.5-3.9 gm data were found to be 
inaccurate due to extreme radiometric sensitivity. Visual interpretation of Landsat thematic mapper 
images, cOupled with digitizing the results into a geographic information system, was found to be 
the best tropical deforestation determination technique in terms of accuracy and cost. 

INTRODUCTION 

Tropical forests, including moist evergreen and seasonal forests, onL  ce covered —24,500,000 km2  
of our,planet's surface (Whittaker and Likens, 1975) and are now estitnated to cover —11,600,000 
km2  of which —6,684,000 km2  was estimated to be "undisturbed forest" as of 1980 (Guppy, 
1984). Of lhe remaining total area of tropical forest, —50% is contained within the Amazon Basin 
of South Ainerica and Brazil alone accounts for over 30% of the global total. 

Tropical forests are home to the greatest diversity of plant and animal life on the earth and contamn 
over half of our planet's plant and animal species. It is estimated they contam n in excess of 5 million 
plant and animal species (Prance, 1982) and some workers feel the number of total species could 
go as high as 30 million (Erwin, 1986). One principal adverse effect of tropical deforestation (i.e., 
habitat destruction) would be mass extinctions comparable to what last occurred —60-70 million 
years ago at the end of the Mesozoic era when the dinosaurs and many other species beca= 
extinct 

In addition to mass extinctions resulting from tropical forest habitat destruction, indirect and 
disruptive effects on precipitation patterns would also occur within South America. The impact on 
the water cycle and its chemical load with implications on biogeochemistry and sou l degradation 
due to erosion as pointed out by Batista et ai. (1988), Salati and Vose (1984), Commission on 
Ecology (1983), and Clement and Colon (1975), could be very significant. Salati and Vose (1983, 

Presently in a Visiting Scientist Program at NASA Coddard Space Flight Center, Greenbelt, MD, 
with Lhe Universities Space Research Association. 
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1984) have reported that ~50% of the rainfall falling in the Amazon Basin is recycled. Tropical 
deforestation would disrupt longitudinal profiles of precipitable water and cause much drier 
conditions in the temperate zone of South America (Salati and Vose, 1984). Shukla et ai. (1990) 
reported that widespread deforestation of the Amazon Basin would result in such substantially drier 
conditions that reestablishment of tropical forest vegetation would be impossible. 

Widespread tropical deforestation in the Amazon Basin would also result in significant additions to 
global atmospheric CO2 (Woodwell et al., 1983). The biological mass (biomass) of tropical forest 
vegetation contains several centuries-worth of accumulated carbon. The burning of large amounts 
of forest vegetation, and/or subsequent decomposition, releases this carbon into the atmosphere as 
CO2 over a short period of time. Since the Amazon Basin now comprises ~50% of the remaining 
global tropical forest, the amount of CO2 potentially to be released from deforestation is of global 
importance (Leslie, 1981; Houghton et al. 1985; Fearnside, 1990; and Kaufman et al. 1990). 

SATELLITE REMOTE SENSING 
, 

Tropical deforestation has been studied Whh Landsat, meteorological satellites, spane shuttle, and 
geostationmr satellite data (Nelson and Holben, 1986; Tardin et ai., 1979 and 1980; Tückçr et al., 
1984; Woodwell et al., 1983 and 1987; Nelson et al., 1987; Malingreau and Tucker, 1988;-apci 
Tardin and da Cunha, 1990). 

Landsat multispectral scanner (MSS) and thematic mapper (TM) data can resolve areas 80-m and 
30-m in size, respectively, and are collected every 16 days. This frequency of observation, coupled 
with the high probability of clouds and the frequent presence of smoke from forest-clearing fires, 
can result in useful data being collected only every 1 to 3 years for areas of interest. This frequency 
of observation is reduced if there is no Landsat receiving station operating in the arca of interest 

Tropical forest area and deforestation have also been studied with NOAA polar-orbiting 
meteorological satellite data from the advanced very high resolution radiometer (AVHRR) sensor 
carried on the National Oceanic and Atmospheric Administration's (NOAA) satellites. These 
satellites record imagery twice every day (02:30 and 14:30 hours for NOAA-11 and 0730 and 
19:30 hours . for NOAA42). This high frequency of observation usually results in a series of 
images which can provide at least one cloud-free image of most tropical areas during each year's 
relative dry season. The 1-km ground resolution is suitable for identifying large-scale deforestation 
(Tucker et ai., 1984; Malingreau and Tucker, 1988; and Cross, 1990) and is an useful survey tool. 

