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ABSTRACT

In lincar, three-dimensional, continuously stratified equatorial B-plane ocean models with
arbitrary eastern and western boundaries the shallow water equations for each vertical mode
must be solved numerically in the horizontal variables. This paper introduces a new numerical
method of solution for the time-Fourier transformed shallow water equations with slip
boundary conditions at boundaries of arbitrary geometry. The method is based on a boundary
integral equation (BIE) for the pressure perturbation response to the specified wind-stress
forcing ficld. All other dependent variables are expressed as boundary functionals of the
pressure perturbation. The kernels of all functionals are constructed from the Green’s

function for the Laplace Tidal Equation on the B-plane and its derivatives. The efficient
computation of these kernels from their exact meridional mode representations may be

performed by use of asymptotic methods especially developed for the numerical evaluation of
functions expressed as slowly converging series of Hermite functions. The solution of the basic
BIE and the computation of the boundary functionals involve the discretization of the ocean
boundaries into a number of boundary segments (boundary elements). It is shown that the
terms of the BIE involving the wind-stress field over the ocean may be reduced to a boundary
integral, which effectively reduces the simulation problem to the solution of a one-dimensional
BIE. The method incorporates the ocean physics through the relationship between the coastal
pressure field and the basin-wide variables, pointing out to the possibility that the dynamic
topography of the ocean may be estimated directly from the wind-stress field and coastal
sea-level data.
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1. Introduction

Numerical simulations of the wind-forced tropical ocean circulation usually em-
ploy the finite-difference method to solve a set of model equations (McCreary, 1985).
In linear, three-dimensional models which assume a flat bottom and a vertical
stratification that does not vary horizontally, separation of variables allows the
reduction of the three-dimensional problem to a series of two-dimensional problems
in the horizontal variables. While finite-differencing is used in the horizontal
variables, the time dependence of each of these two-dimensional problems may be
dealt with either by direct time integration or by use of some integral transform
(usually a Fourier or Laplace transform). When non-linear models are considered,
the only practical solutton method seems to be to use multi-level finite-difference
schemes (Bryan, 1969). This method has been used over the years since 1980 by
Philander and Pacanowski (see, €.g., Philander and Pacanowski, 1986) to discuss

several features of the ocean response to a variety of wind setups, including
seasonally varying and realistic winds. Although these simulations seem to be

realistic, some practical limitations on its applicability to study the physics of several
important phenomena can be identified:

(1) The model is very complex, in the sense that only a small group of researchers
can do few numerical experiments per year, and each experiment is also computation-
ally time-consuming.

(2) The various authors recognize that western boundary phenomena, relating the
wind field to the dynamics of the North Brazil Current, which veers offshore (Bruce
et al., 1985) in a clear seasonal pattern, are left unexplained.

(3) The discussion of the relation between local and non-local responses in the
tropical Atlantic, and the periodic versus the “initial value” (impulse) response
needs more detailed support from additional specialized numerical experiments.

On the other hand, linear three-dimensional models, that in principle should be
easier to apply by a large number of interested authors, have suffered from even
more serious practical drawbacks. We will comment on a few representative models
developed so far as illustrative examples of these drawbacks.

(a) Inability to accurately apply boundary conditions at slanted or irregular
boundaries in a computationally efficient and simple way: in McCreary et al. (1984),
the 2Ax noise introduced by the finite-difference discretization was a problem, so that
a large horizontal viscosity had to be introduced. Moreover, the boundary geometries
(east and west) are unrealistic. The simplicity of the linear theory is thus lost, and it
would therefore be more efficient to use the finite-difference code with realistic
boundaries and wind forcings for each of the baroclinic modes. In fact, the linear
reduced gravity model of Busalacchi and Picaut (1983) accomplished this objective
independently, and our integral equation method should be tested against some of
their results. However, a large horizontal eddy viscosity was also introduced in their
simulation in order to damp the short waves near the boundaries.
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(b) Many authors use the long-wave approximation, which reflects the basic
inability to satisfy boundary conditions at slanted boundaries with the use of the
complete horizontal normal mode expansions. They also reflect computational
problems with the summation of series of meridional modes (Cane and Patton, 1984;
Boyd and Moore, 1986). Therefore, in these theories the true capabilities of the
linear theory in explaining important phenomena, especially near western bound-
aries, are probably lost and have never been appreciated to date. The models of Cane
and Patton (1984), Cane and Sarachik (1981) (see Cane and Sarachik, 1983, for a
review) and du Penhoat and Treguier (1985) all fall in this category. The present-day
recognized importance of linear theory as a valid model, rather than as a diagnostic
tool, relates to its effectiveness in representing sea surface dynamic height (du
Penhoat and Gouriou, 1987; Philander and Pacanowski, 1987), and the recent proof
that interannual variability in tropical ocean-atmosphere models is well described by
linear theory (Battisti and Hirst, 1989; Seager e al., 1988; Zebiak and Cane, 1987).

With the availability of large sets of synoptic wind-stress data, to be obtained from
scatterometer data from satellites to be launched in the near future, and with
altimeter data already available from Geosat (Carton, 1989), the development of
new computationally efficient three-dimensional linear models that include the
complete meridional mode superposition and are forced by realistic winds over
realistic tropical ocean geometries is of general interest. This work is devoted to the
development of a practical and accurate computational method of solution of
boundary value problems for the shallow water equations with slip boundary
conditions at eastern and western boundaries of arbitrary shape. The analytical-
numerical analysis presented here is described in the traditional language of mathe-
matical physics. By use of a Green’s function for the Laplace Tidal Equation on the
B-plane (Matsuno, 1966), we display how local and non-local influences are propa-

gated throughout the ocean basin.
We derive integral relations between the pressure and velocity perturbations over

the ocean basin and the pressure distribution along the ocean boundaries. These
relations involve boundary functionals of the pressure, so once the pressure distribu-
tion along the boundaries is known, one can determine at once the dependent
variables in any restricted region of the ocean with whatever resolution is necessary.
To accomplish this, the kernels of the boundary functionals, or “influence functions,”
have to be computed with the aid of new asymptotic methods which allow the
efficient summation of slowly convergent series of Hermite functions (Holvorcem,
1992).

The computation of the boundary pressure distribution is performed by solving the
basic boundary integral equation (BIE) of the theory (Vianna, 1988). A practical
solution may be obtained by the standard boundary element method (Brebbia ef al,
1984). All boundary integrals appearing in the boundary integral equation may be
calculated by this method. We also show how to reduce a two-dimensional domain
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integral term containing the arbitrary wind-forcing field, which is usually given on a
standard grid (Picaut et al., 1985), to a boundary integral.

Part II of this series {(Holvorcem and Vianna, 1992) presents a BIE formulation for
equatorial wave scattering problems with arbitrary boundary geometry, which is
derived from the theory of this paper. It also describes the first numerical experi-
ments with the boundary element method in equatorial ocean modeling, through a
study of the scattering of equatorial Rossby waves from a model equatorial Atlantic
western boundary of realistic horizontal geometry. The most prominent features in
the resulting interference patterns turn out to be amplitude maxima arising from the
superposition of short wave modes excited at the western boundary by the incident
Rossby wave. Similarities and differences between these simulations and the ob-
served intraseasonal oscillations in the equatorial Atlantic Ocean are also discussed
in Part II.

