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Abstract 

Markovian fields are useful stochastic models for the statistical treatment of digitized 
images, among other applkations. In this paper we present some simulation results about 
the convergence properties of one of the available methods to simulate Markovian fields: the 
Gibbs sampler. We use the observed values of the mean magnetization, the pseudo-likehood 
estimates and the observed short and long range correlations to study the problems associated 
with the stopping time of the algorithm for different values of the parameter. 
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1 Introduction 

The theory, the acquisition and the practical treatment of discretized and digitized images has 
dassically been a discipline of engineering. Many good solutions to problems have been found, 
and are still being developed, without the use of statistical tools, but statistical ideas are used 
more and more. 

The key element, when working within the statístical framework, is that a model has to be 
stated before anything is done. Markovian fields are a promising class of models where spatial 
interaction is allowed. They were popularized by BESAG (1974) and since then they are receiving 
more and more research attention from different fields. 

It is quite important to obta,in samples of Markovian fields. Several reconstruction and das-
sffication techniques that use simulation have been proposed in the last years and they seem to 
be, at least, as good as the classical methods used since the advent of image processing. These 
techniques are related to the idea of simulated annealing, an ali-pourpose method of stochastic 
relaxation to solve large combinatorial problems. 

The simulation of Markovian fields poses several interesting problems. Since only iterative 
techniques seem adequate to obtain samples from this class of distributions, one of the important 
questions to be answered is the stopping time of the used algorithm. 

Irt this work we illustrate the convergence properties of one of the most popular algorithms, 
due to Geman and Geman: the Gibbs sampler. 

The paper is divided into four main parts. The first contains some useful elements of graph 
theory, the definitions of Markovian fields and of Gibbs distributions. The second part is devoted 
to one of the main simulation techniques already available to generate Markovian fields: the 
Gemans' algorithm. In the third part the theory of pseudolikehood estimation is presented and 
illustrated by examples. The fourth part presents some non conclusive results on the determina-
tion of the stopping time for the simulation of the finite isotropic free-boundary Ising model; the 
aim of this paper is to draw the attention on the problems that may arise, rather than formally 
obtaining definitive results. The relevant listings are provided under request. 

2 The theory of Markovian fields 

Our main interest is in modelling digital discretized images, so we consider that the pixels of such 
an image are the pairs (site of a graph, observed value in that site), and we present some unified 
notation. Markovian fields, that is, vectors of random variables indexed by the sites of a graph, 
are then introduced and, finally, the relation between Markovian fields and Gibbs distributions 
is recalled. 

2.1 Elements of graph theory 

To every site s we associate a random variable whose conditional distribution, given ali the other 
variables is, for Markovian fields, determined by the values taken by pixels in a suitable subset 
of the whole image: those pixels that are "neighbours" of the pixel s. 

Let 5 be a finite set and -‹ a total arder relation in 5; let o and q be elements of S. The 
set C 5 x S' is an edge set for 5 if (i) o E 5 = 3q E 5: (o, q) E or (q, o) E C, and (ii) 

C { (o, q): o q}. 
A system Ç = 	where is an edge set of 5 is called a graph, s E S will be called a 

site and 1 E .£ will be called an edge. From now on we suppose that a graph Ç is given. Given 



oES,qES we say that o is a neighbour of q if o q and (0,0 E C or (q, o) E ,C; and for every 
qESwe write eq  = {oES:qis neighbour of o}. Note that o E Oq 	qE8o ; for non-empty 
subsets A c 5 we write OA = {q E S\A:O g nA 0). For every non-empty subset A C S' we call: 

o 
the closure of A the set = AU 8A and the interior of A the set A= {s E A:8 e t  Vt E S\A}. 
We say that A C S is a clique if a E A and b E A with a b imply that a E Ob. The subset 
À C 5 is called a connected subgraph of Ç if for every pair of distinct points p, q E À there 
exists a sequence to, • • • , £m, m > O, satisfying (i) 1 E À for ali O < j < m and (ii) ti E 0/j+1  for 
all O < j < m — 1. 