Currently, there are two major initiatives underway to determine the extent and rate of deforestation 
in the Amazon Basin. One concems the activities led by INPE (Brazilian Institute for Space 
Research) which includes the complete survey of the Brazilian Amazon Basin for 1975, 1978, 
1988, 1989, and 1990, using techniques based on visual analysis of Landsat data (Tardin and da 
Cunha, 1990). The second one is led by NASA (C.J. Tucker, unpublished data, 1991) with the 
objective of assessing deforestation using 1985, 1988, and 1991 Landsat TM data for the entire 
Amazon Basin. These may be complemented by information on forest resources from the FAO 
Forest Resources Assessment 1990 Project (Committee on Forest, 1990). 

The extent and rate of deforestation has been controversial because of the multitude of approaches 
to estimate these parameters without error bounds associated with deforestation figures. Further, a 
World Bank publication by Mahar (1989), based on projections of earlier assumed rates of 
deforestation, has increased the levei of controversy regarding the extent of deforestation in the 
Brazilian Amazon. Due to the vastness of the arca, satellite remote sensing, coupled with selective 
ground verification, seems to be the only means to provide the quantitative information needed. 
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There is no absolute independent way to assess the accuracy of any satellite remote sensing 
estimates for such a large region. Even though visual interpretation techniques are largely accepted, 
questions on how accurate these are versus digital analysis remam n unanswered for deforestation 
studies in the Amazon region. Digital analysis is believed to be much less subjective. Once a 
pattern or assumed "signature" is known, computers can classify the whole scene objectively. 
However, land use classes are quite variable spectrally and there is usually no unique pattem for 
those classes. There is a great deal of analysts' decision in the digital approach. It remains 
important to investigate the variability of digital land use classifications performed by different 
analysts and to compare these results with visual interpretation estimates. 

This work had the objective of assessing the variation in digital classification performance of major 
land use classes, with primary emphasis on deforestation, using Landsat TM data. Digital 
classifications done by five analysts, using a multispectral level-slicing technique, were compared 
with results of a robust classifier (modified maximum-likelihood decision mie) and with visual 
interpretations based on specific criterion. Comparisons were made using both estimations and 
evaluated in terms of mapping precision based on a pixel-by-pixel analysis. In addition, channel 3 
of the AVHRR was also investigated to provide an independent estimation of deforestation. 
Further analyses of ali tive channels of AVHRR using the same techniques applied to the Landsat 
data were performed on the equivalent area of the TM scene for comparison. Field size 
distributions for the classes "others" and "clearings" were also investigated. 

METHODS 

STUDY AREA 

The study site selected for this investigation, corresponds to the Landsat-5 scene (WRS: 227/67) 
centered at 100  08' S and 550  58' W. This area is dorninated by a diversity of forest formations 
(IBGE and IBDF, 1988). Open ombrothermic forest is predominant, followed by a transition 
between "savanna" and "seasonal" forest and "savanna" and "ombrothermic" forest. There is also 
the occurrence of rain forest ("dense ombrothermic forest") in small proportions. There are two 
occurrences of "cerrado" ("savanna"), a typical vegetation of central plateau of Brazil, composed of 

a  grasses and woody species with great structural and density variations, from isolated trees to 
almost closed canopies. The cerrado occurs in the northeast and southwest of the scene. 

This arca is suffering great pressure from deforestation due to roads running to the east of the 
image and from the southeast towards Alta Floresta in a diagonal. Also, there are some clearings 
associated with the Teles Pires river which runs throughout the image. The clearing pattems are 
quite variable including the "fish bone" type typical of Rondonia to large fields similar to eastem 
Mato Grosso and south-eastem Para states. 