Future developments of the methodology presented in this paper will include a
BIE formulation for initial-boundary value problems for the shallow water equa-
tions, thus allowing the study of the transient ocean response.

2. Model equations

The equations of motion for the horizontal structure of the baroclinic modes in a
vertical mode expansion of the linear, continuously stratified B-plane model of
McCreary (1981), in which the coefficients of vertical diffusion of heat and momen-
tum are given by

k=v=A/N¥z2), (2.1)

are the shallow water equations
p.(du + Byz X u) = =Vp — (p,A/c*u + F, (2.2)
ap + (A/lcHp + p,c*V - u=0. (2.3)

In these equations, p, is a scale density of water, p, u and F represent the projections
of the pressure, velocity and wind-stress onto the given baroclinic mode, and c is the
vertical eigenvalue of that mode.

If (2.2) and (2.3) are Fourier transformed in time, using the definition

f) = ef@ya, 2.4)
then the transformed version of (2.2) may be solved for u in terms of p and F:
u=(p,B)"(y* =y (&. — y& x)(F - V¥p), (2.5)

where

Ye = (0 — idw)/B, Aw=A/c". (2.6)
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Substituting this expression for u in the transformed version of (2.3), a single
equation for p = p(x, y, ) is obtained (Vianna, 1988),

Zp =S5, (2.7)

with
L=H(y) =V -[(y* —y)7(¥2 X — iy)V] + iy./4, (2.8)
S=V-[(y*-y)'(yz x — p)F]. (2.9)

In (2.8) and (2.9) and in the rest of this paper the variables x, y and y, are
non-dimensionalized by the equatorial deformation radius,

R, = (c/28)"; (2.10)
we also define F' = R F. In non-dimensional units, the real part of y, becomes
Rey, = o/BR, = w/w,, (2.11)

which gives a non-dimensional measure of frequency, with scale o, = BR,.

Eq. (2.7) is essentially the Laplace Tidal Equation on the B-plane (Matsuno,
1966). If there is some dissipation (4 = 0), its singular points aty = *y_will not lic on
the physical range (real y). At the latitudes y = *Rey,, the frequency w is equal to
the local Coriolis parameter. In the next sections, we shall see that the singular points
do not affect the regularity of the solutions of (2.7) for p, although they can introduce
a resonance in the velocity field. This is reasonably consistent with an observation by
Longuet-Higgins (1965), which states that the singularities of the Laplace Tidal
Equation are “removable.”

Since the model is horizontally inviscid, the boundary conditions must specify the
normal flow through the boundary I' of the oceanic region B over which we want to
solve the shallow water equations. In the time domain, such a boundary condition is

u-ii=g(s,1t) (2.12)

onI', where i 1s the outer normal vector to I, and g is a given function of time and the
coordinate s, which measures length along I'. When ¢ = 0, we have the usual slip
condition to be applied at rigid boundaries. A situation where g = 0 can represent,
for example, a prescribed river discharge at a continental margin. Taking the scalar
product of (2.5) with i, one obtains an equivalent form of (2.12) in terms of the
pressure perturbation p,

(y* =y 'y + y8) - (F' — Vp) = Yp,cq(s, w) (2.13)

on T, where § = Z X i is the counterclockwise tangent vector to I' and ¢(s, w) denotes
the Fourier transform of g(s, ¢). This is the boundary condition that must be applied
to the governing equation (2.7) for the pressure perturbation field.
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3. Integral relations and influence functions

To be able to express (2.7) and (2.13) as a Boundary Integral Equation (BIE), we
derive an integral theorem for the operator #(y,) which corresponds to Green’s
theorem of vector calculus (Hildebrand, 1965). Green’s theorem involves an inner
product in the linear function space of complex-valued functions defined over an
ocean region B. We define the inner product of two complex functions of the position
vectorr = (x,y) by

(f.8) =[] fe* axay, (3.1)

where the star denotes the complex conjugate. Most authors in boundary element
research (Brebbia et al,, 1984) define their inner products without the complex
conjugate in (3.1), even when working with complex-valued functions like p(x, y, ).
We adopt the definition (3.1), which is the standard one for use with complex vector
spaces (Friedman, 1956). By using (3.1), we can calculate {Z(y,) f, g). Integrating by
parts twice, and using the divergence theorem, we get the following identity:

(25)1.8) + (£2098) = P 7 = y)'[f (v — y8) - Ve* (32)
— 8" (A +y8) - Vf ] ds.
If we make
§=8@) =5%r—r) (3.3)

in (2.7}, where 6 denotes the Dirac delta function, we may define a unique Green’s
function G(y,; r; r') for the operator.#(y, ), satisfying

Ly )Gy ') =3(r — ') (3.4)
and the boundary condition
Gly;rr')—0, |r| = co. (3.5)

In our notation for G, we adopt the convention that the first position vector denotes
an observation point, while the second gives the position of the source.

Most Green’s functions encountered in the literature refer to self-adjoint bound-
ary value problems, giving rise to simple symmetry properties with respect to the
exchange of the position arguments. However, (3.2) indicates that the present
problem is not self-adjoint (Friedman, 1956). A symmetry relation for G{y; r; r’)
may be obtained by choosing

flr) =G(ysr;r), gr)=GyLrr,) (3.6)

in the identity (3.2), and extending the region B to infinity. The boundary integral in
(3.2) will then vanish provided that the Green’s function decays fast enough as
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|r| — o. From the results given in Section 4, it will be clear that G decays exponen-
tially as |r| — o, provided A = 0. Using (3.6) in (3.2), one easily gets, in view of (3.4),
the desired symmetry relation

G(y; rs1) = —[G(y5 ry 1)) . (3.7)

The identity (3.2) may be used to derive an integral representation for the pressure
perturbation field. Choosing f = p(r, w), and leaving g arbitrary for the moment, it is
seen from (2.7) that the first term on the left in (3.2) becomes (S, g), which depends
only on the forcing field F'. Using (2.13), the second term in the integrand in (3.2)
can be written in terms of F' and ¢. The remaining terms in Green’s identity will
depend on p, but not on the derivatives of p. A particularly interesting form for the
second term on the left in (3.2) emerges when we choose the arbitrary function g as

gr) = -G ') (3.8)
We have

(p.2L(yNg) = ~{p.LONGHE ) = =(p,d( - 1)) = —p(r'), (3.9

provided r’ lies inside B (note that the result of the above calculation is zero if r’ lies
outside B). Using the symmetry relation (3.7), one obtains after some algebra the
following integral representation for the pressure perturbation at interior pointsr' in
terms of the pressure distribution at the boundary:

p(r') = Pp(Ii(s) - Ky ' 1) ds = s pc P a(6)G (s r's 1) i

(3.10)
- [ PO Koarinaa,

where the vector K is defined as

K(y;r';r) = —(y* = y2)'(iy. + y2 X)VG(y; r'’; 1). (3.11)

Note that the vector r which appears in the boundary integrals in (3.10) varies along
the boundary, r = r(s). Note also that the gradient operator in (3.11) acts on the
second position argument, instead of on the first, as in (3.4).