Example 1: For digital images where S = {1,... ,M} x {1,...,N} C Z2  there are standard 
definitions of neighbourhoods. Sites s E 5 t E S are considered first-order (second-order) neigh-
bours if lis — til < 1 (lã respectively), and we write 0 (1 ) (0(2) respectively). There are many 
"natural" ways to generalize this and to define hierarchies of Markovian fields in increasing order 
of spatial dependence ("spatial memory"); in the remainder of this text we use the L'" norm: 

'%k)  = (vi, v2) E S {(ri,r2)}:sup{Ith 	11,2 — £21) k 1} Vk > 1. 

2.2 Markovian fields 

We shall now define the probabilistic elements of a Markovian field. The central idea is the 
conditional independence between components of a random vector; this, when stated in terms of 
graphs, will be used to define a Markovian field. 

Suppose a graph Ç is given. For every s E S let E, be a non-empty finite set, and E = 
USES E, the product space with its natural a-algebra P(E), the subsets of 	Let (S/, ,4,1Pr ) 
be a probability space and X:2 	E. a measurable function; also suppose that IPr (X = x) = 
IPr(x) > O for every x E 

For non-empty subsets A, B and C of S; we say that A and B are conditionally indepen-
dent given C (with respect to X) if 

IPT (XA = XA,XB=XB 1 XC XC) = 
IPr(XA = xAIXG• = xc) • Fr (XB = XBIX-c = Xc)VXA E EA, XB E EB, XC E Eic, 

and we write it A 1 BC or XÁ 1 XBIXC. 
Suppose 3 < #S < oo; the following local Markovian conditions are equivalent: 

1. sES,tES,s O 	{s} ± {t} 1 {u} resp. X, Vu E S \{s,t}. 

2. 1Pr (X, = x a lXs\{,} = xs\{,}) = IPr (X-, = x,„IXa s  = xa,) Vx = [xu]u€s E E, Vs E S. 

3. For every x E E., every s E S and every y E E with y = x holds IPr (X, = x, 
Xs\{,} = xs•\{„}) =lPr (X, = ys 1 Xsvs}  

We say that X = [X,] 3Es is a Markovian field if it satisfies any of the above local Markovian 
conditions. 

For A and B non-empty subsets of S the following global Markovian conditions are 
equivalent: 

1. A1BIS\(AuB)ifAna73- =0(AnB=0) 
2. 1Pr (XA = xA IX s\A  = xs\A ) = IPr (XA = xAIX0A  = 	Vx E E 



3. IPr (XA = xAIXAA  = xs\A ) does not depend on xs\71 , Vx E E. 

We say that X = [X,], Es is a Markovian field if any of the above global Markovian conditions 
hold. The non-trivial part of the proof of the equivalence between global and local Markovian 
conditions may be found in MOLLER (1988). 

The joint distribution of a Markovian field is uniquely determined by its local characteristics 
2. See BESAG (1974) and, in a more detailed version, MOLLER (1988). This is the characteriza-
tion that we mainly chose to work with, since it is practical for pourposes of simulation and of 
estimation. 

2.3 Gibbs distributions 

The next main ingredient in the theory is the concept of a Gibbs distribution. We shall define it 
using the concepts of potential and of energy, both borrowed from the framework of statistical 
mechanics. 

We call a potential function (associated to the graph Ç) every function V:C(S) x E --+ IR, 
where C(S) is the familiy of non-empty diques of S, such that V(A,z) = V(A,y) if xA = yA. We 
use the standard notation V(A, x) = VA(x). Given a potential function V we call the energy 
associated to V the function Uv: E IR defined as U(x) = EAEc(s) VA(x). Let X:S1 --+ E be 
a measurable function, V a potential function and Uv the energy associated to V. We say that 
X lias a Gibbs distribution with potential V if 

IPr (X = x) = ke.p{_uv(x)}, 

where Zv = EvE = exp{–Uv(y)) is called the partition function. 
The addition of the temperature parameter is sometimes convenient: 

1 1Pr T(X = ) = "ki;
ex 
 

Y 

with Zvj = E yE r: eXp{— +UV(Y)} 
One of the main theorems related to this theory is due to Hammersley and Clifford. It proves 

that X is a Markovian field if and only if X has a Gibbs distribution. There exist several proofs 
of this theorem, from the —unpublished— original to a quite simple proof in BESAG (1974); we 
suggest the reader to see the elegant one in MOLLER (1988), essentially due to SPEED (1978). 