PROCEDURES 

'Cloud-free Landsat Thematic Mapper (TM) data, acquired on July 18, 1988, were used in both 
digital and photographic forms. The digital analyses were based on TM bands 3, 4, and 5, using a 
systematic subsampling of every other une and pixel. Five independent classifications were 
performed by different "experienced" analysts using a simple classification method, the 
"multispectral levei slicing technique" using the LAS (Land Analysis System) and IIS 
(International Imaging Systems) System 575 which run on VAX 11f780 and VAX 8200 computers 
of the Laboratory for Terrestrial Physics Computer Facility of NASA Goddard Space Flight 
Center. Five informational classes; water, forest, regrowth, clearings, and cerrado; were 
investigated. Post-classification analyses included the investigation of the classification 
performance for the combined clearing (regrowth plus clearing proper) and "other" (forest, water, 
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shadow, and cerrado) classes. To minimize the imprecision, "deforestation" or "clearing" in the 
context of this paper, is used to mean the conversion of a forest canopy into a barren arca or 
another vegetation community dominated by grass, shrub, or field crops. Once the field is 
abandoned and the native species begin to regrow and dominate the grasses it is called regrowth 
class. 

The selection of the three thematic mapper bands was based on past experience and 
recommendations from the literature (Tardin and da Cunha, 1990; Chen et al. 1986; Stenback and 
Congalton, 1990). Additional bands would increase complexity resulting in analyst and computer 
time increases that would counteract any improvement in accuracies due to the added information. 
The sampling error introduced by selecting every other une and pixel should be very small (Baucr 
et al., 1978) and negligible compared to the error involved in spectral class assignment by the 
analyst. 

In the "simple method" of classification, the thresholds for each class are established interactively, 
after displaying each band sequentially. Then, each sector (upper left, upper right comers, etc) of 
the scene is displayed (zoomed) and the threshold values refined. Finally, the refined thresholds 
are checked for the entire scene. Then, the individual classified bands are added, and the spectral 
classes of the composed image are assigned to the informational classes. The selection of this 
procedure was based on its simplicity and low cost. In terms of processing, it incorporates the 
efficiency of the simplest univariate method, "levei slicing" (Swain and Davis, 1978) and yet, the 
procedure takes advantage of the multispectral information of TM data, allowing the analyst 
interactively assign informational classes to spectral classes. In comparison, the paralielepiped 
method, which has similar computational efficiency, may classify erroneously high correlated 
classes (Lillesand and Kieffer, 1979). The use of a more powerful algorithm, for instance the 
maximum likelihood classifier using just three TM bands for the entire Amazon Basin (over 250 
scenes) would be prohibitive using current computer capabilities. 

To provide a reference bench, a modified supervised classification of the entire scene was 
performed ('Richards, 1986). The procedure involved clustering into unimodal spectral classes of a 
representative section of the scene, and then classifying the entire image based on the Bayes 
decision rule, also known as maximum likelihood decision mie. The resulting classified spectral 

. classes were labeled using a color composite of the scene and the available vegetation map (IBGE 
and IBDF 1978). 

The digital analyses were compared with visual interpretation results for the Alta Floresta scene. 
The visual interpretation is a major task led by NASA to assess the extent of deforestation and 
habitat fragmentation (C.J. Tucker, unpublished data, 1991). It involved delineating clearings 
using TM band 5, at the 1:250,000 scale, followed by the digitizing of the overlay using 
ARC/Info. Then, the results of each scene are integrated into a large file to compose the 
information for the entire Amazon Basin. To compare this information with the digital analysis, the 
scene had to be decomposed from the large archive and registered back to the TM image. 