The integral representation (3.10) is an alternative formulation of our boundary
value problem for the shallow water equations. Physically, (3.10) states that the
pressure perturbation at an arbitrary point r’ inside B is determined by the following
factors: (a) the pressure perturbations along the boundary, (b) the normal outflow
distribution, and (c) the forcing distribution over the considered region. The
influence of each of these factors acting at any point r is “propagated” to the point r’
through the kernel functions G(y,; r'; r) and K(y,; r'; r). Therefore, if we know the
pressure distribution along the boundary, the pressure perturbation at any interior
point r’ can be directly computed from (3.10), provided we are able to evaluate the
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kernel functions appearing in this equation. In Section 4, we present a rather
complete discussion on the computation of the kernel functions. The boundary
pressure distribution is obtained by solving the basic BIE of the theory, which is
derived in Section 5 by allowing the interior point r' in (3.10) to approach the
boundary.

Knowing the pressure values along the boundary, one can also compute the
interior velocity field. Substituting the value of p given by (3.10) in (2.5), one gets an
expression for the velocity,

u(r') = (2/pc) '(y’2 =¥ )W —y'E X)F'(r')
+ f,’;g(yc; r';r) - F'(r) dx dy

(3.12)
- $r()F (T3 ¥) 1(s) ds
- $a)Gs s r) as,
where the vector J and the tensor? are given by
JOs ) = - - y) (B - y'E X)VG(ys 75 1), (3.13)
D(ysr'sr) =" = y) "W —y't X)V'K(y; r's ). (3.14)

The Green’s function G, the vectors K and J, and the tensor @ are the basic
influence functions of the equatorial B-plane shallow water equations. As shown in
(3.10) and (3.12), the use of these functions constitutes a systematic way of represent-
ing solutions to these equations. ‘

4, Kernels

In this section, the Green’s function and the kernel functions appearing in the
integral relations (3.10) and (3.12) are expanded in series of meridional modes
(Hermite functions). In order to overcome some troubles with the convergence of the
series, we apply a new asymptotic technique of summation of Hermite series
(Holvorcem, 1992). This technique allows not only a more efficient evaluation of the
series, but also gives information about the behavior of the kernel functions when the
observation point is close to the source. Such information is crucial in any practical
implementation of (3.10) as a numerical tool.

a. Analytic expressions. The partial differential equation (3.4) defining the Green’s
function has coefficients which depend only on y. Therefore, we may treat this
equation by taking a Fourier transform in the zonal direction,

fle) = [ efx) d. (4.1)
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The transformed version of (3.4) is the ordinary differential equation

~ 4 afaty) (7 -y
7 ye") (2 -y

i (y2 _y2)—l i G((! y; r:)] _
dy “Cody 77 (4.2)

+ 209 (y% — ¥y Glo, y; ') = iy e d(y — y').

(For brevity, in the rest of this paper we shall consistently write the Green’s function
G and the kernels K, J and & without the argument y,.) To construct the solution of
(4.2) which is compatible with the boundary conditions (3.5), we need a solution A(y)
of the associated homogeneous equation, which vanishes asy — « (Butkov, 1968). By
the symmetry of (4.2), h(—y) will be a second solution vanishing asy — —co._ It can be
verified that a solution of the homogeneous equation with the desired behavior as
y —> 015

h(y) = a(y/y.)U(a,y) — U'(a,y), (4.3)

where U(a, y) denotes a parabolic cylinder function (Abramowitz and Stegun, 1965),
U'(a,y) = dU(a,y)/dy and

a=a(a+y ') —y4. (4.4)
The solution to the inhomogeneous equation (4.2) is then (Vianna, 1988)

., h(—ey' Yh(e
Glauyit') = i e (7 = 32) ,,,,’ﬁ()),,)( 2 (45)

where

e=sign (y — ') (4.6)

and W(y') denotes the Wronskian of #(y") and A(—y'). Using standard properties of
U(a, y), we can show that

L-Cuv), ,
@t 12 O 7¥)

W(y') = (2m)'"? (4.7)
In (4.5), the numerator and the denominator present a common factor (1 + 2a/y,)?,
which corresponds to the spurious root & = —y./2 of the dispersion relations of the
equatorial B-plane (Matsuno, 1966). In order to cancel out this factor, it is conve-
nient to express 2(y) in terms of parabolic cylinder functions of order a + 1, and to
express I'(a + 4) in (4.7) in terms of I'(a + 34). With these transformations, (4.5)
becomes

iT(a + 3/2)¢ h(ep)h(—ey")
(a - YCIZ)[I + yc(a - yc/z)] ,

Glay;r') = (2m)712 (4.8)
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where
h(y) = [y¥2 + y(a — y./2) + 1]U(a + 1,y) — yU'(a + L, ). (4.9)

The Green’s function is given by the inverse Fourier transform
G r') = 2m)" [ e Ga,y; ') da. (4.10)

To evaluate (4.10) by residue integration, we must study the singularities of G(«, y;
r'} in the complex a-plane. In (4.8), k(ey) and A(—ey') are analytic functions of a.
The function I'(z) has simple poles at z = —m, m = 0, 1, 2, ..., with residue
(—1)"/m!. Therefore, (4.8) will have poles whena + 3 = —m, i.e,,

a=—vy=xA\, m=20,12,... (4.11)
where

Y= A= - Q)"

4,12
m=m+¥, O =0+y3)/4. (+12)

The remaining poles of (4.8) are clearly
a = ct—l =Yr:/2_yc_ls a= a—2=yc/23 (413)

which correspond to (4.11) with the plus sign and m = —1, —2. These poles represent
the Yanai and Kelvin modes, respectively. When the dissipation is small (Aw < w),
the poles (4.13) lie in the lower half of the a-plane, close to the real axis, thus
representing propagating waves. The poles with the plus (minus) sign in (4.11) lie in
the upper (lower) half plane. If Aw < o, the poles (4.11) withm =0,1,..., M, =
[Re Q — ‘%] (the brackets [ ] denote the integer part) lie close to the real axis,
corresponding to the propagating Rossby (inertia-gravity) modes when the fre-
quency is low (high) enough. In this case, the poles withm > M, are strongly damped
in the zonal direction.

To evaluate the integral (4.10), one must sum up the residues at the poles in the
upper (lower) half plane when x — x’ is negative (positive), in order to ensure that the
integrand decays as || — « in that half plane. Using the recurrence relations of the
parabolic cylinder functions, one can show that

G(r; r') = 271 — o)[exp [—ic,(x — X)W, (y/V2)0uly' /V2)
+ exp [—io(x = X)) (' 1V2)) (4.14)
d ~i(a\, — -x'
-y 3 SR D= s,

where

o = sign(x’ — x), A, =a_, +, A, =0, + 7, (4.15)
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() = (m + 1), (y/2)

(4.16)
+ 0(_,2(0')&,,, - )\—l) (m + 1)_112[y¢m+l(y/\/§) + 21/2¢:n+1(y/ﬁ)]’

and

Un(2) = (mINE) U= (m + 1), \22) = (2"mWYm) e PH, () (4.17)

1s the Hermite function of order m.