Note that if the Gibbsian form is known it is easy to obtain the local characteristics, but 
knowing the local characteristics little helps to calculate the joint form of the distribution due to 
the awkward form of the partition function: it involves a summation over ali elements of E. 

Remark: this theorem (and most of the material exposed here) is valid only if #S < oo. The 
interest in this theorem lies in the facts that 

1. it is easier to specify a Markovian field in local characteristic form than in Gibbsian 
form but, once the (suitable) local characteristics are specified, we know the form of 
the joint distribution. Recai! that, outside this context, the conditional distributions of 
the components of a random vector do not determine uniquely the joint distribution, 

2. the Gibbs distributions have received a lot of attention in physics, since they represent 
the equilibrium properties of large scale interacting systems well (ideal gases, crystals, 
metal alloys, ferromagnets, etc.); 



3. often it is interesting to evaluate the quotients Fr (x) IPr (y) for a, y E E; in this case 
the normalizing constants cancel out leaving only a summation of potential functions 
over diques; 

4. Gibbs measures have the property that they maximize the entropy for constant mean 
energy; 

5. as a theoretical tool it is useful for some proofs to be able to move from one represen-
tation to the other. 

Let us introduce some terminology that will be useful when discussing Markovian fields. 
Assume that 5 = Z x Z, and that ali the sites have similar neighbourhood systems, i. e. 8„ = 3+49 0  
for all s E S. A Markovian field X is called: 

• stationary if its local characteristics are location-invariant, i. e. 

IPr (X, = I Xt  = Vt 	= IPr (Xo = x. 1 Xt = xt Vt E ao); 

• isotropic if its local characteristics are rotation-invariant i) in O and ii) in s, e. 

i) IPr (X0 = xo I Xt = xt Vt E 00) = 	(X0 = zo 1 Xt = x ek (t) Vt E ao) 
k= 0,1,2,3 

ii) 11)r (X, = xa  I Xt  = xt Vt E $98 ) = IPr (X, = x a  I Xt = x 12,,,(t ) Vt E 8.), 

where p,,k(t) = s pk(t — s) for ali t E O, and ük is the k-l-counterclockwise rotation 
operator defined over S (in this case we have assumed that ao = ek(ao) for ali k, that is, 
the set 90  is ek-invariant). 

homogeneous if it is stationary and isotropic. 

3 Simulation of Markovian fields 

Developing our statistical intuition through the observation of simulated Markovian fields is not 
the only stimulus to studying appropriate simulation techniques. Severa' image-related problems 
can be suitably treated via simulated annealing (AARTs AND LAARHOVEN, 1989), a procedure 
that heavily 'ienes on adequate simulation algorithms, see, for example, the works by CARNEVALLI 
ET AL. (1985), GEMAN AND GEMAN (1984) and KELLY ET AL. (1988). 

Let X: 5.? 	E be a Markovian field; assume that we are given its local characteristics or 
its potential functions. Our aim is to obtain a sample of size one taken from the distribution of 
X by simulation. The full evaluation of the state space E = {6, ... ,e #=}, the corresponding 
probabilities ,p#E} (where pi = IPr (X = for ali i) and, then, sampling from this 
distribution, implies a computational burden unfeasible with today's tools. Also, we do not have 
any special point where to start the simulation, as we had when working with a Markov chain. 

We will construct a (possibly non-homogeneous) Markov chain that converges to the desired 
distribution 1Pr (x), i. e. (X(t)) t>0  with state space E is such that Wr (X(t) = x) 	11)r (x) 
as t 	oo. The three main algorithms already available to obtain this convergence are the 
Metropolis, the Gemans' and the Swandsen-Wang. For a survey see RIPLEY AND KIRKLAND 

(1990. 