Areal extent estimates from the digital and deforestation analyses were also compared to 
deforestation estimates using AVHRR data. An image from 1988 day 190 (July 8, 1988) was 
selected using the 3.5 - 3.9 gm channel with 1.3 km (1.7 km 2  areal extent) spatial resolution froni 
NOAA-9. The Alta Floresta area was free of clouds and minimal smoke was observed. 'The time of 
observation was 15:55 local solar time. Data were processed from 220 0-3200  Kelvin range with 
10-bit radiometric resolution. Each radiometric levei equals —0.1 0K. Areas of undisturbed forest 
were selected adjacent to Alta Floresta TM scene and the mean and standard deviation were 
computed. The forest mean plus 3 standard deviations was used as the threshold between forest 
and non-forest (i.e., the 95% confidence limit). 
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In addition to the AVHRR channel 3 analysis, digital classifications using ali five channels were 
performed based on the multispectral levei slicing method and maximum likelihood classification 
for the Alta Floresta scene. 'The maximum likelihood classifications were performed using the same 
training set of different combinations of channels to verify the contribution of the AVHRR 
channels on the discrimination of five information classes (water, forest, cerrado, regrowth, and 
clearing). The maximum likelihood classifications were done on a Silicon Graphics Personal kis 
4D/20 (32 MB of memory and 1.2 GB of disk) using EASI/PACE software package from PCI. 
Training sites were selected based on the composite of AVRR channels 1, 2, and 3, using both 
Landsat TM and the vegetation map (IBGE and IBDF, 1988) as references. 

Field size variation lias a great impact on digital classification performance because it is associated 
with the diversity of the scene (Batista et al., 1985). Field size, defined as a cluster of adjacent 
pixels of the same class (e.g. clearings), was investigated for both the Bayes and deforestation 
classifications. 

RESULTS 

A visual inspection of the digital analyses indicated good agreement among ali classification results 
(fig.1). Most particular features classified by one analyst as belonging to a certain class were 
usually assigned by the other analysts to the same class. This leads to the conclusion that this might 
be a simple technique that could be used to map these five informational classes, water, forest, 
regrowth, clearings, and cerrado. However, the density of the pixel assignments varies quite 
substantially, especially for highly variable spectral classes such as cerrado and regrowth. It is 
apparent that analysts 4 and 5 overestimated the cerrado class in detriment of forest. Before any 
conclusions regarding areal extent estimations for these classes could be drawn, the results have to 
be quantitatively examined. 

ARFA EXTENT ESTIMAllONS 

Table 1 shows the areal extent estimations of each class by the different analysts and the Bayes 
classifier. Forest is by far the predominant class, followed by clearings which represents about 
10% of the entire analyzed area. Analyst bias is readily apparent even for less variable spectral 
classes such as water. Water had the lowest frequency of occurrence and the the greatest variation 
in area estimates. For clearing, which was the major objective of this analysis, the area estimated 
by different analysts varied by 12%, excluding analyst 4 which did not classify clearing per se but 
rather clearing plus regrowth as a single class. 'When regrowth and clearing are considered as a 
single class, the estimations are more variable (36% between the largest and lowest estimations) 
because of the greater spectral heterogeneity of the regrowth class. In relation to the entire scene, 
thepercent areal extent for clearings (clearing plus regrowth) varied from 14.4% to 19.5% (4,814 
kmz to 6,148 km2). 

Table 2 shows comparatively the results of Landsat TM digital analyses, visual interpretation 
estimations, and AVHRR analyses for deforestation (clearing plus regrowth) determination. As 
expected, the deforestation has a higher value than the digital TM estimations, because it includes 
not only the clearings but also fragmented forest patches. The digital classifications included some 
clearings in cerrado that were not separable spectrally. The upper bound of the 95% confidence 
interval is dose to the deforestation "visual" estimate. The AVHRR analyses seem to have 
overestimated the deforestation area (-20%-50%). 

Table 3 shows the results for the AVHRR channel 3 analyses. The AVHRR has three thermal 
bands which are useful for forest studies. Tucker et al. (1984) have reported that the greatest 
AVHRR spectral contrast between forest and deforested areas was in the 3.5-3.9 p.m AVHRR 
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channel. This channel is sensitive to temperatures in the 0° to 100° C range. We have found this 
channel is the most appropriate to detect cleared areas greater than 1 km since a substantially 
different radiation balance results in cleared areas being warmer than adjacent land where forest still 
stands which are cooler. AVHRR data have been used since 1982 to study areas like the Brazilian 
state of Rondonia. Variations as small as 0.1° C in the forest/deforestation threshold varied the 
estimated area by ±-6%. This indicates that caution should be exercised for small area estimations of 
deforestation using AVHRR channel 3. Using the mean plus 3 standard deviations of the forest 
mean as the threshold value, results were similar to the Landsat TM (23% overestimation). This 
overestimation could be accounted by water and clearings within cerrado because they were not 
separated out from the non-forest category in the channel 3 thresholding analysis. 