The physical interpretation of (4.14) for small dissipation (Aw < ) is the
following: when the observation point r lies to the east of the source at r’, the first
two terms represent the Kelvin and Rossby-gravity waves which are emitted by the
source towards r. The terms withm = 0,1, ..., M, — 1 represent short Rossby waves
or inertia-gravity waves with eastward group velocity, depending on the frequency.
When r lies to the west of r', the first two terms of (4.14) are obviously absent; the
terms withm = 0,1, ..., M, — 1 represent long Rossby waves or inertia-gravity
waves with westward group velocity, depending on the frequency. The terms with
m > M, represent a set of damped modes, which remain trapped near the source’s
meridianx = x’.

From (4.11), (4.12) and (4.14), we see that the damped mode of index m decays to
e~ of its amplitude atx = x’ at a non-dimensional distance [Re(riz — Q)"*]™' from the
meridian. This observation is important for the numerical evaluation of (4.14). In
fact, for small dissipation it is sufficient to truncate the series at

m = ReQ + [b/(x — x")], (4.18)

with b a positive constant, to ensure that the last term retained has at longitude x only
e of its amplitude atx = x’, and that the higher order modes are even more strongly
damped. However, (4.18) indicates that as x — x' it will be necessary to retain an
infinite number of terms in (4.14). Accordingly, in trying to evaluate (4.14) by direct
summation, one verifies that the series converges very slowly when |x — x'| is less
than one or two deformation radii. The asymptotic methods described later in this
section will present an effective solution to this difficulty.

Using (4.14) in the definitions (3.11), (3.13) and (3.14), it is possible to express the
kernels K, J and % as series of Hermite functions. Using the recurrence relations of
parabolic cylinder functions, one can show that

(v? = ¥2)"'(iy. = y& x)Viexp [£i(aN, — v)x]d5 ()} =

_ o s ey (319)
+ exp [i(oA,, — V)x] [L()R + 05(v)§],

where

n(y) = =27 (m + 1), (0/2) (4.20)
—270 (0N, = ALy) (m + 1)V (9 2) + Yl (91V2)],

85.(y) = (oN, — L) (m + 1), (y/V2). (4.21)
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The identity (4.19) implies that the factors (y* — y?)™', (y"* — y?)™' which appear in
the definitions of K, J and2 do not introduce any singular behavior aty = =y, The
expansions for K, J and% in series of Hermite functions are:

K(r; 1) = 270 — 1) [exp [—ie,(x — x")U,(y/V2)0,(y' /V2)%
+ exp o = x)(/V2) (' V)R = divb (' IV29)) (4

m —i(a\,, - —x' .
2oy 3 I =D E N g )8 + iz,

m=0

J(r;x') = 271 — o) [exp [—iaqfx — X )0y V2 ), (v/V2)R
+ exp [~ia (e — 2 (Y 1V2) [n(y/V2)% + 4ivi(y/V2)5)) (4.23)

@ —i(oN, — - x' .
IPETS i:l(l[;\,,f(-c - (?hff_ ;”1 S0 NG 0R - 807)3],

m=()

D(r;r') = 271 — o) [exp [—ioy(x ~ X)W (y/V2)U,(y' /2 )ik

+ exp [—ia (= x)] [/ V2)R + divb(y/\2)5) (' 1V2)% a2
ey |
= divb(y V)1 - 27y 2 f:ﬁfhml(fh‘,) (“;)S_ ;‘g

m=0
[E(R = 8L (0F) [G. ()X + 8, (y")S)
(The juxtaposition of two vectors, as in (4.24), denotes the dyad or tensor product.)

b. Asymptotic summation techniques. To understand the contribution of the damped
equatorial modes to the Green’s function (4.14) and the kernels (4.22)-(4.24), it is
convenient to study the asymptotic behavior of the general terms in their Hermite
expansions as m — o«. Asymptotic expansions for Hermite functions of large order,
valid if m > 1,y?*/4, are (Holvorcem, 1992)

Yei(y/2) ~ i(8mr )™ 21 & exp [—iex(, y))]
1+ (p¥16)i" — ie(y/16)m + -]

Vnai(p/V2) ~ (/2)" 2, i exp [—iex (. )]
1 = (y*/16ym™ + ie(y/16)m ™" + - -]

(4.25)

(4.26)

where /i1 = m + 34 and
x(h,y) = m[sin”'t + 7(1 — 79)"*], T =1(m,y) = y/2m'"?, (4.27)

In view of (4.12), (4.13) and (4.15), the coefficients of ,,, and ¥, ,, in the
expressions for &;, { and 6;, (Eqs. (4.16), (4.20) and (4.21)) can be expanded in
powers of ™' provided m > 1, |Q|. Using (4.25) and (4.26), one then obtains after
some algebra the following asymptotic expansions for ¢y, {7, and 67, valid if m > 1,
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101, y*/4:
$ay) ~ (RIB) 3, i exp [—iex(ri, y)] 2 (i0)* Ay(oey Y, (4.28)
L) ~ (/8w 3 i exp [~iex(h,y)] 2 (o) Byloeyyn", (4.29)

0o(y) ~ —a(¥/8m)™ 3, e exp [—iex(, y)) D, (i0)Clloeyym™2,  (430)
e=*1 k=0
where the first 4,(y), Be(y), Ci(y) are given by

Ay) =y +y., A=) Gi-1+yy),

Ay) = (V) [yy® + 80 — 4) +y(4y: — ¥y)], (4.31)

Ai(y) = () [4(1 —y2) + (2 + 1)y* + y.y(8Q — 6 — y?)],

B(y)=1, B(y)=a,  Byy)=(%e) (4 +y*+d.y),

By(y) = (¥2) [y(8Q + y* — 4) + y(Yy? - 3)],

G =1 GO =r, Gly)= (V) (B2 +4-y), (4.33)
C(») = (Ye) [y — A(y? — 4)].

To determine the asymptotic behavior of the terms of (4.14) and (4.22)-(4.24), we
need also the expansion

(4.32)

[Ma(oN, — A_y) (oN,, — X))t ~ im ™2 2 (fo)Ym, 2, (4.34)
k=0
where the first n, are given by
m=1 M= Yo M, = o, + A AL/2, ms = 0. (4.35)

By (4.12), (4.13) and (4.15), this expansion holds form > 1, |Q)|.
From (4.28) and (4.34), one easily shows that the asymptotic behavior of the
general term g, in the series (4.14) is given by

8 ~ i(y/4m) exp [=i(oN, = v) (¢ = x)] 2, 1" exp {~ilex(h,y)
e (4.36)
+ ux(r,y)]| 2 (0)Gyloey, ouy' i,

where

Gl Y) = 2 e 24D, (437)
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provided m > 1, |Q|, y*/4, y'?/4. These expressions show clearly why (4.14) con-
verges so slowly near the source’s meridian: if x = x', then |g,,| = O(m ™) as m — o,
so that the series is conditionally convergent (Holvorcem, 1992). Now, if

M > 1,10|,y*/4,y"*/4 (4.38)

then (4.36) implies that the Green’s function (4.14) is given asymptotically by

G(r;r') ~ m=2—_zg’" + i(y/4w) exp [iv(x — x')] g (io)

+ €
© D S IJ'T;x,x’; &, W' | Gi(oey, opy’), (4:39)

pe==i

where g_, and g_, denote the terms of (4.14) corresponding to the Yanai and Kelvin
waves, respectively, and