3.1 Comparison of methods 

Prof. Brian Ripley has suggested that, when the goal is to study the behaviour of some dtaracter- 
istic quantity Etk(X), X being a Markovian field, through a measure Êtfi(X) = n -1 	ti)(Xj) 
over the n Markovian fields X1 , 	Xn , the three simulating techniques must be used for different 
values of the parameter vector. 

There are no conclusive studies in this direction, but the Swendsen-Wang dynamic seems to 
be much better than the other two when the desired field, an Ising model, hos parameter values 
corresponding to the supercritical region in the infinite-lattice case. 

In this paper we study some problems associated to the stopping time of the Gemans' method: 
the so-called Gibbs sampler. 

3.2 The Gibbs Sampler algorithm 

This a way to obtain outcomes of Markovian fields, and the structure of the algorithm is suitable 
for parallel processing. The idea is very natural, and detailed proofs of convergence can be 
found in GEMAN AND GEMAN (1984). It has been said (DUBES AND JAIN, 1989) that the main 
drawback of this technique is the fact that time wasting calculations must be performed for every 
visited pixel (in particular, for binary fields a quotient of exponentials has to be evaluated). This 
is not the case when every transition probability is calculated and stored in a matrix as soou as 
the parameters are known. The renewal process has only to access these values and randomly 
choose the new states. 

For binary Markovian fields, we have implemented the following simplified version of this 
algorithm: for notational ease consider an ordering of the set 5 = {1,... , N 2} and let X(0): S/ 
E be a random vector defined on S/ with values in E such that [X(0) 3 ] $es  are independent random 
variables uniformly distributed on EE, for each s E 5. Consider for ali x and ali tu in E: 

if xs\i ws\i qi(x I w)= Fr (Xi = I Xai = toai.) if xs 1  = wsv. 

Now define the random vector X(1):11 --> E such that 1Pr (X(1) = x I X(0) = w) = qi(x 1 w) 
thus, X(1) is defined from X(0) by changing only the value in the pixel 1. Now we define X(2) 
from X(1) in similar way modifying only the pixel 2: IPr (X(2) = x I X(1) = w) = q2 (x 1 w) thus, 
X(2) is defined from X(1) by changing only the value in the pixel 2. These are called renewals 
and the kth iteration is X(N 2 k). 

Proceeding in this manner we define inductively the random sequence (X(t)) 0, 0 , by modifying 
only the pixel labeled (t 1)mod /0. It is easy to see that (X(t)) is a Markov ciiain and Geman 
and Geman proved that X(t) converges in distribution to X as t --+ oo, that is, IPr (X(t) = x) 
IPr (X = x) for ali x E E. 

Since only a finite number of iterations may be performed in practice, the resulting simulated 
field is only approximately the desired Markovian field. Among the convergence criteria that 
could be used, we worked with the ones that depend on the statiblity from one iteration to the 
next of the following quantities (to be defined ahead): 

1. magnetization; 

2. short range correlation; 

3. long range correlation, and 



4. parameter estimates using maximum pseudo-likehood estimators. 

Other sensitive quantities are, for example, percentual variation of pixel values and the radius 
of the (approximate) circumference that encloses a fixed percent of power in the frequency space 
of the sampled image (c. f. FRERY, 1990). 

3.3 Model under study 

We implemented the Gemans' algorithm in the C programming language using a generalized 
shift register pseudorandom number generator (BusTos, 1990) to obtain 128 x 128 first order 
neighbourhood binary Markovian fields: the celebrated Ising model. 

This model was introduced in 1925 by the german physicist Ernst Ising. He was trying 
to explain certain empirically observed facts about ferromagnetic materiais using an stochastic 
modelling. 

In this work we consider the model 5 = {1,...,N} x {1,...,N}, N = 128, E, = {-1, 1} for 
ali 8 E 5, O = (a, 0) E e = 1R2 . Define the local characteristics as 

expf 1  + c̀ ' [aT, -F filf„]} 
1.  1Pr (X, = 	= za,) = 

1 exp{aTs "

}  9 

where 

T, = sum in the row-neighbouring pixels of s 
w a  = sum in the column-neighbouring pixels of s. 