Due to the sensitivity of the AVHRR channel 3 thresholds, a more comprehensive analyses using 
several combinations of ali five channels of the AVHRR were performed using both the maximum 
likelihood and multispectral levei slicing techniques (Table 4 and 5). For the maximum Likelihood 
classification of five information classes (water, forest, cerrado, regrowth, and clearings) a 
minimum of 3 channels are needed. In this case channels 1 and 2 should be selected along with 
either thermal channels 3 or 4. Other combinations resulted in overestimation of forest. At least the 
near infrared channel 2 should always be included in the three channel combination. Variation on 
the estimation of clearings were within 14% and for deforestation (clearings plus regrowth) were 
within 31% which were of the same magnitude of the TM variations. 

The four channels combinations seem to improve the consistency of the classification results and 
seem to be just as good as ali five channels (within 1% for deforestation). In this case the best 
combination of 4 channels was 1, 2, 3, and either 4, or 5. The use of a smoothing filter (3 x 3 
pixels) did not change substantially the results for ali classes, and due to the low resolution of the 
AVHRR it did not improve visually the classification map. 

Results of the multispectral levei slicing and the maximum likelihood techniques were very similar. 
However, clearing and regrowth were overestimated. Deforestation is in small proportion of the 
scene (less than 20%). The AVHRR sensor has a coarse spatial resolution (1.7 km 2). There is a 
large contrast between the spectral response of deforestation and forest in both reflective and 
thermal emission channels. A small proportion of clearing in a pixel dominated by forest makes 
this pixel distinct from a forest pixel and therefore, induces the analyst to assign it to clearing as 
opposed to forest. The maximum likelihood technique offers two parameters (threshold and a 
priori probability) that the analyst could use to minimize this bias. However, these parameters are 
interactively determined based on preliminary results by comparison with the color composite of 
the scene and therefore, the same bias trend persists. This explains the overestimation of the 
AVHRR (Table 5) in relation to the TM estimations (Table 1) for both clearings and regrowth 
classes. 

Cerrado estimations by the AVHRR data are almost twice the TM estimations. This is consistent 
with the visual interpretation of the cerrado occurrence. The thernial channels, especially channel 3 
are very helpful to separate cerrado from forest due to the contrast in evapotranspiration rates and 
hence tempemture of these two cover types at the afternoon overpass of the NOAA satellite. 

SIMPLE METHOD VERSUS BAYES CLASSIFICATION OF TM DATA 

The overall coincidence with Bayes of the simple method (multispectral levei slicing), on a pixel-
by-pixel basis, of each analyst against the modified maximum likelihood classifier (Bayes) for the 
TM Alta Floresta scene, was very high for forest and clearings which are the primary classes of 
interest (Fig.2). This would also lead to the conclusion that the digital techniques used are adequate 
mapping tools for these two classes. From ali pixels classified as clearing by Bayes, 88.2% were 
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also classified as clearing by ali analysts. Similarly, 86.8% for the forest class. This Table shows 
that regrowth is confounded with clearing and forest. In fact, this area has been continuously 
cleared since the sixties and the regrowth patterns vary quite substantially. Cerrado is quite variable 
spectrally and resulted in great confusion with forest, regrowth, and clearings. Based on just 
spectral information, cerrado cannot be accurately identified using "FM bands 3,4, and 5. 

Comparisons between ali possible combinations of the classifications (Bayes plus five analysts) 
lead to similar conclusions (Fig. 2). The average represents the coincidence in a pixelwise basis 
between the classifications (n=15 for ali classes, except for regrowth n=10). Again, cerrado and 
regrowth had the lowest average accuracies and the greatest standard deviations as opposed to 
forest and clearing. The class water had the greatest standard deviation as a result of a substantial 
overestimation by one of the analysts. But it represents only about 1% of the scene. 