Si(vix,x';y,y") = > (=1)mnwe exp [-®(m; x,x"; v, ¥)], (4.40)
m=M

On;x, x5y, y") = (m = Q)" x —x'| + i[x(R,y) + x(R,y)].  (441)

Using (4.38)—(4.40) and the expressions for the coefficients 4,, m, and G,, it can be
shown that the expansion (4.39) converges rapidly with k, However, if x —x" and k is
small the series S,(v; x; x"; ¥, ') converges very slowly with m, so that it is uneconom-
ical to evaluate it by summing (4.40) directly. Fortunately, the series may be summed
asymptotically (Holvorcem, 1992) as

S(ELx x5 y,y") ~ 27 (=1)"M " exp [~ O(M; x,x'; y,y )L + Yo £,M 7 (4.42)
+ kM — V(848 + E)M = Vsl — DEM T+,
S0, x, X3y, ¥") ~ Lx, x';y,y')+ 27 M2 exp [ DM; x,x'; y, y)[1 + Viz £,M 12
+ Vi kM™ = V(831240 + ENM ™7 — Yook + DEEM™> + -+ ], (4.43)

where M = M + %. Here the coefficients &, = £ (x,x'; y,y') are defined by the
expansion

Ol x, x'sy,y)=m'PE + g + EmT 4 ), (4.44)
the first £, are given explicitly by

Eox, %33, ¥") =[x = x| +i(y + "),
g0y, )= —(Q/2) |x = x'| + (¢’ + y7)/24i.
The function [, which appears in (4.43) is defined by

(4.45)

Lx,x";y,y") = ﬂm-“z exp [—®0n; x, x'; y,y)] dm, (4.46)



1992] Vianna & Holvorcem: Tropical ocean dynamics—Part I 15

Table 1. Computation of G(y,; r; r') fory, = 0.2639 — 0.0024,y = 3,y’ =2andx -~ x' = 1073,
The second column shows the value of (4.14) truncated atm = M — 1, and the third column
is computed from (4.39) (truncated at k = 3), (4.42) and (4.43).

M Partial sum Asymptotic value
11 6.3477 + 1.9305i 6.3770 + 2.1681i
15 6.3311 + 2.5979i 6.3765 + 2.1954i
19 6.3582 + 2.7969i 6.3765 + 2.2005i
26 6.3864 + 2.8644i 6.3766 + 2.2021i

and may be evaluated either asymptotically or by a convergent series expansion (see
the Appendix for details). It follows from (4.38) that the expansions (4.42) and (4.43)
are rapidly convergent; the displayed terms are sufficient to obtain the sum of §,(v; x,
x'; y,y') accurate to a few percent (Holvorcem, 1992).

For computational purposes, it is important to know the maximum values of M
which may occur in the application of (4.39) to the real oceans. As an example,
consider the second baroclinic mode of the tropical Atlantic Ocean, for which
du Penhoat and Treguier (1985) give the vertical eigenvalue ¢ = 1.26 m s ~'. The
corresponding radius of deformation is R, = 167 km, and by (2.11) we have for small
frictiony, = Rey, = w/w,, where w, = BR, = 3.81 X 107°s™". The maximum values of
|@| occur at very low or very high frequencies; at the annual frequency, y, = 0.05,
implying that |Q| = 90. Considering, as usual, an ocean model extending from 208 to
20N, the maximum value of y or y’ is nearly 13, so that y*/4, y'*/4 < 42. Now, to
compute S, (v; x, x’; y, y') with an error of a few percent, we may take M as 3 times the
largest term in the right-hand side of (4.38) (Holvorcem, 1992), so that M is not
expected to exceed a few hundreds in real applications.

In Table 1, we give an example of the numerical use of (4.39) when |x — x'| is very
small (1073 in non-dimensional units), so that we expect (4.14) to converge very
slowly. We note that the value of G(r;r’) computed from (4.39) is accurately
constant irrespective of the chosen value of M, while the partial sum of (4.14)
truncated atm = M — 1 does not yield a definite result. From numerical experiments
with the expansion (4.39), we have concluded that it may in practice be truncated at
k=3

In Figure 1, we show a contour map of Im G (r; r') for a source at t* = (0, 1) and for
three different frequencies (friction is negligible). The values of G were computed
using the truncation (4.18) with b = 7 whenever |x | > 0.5, and using (4.39) for |x| <
0.5. Note in the figures that the field is continuous across the meridian x = (J, a
property which is not apparent from the series representation (4.14). In Figure 1a,
the frequency is low, with Rossby waves appearing to the east and west of the source;
Figure 1c shows a high-frequency case, dominated by inertia-gravity waves; finally,
Figure 1b shows an “intermediate” frequency case, where the only propagating
modes are the Kelvin and Yanai waves.

In Figure 2, we illustrate how the Green’s function field depends on the position of
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Figure 1. Imaginary part of the almost dissipation-free Green’s function G (y,; r; r'), with the
source at r’ = (0, 1), for three non-dimensional frequencies: (a) y, = 0.263, (b) y, = 0.789,
(c)y. = 3.16. The units in both axes are non-dimensionalized by the equatorial deformation
radius R, = (¢/2B)"2. The logarithmic singularity of G at r = r’ (see Section 4c) is not
apparent in these figures.

the source, at a fixed frequency. It is known (Jacobs, 1967; Ripa, 1989) that the
radiation of a point source of frequency w on the B-plane will form a system of
multiple caustics, whose envelope consists of the “extreme latitudes™ y == +2 |Q|'"
These latitudes are indicated by dashed lines in Figure 2. When the source lies within
the extreme latitudes (Fig. 2a), the field of G is also confined there. If the source is
placed outside the extreme latitudes (Fig. 2c), the amplitude of G is negligible
everywhere, except in the immediate neighborhood of the source. An intermediate
case, where the source is placed on an extreme latitude, is shown in Figure 2b.

The maps in Figures 1 and 2 suggest that G always decays exponentially when
ly] — o, and this conclusion is supported by ray theory (Jacobs, 1967; Ripa, 1989).
When |x| — =, only a finite number of propagating modes contribute to the Green’s
function, and these will decay exponentially in the direction of their group velocities,
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Figure 1b.

provided there is some amount of friction. Thus, G will be exponentially small as

|r| = o0, as mentioned in Section 3.
Asymptotic expansions for K, J and & which are analogous to (4.39) may be easily

derived with the aid of (4.28)-(4.30) and (4.34). The results are

M-1

K(50) ~ 3 ko, + (y/4m) exp [iyte = x)] 2, (o)

m=—

we==x|

p+e , )
© D Sim Ty N X €, Wy

" [oWy(oey, oy )X + inWy(oey, owy’)d],

AM-—1

I E) ~ 3 b - (vl exp live = ¥)] 3 (o)

m=-

' 2 Sk+l

we==x1

K+ € . ’
—Z_;X,XQE}’, Ky

oW (owy', oey)k — ieW (o', oey)¥l,
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M- o

g(r;r') ~ 2 2y + (v/4wi) exp [iv(x — x")] 2 (i)

m=-~2 k=0
R+ e , .