3.4 Quantities for the convergence criteria 

One of the central features of the Ising model is that it is capable of explaining the physical 
phenomena associated with spontaneous magnetization. For values of c sufficiently high, even if 
the spins are random to begin with, they will tend to move to a state of lower energy: mostly 
up or down, forming a magnet. In terms of random variables, the variables begin being locally 
dependent and there suddenly appear extremely long range dependences. PICKARD (1987), based 
on classical works of statistical mechanics, says that these values are a > ac  = sinh-1 (1) = 
1n(1 

In order to understand the concepts of short and long range correlations we introduce some 
notation. We call correlation of order k the quantity c(k) = M(k) 1 E (8t)ED(k)  X.X t , whre 
D(k) = {(s,t)E 52 : lis — til = k} and M(k) is a certain normalizing constant (see details in the 
listing of the program). c(1) is the short range correlation, and we consider c(10) as long range 
correlation. 

The behaviour of c(10) as a function of a can be seen in Figure A (solid line), as proved by 
PICKARD (1987) for the #S = oo case. Nothing is known analitically for the finite case, but we 
expect a strong (though smooth) resemblance, as can be seen in the same Figure in dotted line. 

These are the ideas that we propose to use as stopping rules for the iterative simulation 
algorithm generating a Markovian field: criteria 1., 2. and 3. indicate to stop the process whenever 
the observed characteristics of the current iteration are dose enough to the theoretical values 
provided by PICKARD (1987) as a formula for the magnetization and graphics for correlations. For 
the former consider the random variable Ma = (#5) -1  lEsEs  X8 1, the net absolute magnetization 



of the isotropic binary field X (our case with a = #). It can be seen in HUANG (1963) that its 
mean value is given by: 

O 	if a < 

#s_ 	

ac 

um E(M)) = 	 exp{-2a}] – 6 exp{ –2a} exp{ –4a} (x) 
	  if a > ac , 

1 – exp{-2a} 

and this is the goal theoretical value for the magnetization for the field with parameter a. 
The criterion 4., of the maximum pseudo-likehcx)d estimation, is a bit different and we post-

pone its discussion until next section. 

4 Parameter Estimation in Markovian fields 

The classical estimation procedure, maximum likehood estimation, is not computationally feasible 
for every Markovian field with today's knowlegde and tools. The problem is, again, that the 
partition function is a function of the unknown parameters; since it is not computed —with a few 
exceptions—, it is impossible to obtain and to solve the classical maximum likehood equations. 
The reader interested in the problems posed by the computation of the partition function is 
referred to KINDERMAN AND SNELL (1980). 

The idea of pseudo-likehood is that the observed process Xs is just a subset of a bigger 
process Xs, and that estimation must be carried out in a proper window W CSCS such 
that XwL X s\s  1 Xs\w . We used the biggest possible window, which is determined by the 
neighbourhood system. 

The pseudo-likehood estimator is defined by 

PLw(x,ê) = maxPLw(x,0), where PLw(x,O) = 	IPr o(X,„ = x,,, IX = xote), 
0E43 toEw 

and where, in the practice, pl w(x, O) = ln PLw(x, O) is evaluated. 
There is a theorem (c. f. JENSEN AND MOLLER, 1989) that proves the consistency of this class 

of estimators. 
Consider the Markovian field previously defined; here the set 5 is {1,...,N} X {1, ... ,N} 

and the local characteristics are defined as 

11"r 00(Xi si 	I Xs(i,j) = XSVi,j)) = 
xi á  

eXp{[a(Xi,j
1  

--1 	 x+,)] 	2 	f  

	

. 	.‘ 1 exp{a(xi,i-i 	 0(si-i,j xt+1,3)} 

for every site (i, j) E {2,...,N –1) X {2, 	,N 1}, with the proper redefinitions for sides and 
for corners. This first-order neighbourhood induces the maximum window W max  = {(i,j) E 
{2, ,N –1) X {2,...,N – I)} and some calculations give as maximum pseudo-likehood esti-
mators for (adi) those values (a, .j) E IR2  that satisfy 

