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Abstract 

In this paper we present some simulation results about the convergence properties of 
one of the available methods to simulate Markovian fields: the Swendsen-Wang algorithm. 
We use the observed values of the mean magnetization, the pseudo-likehood estimates, the 
observed short and long range correlations and the number of connected subgraphs to study 
the problems associated with the stopping time of the algorithm for different values of the 
parameter. 
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1 Introduction 

In this paper we present some simulation results about the convergence properties of the Swendsen-
Wang algorithm when used to obtain samples taken from the class of distributions known as Ising 
Model. 

We will follow the notation, the definitions, the ideas and the methodology already presented 
in BUSTOS AND FRERY (1991), and we assume that the reader of this work is familiar with them. 
Only additional references are listed. 

The Swendsen-Wang dynamics differs from the Gibbs sampler in that it is a cluster flip 
algorithm rather than a spin flip algorithm. In the latter only one pixel is allowed to change 
its value per renewal, and one iteration needs, at least, #S renewals. In the former a random 
number of renewals, say #A, with #A < #S is needed to obtain an iteration. 

We will show computational evidence that the Swensen-Wang dynamics is faster than the 
Gibbs Sampler in the number of iterations required to achieve the convergence and, also, in the 
computational time needed when the desired final distribution is characterized by a value of a 
greater than the critical value ac• 

2 The Swendsen-Wang algorithm 

Suppose c > O and let x(0), x(1), 	be a sequence of outcomes such that x(k) E E for ali k > O; 
we write x(k) = (x i (k),... , x#s(k)). Let x(0) be any element of E and, for ali k > O, change 
x(k) to x(k -I- 1) in the following manner: 

1. Obtain £(k) the set of random bonds of configuration x(k) as £(1c) = -{(i,j) E S x 
S:Ili - 	= 1, x(k) = xj(k), and i < j}. Note that this is an edge set. 

2. To every pair (i,j) E £(k) assign an independent uniformly [0,1] distributed random 
variable U. 

3. Obtain . --6, a (w) C £(1c) by independently deleting bonds in £(k) with probability 
exp{-a}, i. e. Ek, c„,(w) = {(i,j) E £(1e): Uij(u.)) < 1 - exp{-a}}. 

4. Obtain Mco) = {Ai, • • • , AL} the set of all connected subgraphs of Õk, a  = {S, 	a(C4) )} • 

Obviously x(k) = x(k) for every pair of pixels i , j in Àm , 1 < m < L. Assign an 
independent uniformly [0,1] distributed random variable V m  to every Am E A. 

5. The new configuration x(le -I- 1) is obtained by changing (retaining) the values of ali 
sites xi(k), i E Am if Vm (w) < p (Vm (w) > p respectively), with p = 1/2. 

It can be seen in MARTINELLI ET AL. (1990a, 1990b) that the desired convergence IPr (X(k) = 
x) 	IPr (X = x) is achieved as k 	oo. 

The Ising model with antiferromagnetic interaction, i. e. with a < O could be obtained mod-
ifying step 1.: £(k) = {(i,j) E S x S:Ili = 1, x(k) x(k) and i < j}. This algorithm 
could also be used, through proper redefinitions of step 5, for the simulation of the following 
distributions: 

• Ising model with externai field (MARTINELLI ET AL. 1990a, 1990b), in this case the value p 
will depend on the externai field H = [hs].9Es and on the size of the considered cluster, i. e. 
p= (1+ exp{aht0}) -1 , where ht = EjEA, hj and Ce = #{x8: x 3  E A} for all 1 < < #A. 



• Potts model, i. e. first order neighbourhoods and E, = {0,1, 	,M} for ali s E S (RIPLEY, 
1989); in this case x(k 1) is obtained by choosing the new value for ali sites in every 
connected subgraph of x(k) uniformly in E,. 

3 The Connected Subgraphs Algorithm 

Among the several algorithms studied in classical books about computational graph theory, we 
chose to work with the one presented in REINGOLD ET AL. (1977) since it lias a nice recursive 
structure suitable for the chosen programming language (Zortech C++). It does not need the 
usual auxiliar structures as lists, stacks, etc. 

The technique is based upon the depht-first search on undirected graphs and, on output, 
assigns a unique component number to every vertex belonging to the same connected subgraph 
of the current stochastic graph Ek,a(c0 ). 

The algorithm in structured english is as follows: 

/* Setup */ 
for every node "n" 
c = 0 

/* Algorithm */ 
for every node "n" 

c = c + 1 
comp( n ) 

in the graph do compnum( n = O 

in the graph if compnum( n = O do 

/* Procedure comp( x */ 
compnum( x = c 
for nodes "w" in the set A( x ) if compnum( w = O do 

comp( w 
return 

In this listing we have written A(x) the set of (stochastic) neighbours of pixel x, in the 
previously defined sense. 

Notice that the algorithm is used every iteration and that the number of connected subgraphs 
found could be used as an alternative measure of convergence (with the advantage that this 
sequence of numbers is a direct subproduct of the algorithm, needing no additional computations). 

4 The results 

We worked with the same model studied in BUSTOS AND FRERY (1991), with S = 64 x 64 and 
values of a = f3 in the ranges O, (0.1), 0.8 and 0.85, (0.05), 1.2; note that these values span both 
the sub and the supercritical regions, i. e., values of the parameter c < a, and a > a,. 

We noted that simulations with different values of the parameter, but belonging to the same 
sub or supercritical region, do not exhibit major differences in the convergence behaviour. So, in 
this work, we present the results for a simulation with a = 0.5 and other with a = 1. 



In the simulations with values dose to ac , i. e. in the interval [0.85, 0.95] we observed a notice-
able increase in the dispersion of the observed mean magnetizations and long range correlations. 
We present the correlograms of these observed quantities and notice that after, say 20 iterations 
there is no observable evidence of dependence upon samples. This, along with the expected the-
oretical behaviour pointed in PICKARD (1987) that assigns an arbitrary large variance to these 
values in the point a = ac , stimulates the claim that the Swendsen-Wang algorithm may produce 
almost independent samples of Markovian fields with less computational effort than the Gibbs 
sampler. 

Our main results are presented in Figures 1 to 6 (7 to 12) for a = 0.5 (a = 1.0 respectively). 
They correspond, in order, to: mean magnetization vs. iteration, ã vs. iteration, c(1) vs. iteration, 
c(10) vs. iteration, #A vs. iteration and the correlogram of the mean magnetization. 

The relevant listings are provided by the authors under request. 
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