D 7 X XS €y, Wy

we=*x1
- [Wi(oey, opy )&% + ionW,(oey, opy )Ry
— iceWyu(owy', oep)¥k + enWy(oey, ony")§il, (4.47)

where k,,, j,.,«,, have their obvious meanings and

Wul3,y') = 2 M FZUA,-(y)B,,.,-(y'),

n=0

n=0

Wa(y,y') = 2, M, ;A;(y)cn—,-(y’),

k n
Wal(3,Y') = 2w 2 B0)B.Y)
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Figure 2. The same as Figure 1, but for a fixed non-dimensional frequency y, = 0.368 and
different meridional positions of the source. The “extreme latitudes” (sec Section 4b) y =
+20Q'7 = x(y! + y7H"? = £2.739 are identified by dashed lines. (a) Source at r' = (0, 0.5),
between the extreme latitudes, radiating waves both to the east and to the west, as in Figure
1a. (b) Source atr’ = (0, 2.739), on an extreme latitude, with an amplitude maximum around
the source’s position. (c) Source at ¢’ = (0, 5), outside the extreme latitudes; no waves are
radiated, and a local field build-up is observed within a deformation radius from the source,

Wal3y) = 2ees 2 BOICAY)

n=0
k n
Wal3,¥") = 24 Miew 2 COIC () (4.48)

We note that in (4.47) the expansions for K, J and & involve the series S,(v; x, x;
y,y') for k = 0, 1, which diverge when x = x’; nevertheless, even in this case the
expansions (4.47), (4.42) and (4.43) give meaningful results (Holvorcem, 1992).

c. Near-field behavior of the kernels. When r’' — r, the Green’s function and the kernel
functions become infinite. This singularity arises because the series S,(0;x,x;
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Figure 2b.

ey, —ey’) with k = 0, 1, 2, which appear in (4.39) and (4.47), have a singularity at
r' = r,while the S,(*1;x,x";y,y")withk = 0,1,2 and §,(v; x,x";y,y' ) withk > 3 are
bounded functions of r and r’ (see (4.42), (4.43) and the Appendix). Thus, the
singularity is an effect of the superposition of damped equatorial modes. It is shown
in the Appendix that when r’ — r the S,(0; x, x'; ey, —ey’) with k = 0, 1, 2 behave as
218,06, x'; €y, —~ey )] 7% 2[E,(x, %' €, —ey')] 'and =2 In € (x x'; ey, —€p'), respectively.
Expanding the coefficients of §,(0; x, x’; ey, —ey’) in (4.39) and (4.47) in powers of
(x —x') and (y — y"), we may then show that the Green’s function and the kernels
have the following singular behavior asr’ — r:

G(r;r') ~ iy/m)(y* ~y) InR + O(1), (4.49)
K(r;r') ~ (v/2m)[-2(y. — iv2 X)(R/R?) + (i% — 2y§) In R} + O(1), (4.50)

J(r; ') ~ (y/2m)2(y, + iyz X)(R/R?) — (i% + 2yy§) In R} + O(1), (4.51)
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(v, r') ~ (y/4m){4(1 + iyAx)(Ax* — Ay)RT(R% - §9)
+ 4Ay[2Ax + iv(AxX? — AYH)RYRY + §R) + S8ivAxR Y (4.52)

+ A0+ y)ER + 39) - 2% + 359)
~ iy y(% — §%)] In R} + O(1).
In (4.49)-(4.52) we use the notations R = r — r’ = Axk + Ayy and R = |R|.

5. Boundary integral equations

After the detailed study of the kernel functions, we are ready to derive the
fundamental boundary integral equation (BIE) of our formulation from the integral
representation (3.10) for the pressure field. This representation was obtained under
the assumption that r' is an interior point of the ocean region B. Now, suppose that r’
is at a positions = s’ on I'. By (4.50), the first integrand in (3.10) behaves as (s — 5")™'
as s — s'. Thus, the first integral in (3.10) will be undefined even as an improper
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Riemann integral.- In order to correctly interpret this integral, we consider a limit
process, where r’ approaches a point r” on I" from the interior of B, along the normal
direction fi(s”), where s” is the coordinate of r" on I'. Denote by Z(8s) the
contribution to the integral from a short segment s” — 3 < s < s" + &s. If the
distance &n between r’ and r” is small, then by (4.50) we have

[r' — r(s)]
r' = r(s)[?

Sincer(s) =1+ (s — s")8(s") + O((s — s")’) and " — ¢’ = dni(s"), we conclude that

2(8) = ~(yimp) [ 86" - (0. - s X) e ds + Os). (51)

269 = (yimpe) 120 Pyl

= 7t~ 'p(r") tan™' (8s/5n) + O(3s).

s + O(3s) (5.2)

Taking the limit 8s, 87 — 0 with 8n << 8s, we see that Z(8s) — p(r”)/2. Thus, when r’
is at the positions = s’ on T, the first integral in (3.10) should be interpreted as

1

o) +lim [ p((s) - K(x'; v) ds. (53)
The second term in the above expression is called the “principal value” of the first
integral in (3.10). By (4.49) and (4.50), the other integrals in (3.10) have integrable
singularities at r = r’, so that no further interpretation is needed for them. Thus, the

fundamental BIE for the boundary pressure distribution p(s) = p(r(s)) is

1 1
Ep(r') = P.V. ﬁp(r)ﬁ(s) -K(r'; r) ds — 5 P ﬁq(s)G(r'; r)ds

~[[F@ K ad, (5.4)

where r' is at a positions’ on I" and P.V. denotes the principal value.

a. Boundary element method. Since the kernel functions are very complicated, it is
difficult to solve (5.4) analytically, even if the basin geometry, the forcing and the
boundary conditions are very simple. However, once we write a computer routine for
the evaluation of the kernels using the analytic and asymptotic expressions of Section
4, the basic BIE (5.4) may be solved numerically by the standard Boundary Element
Method (BEM) (Brebbia et al, 1984). In this approach, we divide the boundary I’
into N short segments (boundary elements) I',,...,Iy. In each element [, we
choose a point r}, and assume that the pressure along each element is constant, equal
to p; = p(r)). Applying (54) atr’ =r,, k = 1,...,N, we get a system of linear
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equations for the boundary pressures p;:

zpk ETkjp, Qs (5.5)

where

T,= J A(s) K(xi;r) ds (5.6)

and

1 N
0, =3 2P a)GEnds + [[FO) Kaimdedy.  (57)

Very realistic ocean geometries can be described by, say, about 100 elements, so that
the dimension N of the above system of equations will normally be quite modest.