F 	 ci-1)4- 2 [P?_2 41)(2(a 'ià)) P.2 (1) ( -2(a 

/1 4)(2(a + )-à)) – P2-2  (1)(2(–ã + Ã))1 .12 (  4)(2ã) -F 4)(2 -j)) 

P 2( (-2&) 4)(-2 -)à)) =0, 



where 

= #{.,(i,j) E W:xià= k, xii-i xii+i = I}, 

ct = #{xii,(i,i) E W: zij = k, 	zi+i,i = 1), 

= 	(i,i) E W: 	 = k, xi-ij zi+i,i 1) and 
exp{v}  

0(p) = 
1 + exp{v} 

This equation can be solved using numerical tools. If the isotropic model is considered (our case 
where a = )5) the maximum pseudo-likehood estimator is the value C:c E IR that satisfies the 
objective equation 

2(C1 - C1 4 ) + (Cl - C1 2 ) -I- 2(C-- 1  + C1 ) exP{.-.4&}  -4- 4  

-1  C ' ) 	 (c... 1  + Cl\  exp{2ã}  
(C +C _2 	2)

1 +exp{-2t2} ‘ 2 	2) 1 -f- exp{2a} 
, _i 	,..i , exp{4a}  

4 	  2çai  -f- u) 	 = O,  
i -1-eXp{4a} 

where we have written C = #{ x.: w E W 1 xu, =--- 1, Et, = k}, and E. = EtEa. xt• 
The quality of this estimation technique is good enough to ensure their success when used 

in a variety of contexts, mainly in image-segmentation algorithms. COHEN AND COOPER (1987) 
present some results in this direction. 

4.1 Criterion 4. as stopping rule 

Our aim is finding an integer k* such that the simulated field in stage k*, that is X(C), is dose, 
in some "senses", to the desired Markovian field X. Three of these senses are criteria 1., 2. and 
3. 

We know that X, Ising model, is characterized by the value of the parameter a and that we 
have a good rule of estimation of a, just the zero of the objective equation. In order to simulate a 
Markovian field we have to fix the desired value for the parameter. It appears sensible to define, 
as a criterion for the stopping rule of the simulation, the k* such that ã(k*) is dose to the imposed 
a, where ã(k) is the solution of the objective equation obtained using X(k) in place of X. 

These four criteria jointly define the stopping time. In this work we checked that for a < a, 
this stopping time is about 100 iterations, and that for a > a, it is about 50000 iterations. 

5 The results 

We worked with the values of a = 1 in the ranges 0, (0.1), 0.8 and 0.85, (0.05),1.2, note that these 
values span both the sub and the supercritical regions, i. e., values of the parameter a < a, and 
a > 

We noted that simulations with different values of the parameter, but belonging to the same 
sub or supercritical region, do not exhibit major differences in the convergence behaviour. So, in 
this work, we present the results for a simulation with a = 0.5 and other with a = 1. 

The main results are presented in Figures 1 to 8. For a = 0.5 (a = 1 respectively) see Figures 
1 to 4 (5 to 8 respectively), corresponding, in order, to: mean magnetization vs. iteration, ã vs. 
iteration, c(1) vs. iteration and c(10) vs. iteration. 



5.1 Comments on the graphics 

From the theoretical results presented In PICKARD (1987) we may expect that the desired conver-
gence has been achieved for k* if for ali k > k* the values of the mean magnetization, a, c(1) and 
c(10) oscillate around their correct mean theoretical values given above. That is, for a = 0.5 they 
are O, 0.5, 0.28 approximately and O respectively, for a = 1 they are 0.91, 1, 0.88 aproximately 
and 0.85 aproximately, repectively. 

Looking at Figures 1 to 8 we can conclude that k* could be chosen as a value smaller than 
100, for the subcritical case and smaller than 50000 for the supercritical case. 

Detailed computational information will be sent by the authors under request. 
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