PIXELWISE COMPARISON BETWEEN DEFORESTAT1ON AND DIGITAL ANALYSES OF TM DATA 

Table 6 summarizes the comparisons between overall digital and visual interpretation classifications 
(tw.o classes) in a pixelwise basis. Over 28% of the clearings identified by digital analysis was 
"natural" in the visual interpretation analysis. On contrary, only about 8% of forest in the digital 
analysis was considered clearing in the visual interpretation analysis. A visual comparison of 
classified maps of both analyses revealed that these 8% correspond mostly to small and irregular 
features. Many of these were later accounted for as "roads" in the visual interpretation analysis. 
The 28% is associated with the criterion of habitat fragmentation which in fact includes as 
clearings, areas of fragmented forest. 

FIELD SIZE 

Even though the criterion utilized to characterize the field is very convenient for digital processing 
once the digital classified image is available, it does tend to maximize the field sue when compared 
to the traditional concept of field (Batista et al. 1985). Just one common single pixel connecting 
two fields of the same class will turn them into a single field. Fig. 3 shows the field size 
distribution for Bayes and visual interpretation classifications. As expected, small fields are much 
more frequent in the digital than in the visual interpretation analyses. Even though there are huge 
fields of clearings, small fields are more frequent for clearing than for "other" class, predominantly 
forest. 

Looldng at the misclassified fields, there is clear evidence that fields that are clearings in Bayes and 
"other" in the visual analysis tend to be small (less than 5 ha). On another hand, there is a high 
frequency of large (greater than 100 ha) fields classified as "other" in Bayes and as clearings in 
"visual" again in concert with the criterion of the visual interpretation. 

Table 7 shows, quantitatively, the distribution of several classes of field sizes for the clearing class 
for both Bayes and visual interpretation classifications. Even though large fields (greater than 1000 
ha) are responsible for the majority (90% of the total area cleared), there is a high frequency of 
small fields especially in the digital classification. This analysis of field size distribution becomes 
very important to explain the variation between the two approaches when severa! scenes of 
different complexity and clearing patterns are involved. 

CONCLUSIONS 

Visual inspection of the classification maps resulting from five independent digital analyses using a. 
multispectral levei slicing technique to classify Landsat TM bands 3, 4, and 5 into five classes ,  
(water, forest, regrowth, clearing, and cerrado) indicated a general agreement (82% coincidence . , 
with Bayes) among ali classification results. Concentrations of any particular class seem to 
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(4.4% of the total dearings) correspond to the' field size class of 0-10 ha. Small fields 
correspondent to single pixels tend to be mixed. The assignment of these pixels to a particular class 
tend to be subjected to high degree of analyst bias. The analysis of field siz.e distribution is very 
important to expiain the variation between digital and visual approaches when-several scenes of 
different complexity and clearing patterns are involved. 
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TABLE 1 AREA (lan2) 

BAYES Analystl Analyst2 Analyst3 	Analyst4 Analyst5 

Water 693 285 277 526 352 2475 
"Forest 24933 25920 23765 . 24046 21371 19866 
Cerrado 2161 1588 2992 3504 5242 4118 
Regrowth 1640 1939 2444 1314 2997 
Clearings 3180 2875 3131 3217 5641 3151 

TABLE 2 DEFORESTATION (CLEARINGS PLUS REGROWTH) AREA 
(km2) DETERMINED BY TM DIGITAL ANALYSES, TM VISUAL 
INTERPRETATION, AND AVHRR ANALYSES 

95% Confidence Interval 

Lower 	Upper 

TM Digital 	 5,255 (Average) 	4,598 	5,911 
MV! Visual 	 6,024 
A'VHRR Channel 3* 	 6,463 (Median) 	4,739 	9,251 
AVHRR (Maximum Likelihood) 7,189 
AVHRR (M. Levei Slicing) 	8,104 

* Non-forest class (includes water and clearings in cerrado) 
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