The simplest scheme uses straight-line boundary elements. In this case, 7,; = i, -
f', - K(r; r) ds. If j # k, the point r, is not on the path of integration in this last
integral, so that a numerical quadrature rule may be used for the evaluation of 7,,.
Whenj = k, there is a singularity in the integrand at r = r,, and as we have seen the
integral should be regarded as a principal value integral. To evaluate numerically this
integral, we may express K(r;; r) = K®(r;; r) + K®(r;; r), where K® consists of the
singular contributions given by (4.50) and K™ represents the O(1) “regular part” of
K. (Note that we may compute K® using (4.50) and a computer routine which
evaluates K, by writing K® = K — K®.) The principal value of f,} K%r,; r) ds is
easily evaluated analytically, and f r, K®(r;; r) ds may be computed by numerical
quadrature. A similar approach may be used for the computation of the boundary
integrals in (5.7), whose integrand has a singularity when n = k. This splitting of the
kernels into singular and regular parts for purposes of numerical integration is
commonly employed in the boundary element method (see, e.g., Dawson and
Fawcett, 1990; Vijayakumar and Cormack, 1988).

b. Domain integrals. Although (5.4) is an equation for the function p(s) of the single
variable s, the presence of a domain integral as a forcing term seems to imply that a
numerical code for the solution of (5.4) must involve the discretization of the basin B
into small cells for purposes of numerical quadrature. However, the domain integral
term may be replaced by a boundary integral by the use of particular solutions
(Azevedo and Brebbia, 1988). For example, suppose that we want to solve the
shallow water equations over an ocean basin B, with slip boundary conditions at the
boundaries and a forcing field F(r). If we have a particular solution p“(r) of (2.7)
(which in general will not satisfy the boundary conditions), then the total perturba-
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tion pressure field may be written as

p=p"+p®, (5.8)

where p® satisfies the homogeneous shallow water equations. At interior points r’,
the field p® may be represented, using identity (3.2), as

Py = P p®()ia(s) - K(r'; r) ds
1
+5pc ﬁ G(x’; u®(r) - i(s) ds, (5.9)

where u® denotes the velocity field associated with the particular solution p®. When
r’ is taken to the boundary, we obtain a BIE for the unknown field p® which is
analogous to (5.4), but without the domain integral term and with —u*” - i playing
the role of g. This BIE will involve only boundary integrals, and could be solved
numerically by a boundary element scheme similar to (5.5)-(5.7).

To construct a particular solution for the pressure, associated with a realistic wind
stress distribution, one may begin by calculating the response of an unbounded
B-plane ocean to some class of “simple” wind stress distributions. If the realistic
forcing field can be expanded as a linear combination of these “simple” distributions,
then the sought for particular solution is given by the same linear combination of the
calculated unbounded ocean responses.

A wind stress distribution which is sinusoidal in x and y is probably the most
advantageous choice to compute the unbounded ocean response, since it allows the
response to be determined analytically and since the decomposition of a realistic
forcing field into its Fourier components is efficiently performed by FFT algorithms.
Thus, it is sufficient to calculate the response to a forcing of the form

F(r) = F, exp [i(ax + by)] (5.10)

where a, b and F, are constants. A particular pressure field driven by (5.10) is
obtained from (3.10) by taking the region B as the whole plane,

p®(r) = —F,- | [ explitar’ + by )K(r; ¥') v’ dy’, (5.11)

where F, = R F,. Inserting the meridional mode expansion of K, given by (4.22), and
using the well-known property

I e (1\B) dy = 24fmim, (2b), 5.12)
one can rewrite (5.11) as

pO(r) = e“P(a, b;y) - F,, (5.13)
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where

P(a, b;y) = —i(m/2)"{(a + a_)) N, (y/V2)U,(V2b)&

+ i@ + a) WYV I(V2D)R — 4y, (V2b)§] (5.14)
LS oS 0% + 26(20))
Y= &) (oh, — A )(oN, — )@ + ok, — )|

The corresponding velocity field may analogously be obtained from (3.12), (4.24) and
(5.12). The resuit is

u®(r) = (p,w,) '{exp [i(ax + by)I(y* = y2)(v, — y2 X)F,
+ e“%(a, b;y) - Fo], (5.15)

where w, = BR, and

2(a,byy) = —i(w/8){(a + o) W, (¥/V2)U,(V2b)R%
+ i@ + o) [ (V)R + div,(r/V2)91[0,(V2b)R — 4y, (V2D)3]

o E"[En ()R — 16,08 ][4 (2b)R + 26, (2b)§)
PP Ml(OM, — A )(ON, — )@ + ohy — v) |

(5.16)

In trying to evaluate numerically a particular solution using series (5.14) and (5.16)
directly, it is found that the first of these series converges very slowly, while the
second diverges. In fact, a simple estimate using (4.12) and (4.28)-(4.30) shows that
the general terms of (5.14) and (5.16) are O(m ~') and O(m ~''%), respectively, as m —
0. Due to the similarity between the particular solution series and the meridional
mode expansions for the kernels of the BIEs, one can proceed as in Section 4b to
derive rapidly convergent asymptotic expansions for the remainders of (5.14) and
(5.16). Omitting the details of this calculation, the results may be written as

m=0 az=x

- (7/41th2) gik 2 (5_17)

E=%x1

C[iS ks (en; nb, &)U, (a, pb; ey)k
+ uS .2 (ep; nb; ey) Uy (a, nb; ey)y,

Pa,b;9) =p+ o+ 2, 2 P

M=1
?/(a,b;y) =w_q +!£_1 + 2 Eu::,

m=0 o==I

1/2 S -k
HyMm) 28 2 (5.18)

{eShua(en; mb, &)[eUy (a, pb; e)f%
+ iUy (a, pb; €9)§R] + uSi.. (ep; pb, &)liUs (a, pb; ey)3y
+ eUg(a, ub; EJ’)W]L
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where p_,, P_,, « _,,« _, denote the terms of (5.14) and (5.16) corresponding to the
Kelvin and Yanai waves, p;, and «,, are the general terms of those series, S, is the
SETICS

Sivib,y) = 2, i7" exp {~i[x(7, y) + x(m, 2b)]), (5.19)

and the first coeflicients U,, = U, (a, b; y) are given by

Ugla,b;y) = 2(y; + 2by), Uy (a, b;y) = 2(ay. — 1)(2b +y),
Up(a, by) = —(W)lyc(4y: — 4b* —y*) — 16(1 — ay.)* +
+ 2by(32va(1 — ay.) + y* + 4b?)],
Uy(a, byy) = -4y, Uy la, by y) = —4day,
Un(a, byy) = (V)[16a(l — ay.) + y.(4b* — y* + 47)],
Uy(a, by y) = 4b, U, (a,byy) = 2(ay. — 1),

5.20
Ua(a, biy) = (A% + b(y? — 4 — 32ya(1 - ay,))], ©:20)
Ud(](aa b;.))) = - 2)’.:, U41 (a) b:y) = —4ab:
Uula, byy) = (B)[16a(l — ay,) + y.(dy? + y* — 4b?)],
Us(a, b;y) =0, Us (a,b;y) = 4a, Us,(a, b;y) =y.y,
U (a, by y) = 4, Uq (a, b;y) =0,
Ua(a,byy) = —(%)(y* + dy? + 4b* — 16a°).
The expansions (5.17) and (5.18) are valid provided
M > 1,a° b%y*4,|0| (5.21)

In this limit, the series S (v; b, y) may be asymptotically evaluated as (Holvorcem,
1992)

S4 (v b,y) ~ 27'M ™5~ exp [—i[x(M, y) + x(M, 2)]|
(1 = iv) + iy + 20)M ™2 + Yldk — iv(y + 26 M
— Viel2v(2k + 1)(y + 2b) — i(y* + 4by* + 8bY + 8bHIM 2 + - -] (5.22)
c¢. Computation of the interior fields. Once the homogeneous solution p™ is numeri-

cally found at each boundary element, the solution at any interior point can be
obtained from the integral representations (5.9) and

u(r') = ~(2/p) PO (s 1) - is) ds + P uOE) BN ) ds, (5.23)

which is an unforced version of (3.12). All the integrals in (5.9) and (5.23) can be
numerically evaluated as sums of integrals over the boundary elements I';, .. . T',.
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Even though such integrals are non-singular (since r’ does not lie on I'), when the
distance from r' to the boundary is less than one or two deformation radii the
integrands in (5.9) and (5.23) will change rapidly over the elements which are closest
to r', reflecting the singular behavior of the kernels as r' — r. The most efficient
procedure to evaluate each of these integrals is then to employ the splitting
procedure already discussed at the end of Section 5a, that is, to integrate analytically
the singular parts of the kernels (Eqs. (4.49)-(4.52)) and to use an ordinary
numerical quadrature rule for their regular parts. This procedure is better than to
compute the whole integral by a higher-order quadrature rule, since any such rule
would become inaccurate for r' close enough to the boundary I' (Section 4 of Part 11
of this series gives more details on the procedure).

6. Conclusion

Our ultimate objective is to build a linear time-dependent three-dimensional
tropical ocean circulation model consisting of the usual superposition of vertical
modes, including the effects of reflected equatorial waves from realistic basin
boundary geometries. To accomplish this objective in a rigorous way, the first step
consists of treating effectively the horizontal structure problem for each baroclinic
mode, incorporating exact boundary conditions at irregular ocean boundaries. It is
also known that several important aspects of equatorial ocean dynamics can be well
described by the use of shallow water, single baroclinic mode reduced gravity models
with realistic ocean boundaries (Busalacchi and Picaut, 1983) or realistically mod-
eled wind-forcing fields (Weisberg and Tang, 1987, 1990).

The theory presented here shows how one can effectively use meridional mode
expansions to describe the superposition of forced and reflected equatorial waves
from arbitrary boundaries, by use of an analytical-numerical method which works
even with negligible dissipation. The whole physics of the ocean circulation problem
is contained in the kernel functions G, K, J and & (Sections 3 and 4), which describe
how the dynamical influences are propagated on an equatorial B-plane. The accurate
evaluation of these functions has been accomplished by the use of asymptotic
techniques for the summation of Hermite series. Such techniques are general in
character, and are suitable for the treatment of most slowly converging (or even di-
verging) Hermite series which occur in equatorial oceanography (Holvorcem, 1992).

The present method deals in a clean, explicit way, with the short and zonally
damped equatorial wave modes. These become important near ocean boundaries,
but are often parameterized or neglected in the literature, by considering only
low-frequency motions or invoking the long-wave approximation (Cane and Sara-
chik, 1981; Cane and Gent, 1984). The neglect of the short wave modes is usually
justified by the effects of friction. In our model, we can vary the friction coefficient 4
and observe its effects on the solutions without having to neglect any mode right from
the beginning.
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The projection of the forcing field onto Fourier components (Section 5) and the
asymptotic treatment of exact particular solutions effectively remove the computa-
tional difficulties pointed out by Cane and Patton (1984), concerning the use of
normal mode decompositions and projections onto Hermite functions (or even
parabolic cylinder functions of arbitrary order). In the present approach, all meridi-
onal mode expansions have known coefficients, and may be economically evaluated
by explicit asymptotic formulas.

From the numerical viewpoint, an interesting feature of the boundary element
method is the possibility of studying selected areas of the ocean at high resolution,
ignoring completely what happens in the rest of the basin. Since integration is a
smoothing process, the interior fields generated from (5.9) and (5.23) will generally
be smoother than, say, a finite-difference solution. Besides, it is characteristic of the
BEM that the resolution of the interior solution tends to be greater than the
characteristic size of the boundary elements. This is in contrast to finite-difference/
finite element schemes, where the resolution is of the order of the size of the grid
cells.

Finally, it may be remarked that the integral representations (3.10) and (3.12) for
the pressure and velocity fields could be helpful in the conception of a tropical ocean
monitoring system, since they allow the explicit computation of the forced ocean
motion from the wind-stress field and the coastal sea-level anomalies. A similar, but
less general approach has been employed by Gill (1983) to reconstruct the field of
anomalous motion in the tropical Pacific during the 1972 El Nino from time series of
seal level anomaly at the eastern boundary.
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APPENDIX
Computation of the integral (4.46)

Here we present a method for the numerical evaluation of the integral defined in
(4.46). With the change of variable z = riz'?, the integral becomes

L(,x';y,y) =2 f Z'exp [ (2% x, x5 y,y")] dz, (A1)
where z, = M'”. If the quantity
A== ) + (y +y')]" (A2)

is large enough, we can compute /, from the asymptotic expansion (Holvorcem, 1992)
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L(x,x";y,y") ~ 2exp (—z4&;)

a an
2 & 2 exp [~ 055 x50, Y) + Etllemry (A3)

which is obtained from (A.1) by iterated integration by parts (Olver, 1974). In (A.3),
& = E(x,x'; y,y') is defined by (4.45). On the other hand, for bounded values of A we
have the convergent expansion (Holvorcem, 1992)

L(ox';y,y) =2 2, T2 - n -k, 2,t,), (A4)
n=0

where I'(n, z) denotes the incomplete gamma function (Abramowitz and Stegun,
1965) and the g, = q,(x,x’; y, y') are defined by the expansion

exp [-®E5x,x";y,y) + E,2] = 20 q,z" (A.5)

In view of (4.44), we can express the g, in terms of the &,; the first coefficients are
clearly given by

qo = 1: d, = —gl! q, = g¥/23 q; = _‘EZ - g?/6 (A6)
To use (A.4) numerically, it is necessary to compute ['(n, z) for integer values of n. It
is known that I'(n,z), n = 1,2,..., can be expressed in terms of elementary

functions. When n = 0, we have I'(0, z) = E,(z), the exponential integral (Abramow-
itz and Stegun, 1965), which may be computed from the truncated power series

\ (<2)"
E,(z) = — Inz — 05772157 — 2} i (A7)
for |z] < 0.4, and from the truncated continued fraction
E e? 1 1 2 2 30 30 AR
@) = T v vz 17 2 (A8)

for |z| > 0.4. Finally, I'(n,z), n = —1, =2, ..., can be obtained from I'(0,z) by
recurrence:

T'n—-1,2z)=(n—-1)"[Inz)-2z""e™. (A.9)

The asymptotic expansion (A.3) truncated at n = 3 and the series (A.4) truncated
at n = 10 match with an error of a few percent when A = 25. Thus, we may compute
I(x,x";y,y") from (A.3) for A > 25 and from (A.4) for A < 25 (Olver, 1974).

The series (A.4) may be used to determine the behavior of §,(0;x,x'; ey, —ey')
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whenx —x',y — y'. For example, if K = 2 we have, by (4.43), (A.4) and (A.7):

5:(0;x, x5 &9, —e&y') ~ L(x,x"; &9, —ey") + O(1)
~ 2E (zo§o(x, x"; ey, —ey")) + O(1)

~ =2In &,(x,x"; ey, —ey'} + O(1). (A.10)
Analogously, it can be verified that

So(0;x,x"; ey, —ep') ~ 2[E,(x,x"; &y, —ey)] 2 + O(1),
S\(0;x,x"; ey, —ey’) ~ 2[E,(x,x"; &y, —ey')] ' + O(),
Sc(0;x,x"; ey, —ey") ~ O(1), k=3,4,... (A.11)
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